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Abstract: The authors present a hardware implementation of the codec for rank codes. Parameters of rank code

are (8,4,5). Algorithm was implemented on FPGA Spartan 3. Code rate is 1/2. The codec operates with elements

from Galois field GF (28). The device can process informational data stream up to 77 MiB/s. Proposed results

should help understanding rank code structure and simplify the problem of its application.
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Introduction

Rank codes were developed in 1985 [Gabidulin, 1985]. They are an analogue of Reed-Solomon codes. The key

difference between them lies in the definition of the metric. Unlike Reed-Solomon codes, which use Hamming

metric, rank codes use rank metric. A new technique of data transmission, called "Network coding" was proposed

in 2000 [Ahlswede, 2000]. According to this technique several packets can be combined together by a node for

transmission and the rank codes are the most suitable method of correcting errors in such systems. There are many

theoretical papers dedicated to rank coding. However none of them consider hardware implementation.

In this work we will concentrate on our algorithms for rank codes and describe how we implemented them. Next part

of the paper is organized as follows. At first it will be discussed coding procedure and its complexity. Secondly we

are going to discuss our implementation of decoder block, talk about calculating the syndrome, solving key equation,

computing error occured and correcting an informational vector. Thirdly we will give the information about resource

requirements of the coder. And finally we are going to emphasize and discuss the main results.

Coding scheme

Coding scheme is implemented through multiplication informational vector u by generating matrix G. Coding

scheme is similar to rank code syndrome calculating procedure. Entries of the matrix are the elements of the

extended field GF (qN ). Let rank code has such parameters – (n, k, d). Then we can write an informational

vector

u = (u1, u1, . . . .uk), ui ∈ GF (qN ). (1)

We assume n = N and n = 2k unless otherwise stated. So current code rate equals 1/2. Generating matrix G

of rank code are
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where [i] means Frobenius power or qi. Calculated code vector is equal to the product

g = u · G = (g1, g2, . . . , gn), gi ∈ GF (qN ). (3)
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Papers [Gabidulin, 2010]and [Sysoev, 2011]are describe howto performsimilaroperation using weak self-orthogonal

bases [Gabidulin, 2006]. In this case asymptotic complexity of the operation can be evaluated as (N = n)

Ccode = O

(

(log N)2N
)

+ O(N log2 3). (4)

Decoding scheme

Code vector g can be distorted during data transmission. So write

y = g + e, (5)

where

e = (e1, e2, . . . , en), ei ∈ GF (qN ). (6)

If there are no more information apart from received vector y then decoder will be able to correct this word if and

only if

rank(e) ≤
d − 1

2
. (7)

Syndrome computing

There are some ways to decode rank codes. Decoding using syndrome (i.e. syndrome decoding) are best

investigated. Syndrome is the product of received vector y and check matrix H

s = y · H. (8)

If all entries of the syndrome (8) are equal to zero elements then rank decoder makes a decision that there are no

errors. It associates the received vector c = y with an appropriated informational vector. The check matrix,

H(d−1×n) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h

[1]
n

...
...

. . .
...

h
[k−1]
1 h

[k−1]
2 · · · h

[k−1]
n

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (9)

is connected to the generating matrix (2) and must fulfil next condition

GHT = 0. (10)

The complexity of the operation (8) may be estimated in similar way as the complexity of coding scheme. So we can

use the evaluation (4).

Key equation solving

An important decoding step is the key equation solving. We shall denote the basis of an error space by bE , that is

bE = (E1, E2, . . . , Em), (11)

where m – rank of the error occurred with Ei ∈ GF (qN ). For next discussion we will need the definition

Definition 1: Polynomial L(z) over GF (qN ) called linearized if L(z) =
∑

i Liz
pi

.
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Let ∆(z) denotes a linearized polynomial which roots are superposition of the vectors from (11), so called error

span polynomial,

∆(z) =

m
∑

p=0

∆pz
[p]. (12)

Then

∆(E) = 0, (13)

and E is any linear superposition of the basis vectors from (11)

E =
m
∑

i=1

βiEi, Ei ∈ bE,∀βi ∈ GF (q). (14)

Then let us write the key equation for rank code

F (z) = ∆(z) · S(z) mod z[d−1]. (15)

In (15) F (z) are defined as

F (z) =
m−1
∑

i=0

Fiz
[i], (16)

where

Fi =

i
∑

p=0

∆ps
[p]
i−p, i = 0, 1, . . . ,m − 1 (17)

and S(z) denotes linearized syndrome polynomial

S(z) =
d−2
∑

j=0

sjz
[j]. (18)

In paper [Gabidulin, 1985] the author showed that for solving the key equation it is sufficiently to divide z[d−1] by

syndrome polynomial (18). One of the way is using the method of successive divisions (i.e. Euclidean algorithm). In

papers [Sysoev, 2011]and [Gabidulin, 2011]itwas proposed optimized Euclidean algorithmfor linearized polynomials.

This algorithmallowus to use recurrence scheme and are most suitable for hardware implementation. Its asymptotic

complexity are evaluated as

Ceuclid = O(N3.585). (19)

Finding roots of error span polynomial

After the last operation the decoder should find roots of key equation ∆(z) = 0

∆(z) =
m
∑

p=0

∆pz
[p]. (20)

Remember that this solution should satisfy (14). To solve key equation we can use the method, described in

[Berlekamp, 1968]. For this, we will need the following theorem

Theorem 1: Let L(z) – linearized polynomial and z =
∑

k Zkα
k, where Zk ∈ GF (q), then L(z) =

∑

k ZkL(αk)
Proof. See [Berlekamp, 1968]. �

From Theorem 1 it follows that for finding roots of error span polinomial 12, it is necessary to calculate value of this

polynomial in certain points and express the results in standard basis

bstd = (α0, α1, α2, . . . , αN ), α ∈ GF (qN ). (21)
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That is

∆(αk) =

m
∑

i=0

λki · α
i, k = 0, 1, . . . ,m, λki ∈ GF (2N ). (22)

After this calculation we can construct a matrix (m + 1) × (m + 1), which entries are fromGF (q)

Ω =
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∥
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. (23)

Then the problem of finding roots of error span polynomial is equivalent to the finding a solution for the next matrix

equation:

Z · Ω =
∣
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∣ . (24)

The null vector is placed at the right side of the equation (24). This equation may be solved by the means of

transformation of the matrix from current form into idempotent one (see example 2.57 in [Berlekamp, 1968]). Then

the roots of error span polynomial, or (11), may be derived from matrix rows. Thus we will calculate error values

(11).

Find error locator

After calculating (11) it is necessary to calculate error locator. At first step we need to solve a shortened set of

equations [Gabidulin, 1985]:
m
∑

j=1

Ejx
[p]
j = sp, p = 0, 1, . . . ,m − 1. (25)

All the equations transform in such way that at the end of operations we will got unknown variables of equal power,

that is
m
∑

j=1

E
[m−p]
j x

[m−1]
j = s[m−p]

p , p = 0, 1, . . . ,m − 1. (26)

Complexity of the operation (25) are evaluated as

Cconv = Cmult

(

(m − 1)2 +
(m − 1)m

2

)

, (27)

where Cmult is the multiplication complexity for the pair of elements from the extended finite field GF (qN ) in the

current basis. In paper [Gabidulin, 2010] and [Sysoev, 2011] It was shown how we may optimize a set of base

operations (multiplication, powering, inversion) using weak self-orthogonal bases. The set of equations (26) is the

system of linear equations. It can be rewrited into the product of matrix by vector
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To solve a system of equations (26) expressed in (28), we will use Gaussian elimination. So
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Complexity of solving such the system (29) using Gaussian Elimination evaluated as

CGauss = Cinv · m + Cmult

(

m
∑

k=1

k2

)

+ Cadd

(

m
∑

l=1

l(l − 1)

)

, (30)

where Cadd and Cinv are appropriated estimations of complexity for the sum of two elements from extended field

and inversion of the element in current basis.

Complexity of the solution (reduction to Gaussian form) equals to

CsolveX = (Cmult + Cadd)
m(m − 1)

2
. (31)

After this operation we will got a set of independent equations

m
∑

i=1

x[m−1]
p = ŝp, p = 0, 1, . . . ,m − 1. (32)

Each equation from (32) is solving by means of raising to power [n − (m − 1)]. Complexity of the powering may

be evaluated as

CxPow = Cmult · m(n − (m − 1)). (33)

After the calculating xp we may forma system of equation which solution is a set of error locators [Gabidulin, 1985]

xp =
n
∑

j=1

Ypjhj , p = 1, 2, . . . ,m. (34)

In equation (34) hj are the entries of the first row in check matrix (9) with hj ∈ GF (qN ). Ypj are elements of the

error locators matrix (m × n), Ypj ∈ GF (q). It is worth noting that all the equations (34) are independent and

have unique solution. The element hj ∈ GF (qN ) can be expressed in the form of vector which entries are the

elements hji fromGF (q). Thus each equation (34) can be represented in the next form
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∥

∥

∥

∥

∥

∥

∥

∥

∥

xp1

xp2
...

xpn

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

h11 h21 · · · hn1

h12 h22 · · · hn2
...

...
. . .

...

h1n · · · · · · hnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

·

∥

∥

∥

∥

∥

∥

∥

∥

∥

Yp1

Yp2
...

Ypn

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (35)

To find Yp it is necessary to multiply Xp by the matrix Ĥ−1. This matrix is independent from input information

and may be evaluated at the step of device development. Complexity of the operation should be not more than

(upper-bound estimate)

CY = Cadd · (n − 1)m. (36)

Error finding and vector correction

Using known error locators matrix Ypj (from (34)), and the obtained error span matrix Ei (11), it will be simple to

got error values ek for each entry from received corrupted code vector y
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Error correction operation is a simple subtraction

g = y − e. (38)

A common complexity of the error calculation and code vector correction are evaluated as

Ce = Cadd · (nm). (39)

After the correction of received vector we need to find informational vector

ũ = g · D = u · G · D. (40)

For equality ũ and u it is necessary to satisfy the condition

G(k×n) · D(n×k) = I(k×k), (41)

where I denotes the unity matrix with identity components from GF (qN ) at the diagonal. Matrix D is defined

unambiguously and calculates a priori. Complexity of multiplication vector g by matrix D may be estimated as

Cu = Cmult · mn + Cadd · (n − 1)m. (42)

Resource demanding

The authors have implemented described algorithm using hardware description language VHDL. Our goal was the

developing a codec for rank code with the following parameters (8, 4, 5). A base field was GF (2). An extended

field was GF (28), i.e. N = 8. Decoder has no information about row and column erasures.

Codec was designed as IP-block with simple inputs and outputs. The rest of the world can use signal “LOAD” and

“Y[7:0]” for data input. For outputs other blocks should use corrected vector “I[7:0]" with “VALID” and “FAIL" flags.

Such way does not constrain data channel. So the codec can be used with any transmitter such as copper (i.e.

RS-485/Ethernet), memory (i.e. NAND Flash) or radio (i.e. ZigBee/WiFi) channels.

For more objective results this rank codec does not depend on specialized FPGA blocks (such as multipliers, block

ram, I/O blocks). The device may be used not only in FPGA but also in applications specific integrated circuit (ASIC).

Block scheme of full decoder you can see at figures 1 and 2.

Figure 1 shows blocks for searching error basis and interconnection between them. One can see two state

machines, for “Euclid” and “Error Span” stages (denoted as “SM”). Structure is purposefully pipelined. So next

decoding operation starts can begin before previous operation finish. Syndrome block consist of four independent

calculators for each transposed check matrix row. Euclid stage block performs operations on linearized polynomials.

“Euclid main” block are more complex and more frequently used. It decreases current power at each step of

Euclidian algorithm. “Euclid final” are used once per decoding. “Error Span” block is simpler. It performs calculate

values of ∆ linearized polynomial and outputs its roots.

Figure 2 shows block diagram of algorithm for calculating error locator. One can see state machines chain. These

state machines share memory and computational resources between each other. The system also have pipelined

structure. Final stage “Data correction" check syndrome value and can decode received vector if there are no errors

occured. Otherwise, it performs errors searching and, after that, calculations for finding informational vector. The

obtained structure and results may be optimized better. But they are initial point and will help us to more precise

evaluate complex systems based upon rank codes.

We used Active-HDL 7.2 Student Edition fromAldec [Aldec inc., 2012] for simulation. Our project was developed for

commercial FPGAs XC3S700AN-4FGG484C [Xilinx inc., 2008][Xilinx inc., 2012]and XC6SLX16-3CSG225 [Xilinx inc., 2012].

Forgenerating the configuration bit file for FPGA we use software ISE WebPack by Xilinx inc. 13.1 [Xilinx inc., 2011].
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Figure 1: Searching error basis block diagram

Figure 2: Block diagram searching error locator and decoding received vector

Synthesis, translation, mapping and routing were performed with default settings. One can see authors’s results in

table 1. The codec can be run at 155 MHz Spartan-6 and 86 MHz for Spartan-3. So if current code rate is 1/2 then

codec can perform data processing with 77 MiB/s and 43 MiB/s speed accordingly. When this work started, the

best chip for commertial devices was Spartan-3AN. Today FPGA Spartan-6 preferred for new budget designs. It is

recent and more popular FPGA [Xilinx inc., 2012]. The key difference between two FPGAs is the using technology

and architecture. The Spartan-3 (denotes as “S3”) technology is 90 nm, while Spartan-6 (denoted as “S6”) one is

45 nm. Such difference in technology impacts on achievable speed. Indeed, table 1 shows speed increasing.

Spartan 3A contain 4-input Look-Up table (LUT). Each LUT implements logic plus storage elements used as flip-

flops or latches [Xilinx inc., 2012]. Each configurable logic block in Spartan-6 consists of two slices. Each slice in

Spartan-6 contains four 6-input LUTs, eight flip-flops and miscellaneous logic. As one can see in table of results,

in new architecture number of used slices has been dramatically decreased. Obtained results show this difference

between two FPGAs.

So table describes not only resource demanding for the new device, but also for legacy one. One can see and

how new architecture suits for the codec. The main conclusion from the results lies in idea that rank codes may be

implemented for industrial and experimental purposes, even in small series-produced devices.



188 Mathematics of Distances and Applications

Table 1: Simulation and synthesize results

Operation Delay, Slices, Flip-Flops, 4-input LUTs, Max. freq,

cycles number (%) number (%) number (%) MHz

S3 S6 S3 S6 S3 S6 S3 S6

Full coder 14
850

(14)

209

(9)

921

(8)

630

(3)

1247

(11)

859

(9)
163 282

Syndrome stage 25
728

(12)

196

(9)

897

(8)

620

(3)

933

(8)

614

(7)
176 313

KES (Euclid) stage 2040
1837

(31)

826

(36)

1980

(17)

1956

(11)

2945

(25)

2045

(22)
87 156

Error span stage 977
489

(8)

156

(7)

321

(3)

302

(2)

859

(7)

422

(5)
130 174

Error locator stage 401
877

(15)

262

(12)

927

(8)

784

(4)

1214

(10)

545

(6)
143 202

Data correction stage 15
96

(2)

32

(1)

92

(1)

82

(0)

164

(1)

72

(1)
212 344

Full decoder 3458
3979

(68)

1380

(61)

4420

(38)

4027

(22)

6106

(54)

3564

(40)
86 155

Full codec 3472
4829

(82)

1583

(70)

5341

(45)

4657

(26)

7353

(62)

4423

(49)
86 155

Conclusion

Achieved results are important for further scientific research. They will help to estimate more carefully parameters

of the systems based upon rank codes. Understanding the internal structure of the hardware codec should direct

research efforts to the most important problems. Likewise, the results may be used to compare rank codes with

Reed-Solomon codes from applied aspect.

In what follows one should consider more complex codecs, examine dependence of hardware implementation

complexity on the main parameters and develope new algorithms for more efficient decoding.
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