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POSITIVE STABLE REALIZATIONS OF CONTINUOUS-TIME
LINEAR SYSTEMS

Tadeusz Kaczorek

Abstract: The problem for existence and determination of the set of positive
asymptotically stable realizations of a proper transfer function of linear continuous-time
systems is formulated and solved. Necessary and sufficient conditions for existence of
the set of the realizations are established. Procedure for computation of the set of
realizations are proposed and illustrated by numerical examples.
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Introduction

Determination of the state space equations for given transfer matrix is a classical problem,
called realization problem, which has been addressed in many papers and books [Farina
and Rinaldi 2000, Benvenuti and Farina 2004, Kaczorek 1992, 2009b, 2011c, 2012,
Shaker and Dixon 1977]. An overview on the positive realization problem is given in
[Farina and Rinaldi 2000, Kaczorek 2002, Benvenuti and Farina 2004]. The realization
problem for positive continuous-time and discrete-time linear systems has been
considered in [Kaczorek 2004, 2006a, 2006b, 2006c, 2011a, 2011b, 2011c] and the
positive realization problem for discrete-time systems with delays in [Kaczorek 2004,
2005, 2006c]. The fractional positive linear systems has been addressed in [Kaczorek
2008a, 2009a, 2011c]. The realization problem for fractional linear systems has been
analyzed in [Kaczorek 2008b] and for positive 2D hybrid systems in [Kaczorek 2008c].
A method based on similarity transformation of the standard realization to the discrete
positive one has been proposed in [Kaczorek 2011c]. Conditions for the existence of
positive stable realization with system Metzler matrix for transfer function has been
established in [Kaczorek 2011a]. The problem of the existence and determination of the



Artificial Intelligence Methods and Techniques for Business and Engineering Applications 10

set of Metzler matrices for given stable polynomials has been formulated and solved in
[Kaczorek 2012].

It is well-known that [Farina and Rinaldi 2000, Kaczorek 1992, 2002] that to find
arealization for a given transfer function first we have to find a state matrix for given
denominator of the transfer function.

In this paper necessary and sufficient conditions for existence of the set of positive stable
realizations of a proper transfer function of linear continuous-time systems are established
and a procedure for computation of the set of realizations is proposed.

The paper is organized as follows. In section 2 some preliminaries concerning positive
linear systems are recalled and the problem formulation is given. Problem solution for
systems with real negative poles of the transfer function is presented in section 3. The
problem of the existence and computation of the set of positive asymptotically stable
realizations for systems with complex conjugate poles is addressed in section 4.
Concluding remarks are given in section 5.

The following notation will be used: ‘R - the set of real numbers, R™™ - the set of

nxm real matrices, R*™ - the set of nxm matrices with nonnegative entries and
R" =M™, M, - the set of nxn Metzler matrices (real matrices with nonnegative
off-diagonal entries), M, - the set of nxn asymptotically stable Metzler matrices,

I,-the nxn identity matrix, AT - transpose of the matrix A, R™M(s) - the set of
nxm rational matrices in s.

Preliminaries and the problem formulation

Consider the continuous-time linear system
x(t) = Ax(t) + Bu(t) (2.1a)
y(t) =Cx(t) + Du(t) (2.1b)
where x(t) e R", u(t) e R™, y(t) e RP are the state, input and output vectors and
AcR™ BeR™, CeR”", DeR™™.
Definition 2.1. [Farina and Rinaldi 2000, Kaczorek 2002] The system (2.1) is called
(internally) positive if x(t) e R?, y(t)eR?, t>0 for any initial conditions
X(0) = x, e R} and all inputs u(t) e RT, t>0.

Theorem 2.1. [Farina and Rinaldi 2000, Kaczorek 2002] The system (2.1) is positive if and
only if
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AeM,, BeR"™, CeRP", DeRP™. (2.2)

Definition 2.2. [Farina and Rinaldi 2000, Kaczorek 2002] The positive system (2.1) is
called asymptotically stable if

tIim X(t) =0 forany x, e R". (2.3)
Theorem 2.2. [Farina and Rinaldi 2000, Kaczorek 2002]The positive system (2.1) is
asymptotically stable if and only if all coefficients of the polynomial
p,(s) =det[l s—A]l=s"+a, ;s" " +...+ a5 +a, (2.4)
are positive, i.e. a; >0 for i=01,...,n—1.

Definition 2.3. [Kaczorek 2002] A matrix P e®RT" is called the monomial matrix

(or generalized permutation matrix) if its every row and its every column contains only one
positive entry and its remaining entries are zero.

Lemma 2.1. [Kaczorek 2002] The inverse matrix A™ of the monomial matrix A is equal to
the transpose matrix in which every nonzero entry is replaced by its inverse.

Lemma 2.2. If A, €M, then A, =PA,P'eM, for every monomial matrices
PeR™" and

det[l,s— A, ]=det[l,s— A,]. (2.5)
Proof. By Lemma 2.1 if PeRT" then PeR?™ and A, =PA,P'eM,
if Ay €M, . Itis easy to check that

det[l s— A, ]=det[l.s—PA,P ']1=det{P[l s— A,]P "}

= det Pdet[l s— A, ]det P =det[l s — A, ] 28)
since det PdetP™ =1.
The transfer matrix of the systems (2.1) is given by
T(s)=C[l,s—AlB+D. 2.7)
The transfer matrix is called proper if
limT(s)=K e R"" (2.8)

S—0
and it is called strictly proper if K = 0.

Definition 2.4. Matrices (2.2) are called a positive realization of transfer matrix T(s) if they
satisfy the equality (2.7).
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The realization is called asymptotically stable if the matrix A is an asymptotically stable
Metzler matrix (Hurwitz Metzler matrix).

Theorem 2.3. [Kaczorek 2002] The positive realization (2.2) is asymptotically stable if and
only if all coefficients of the polynomial

pA(s)=det[l s—Al=s"+a, ,s" " +..+a5+a, (2.9)
are positive, i.e. a; >0 for i=01,...,n—1.
Lemma 2.3. The matrices
'Ek = PA(p—l €M, §k =PB, e R, 6|< =C|<P_l e R, 5|< =D, e R,
k=1,..,N (210)
are a positive asymptotically stable realization of the proper transfer matrix
T(s) e RP*™(s) for any monomial matrix P € RT*" if and only if the matrices
A eM,, B eRT™ C, eRP", D, eRP™ k=1..,N (2.11)
are a positive asymptotically stable realization of T (s) € RP"(s).

Proof. By Lemma 2.1 if P is a monomial matrix then P~ € R7*" is also monomial matrix.

Hence A eM, if and only if A €M, B, eR”™ if and only if B, e R™™ and

C, eRP" ifand onlyif C, e RP".

Using (2.10) we obtain

T(s)=C,[l,s-—A]"'B,+D, =C,P'[l,s—PAP']'PB, + D,
=CPY{P[l,s-AJP'}'PB, +D, =C,PP[l,s—A] P 'PB +D, (2.12)
=C,[1,s— AJ "B, +D, =T(s).

Therefore, the matrices (2.10) are a positive asymptotically stable realization of T(s) if and

only if the matrices (2.11) are also its positive asymptotically stable realization.

The problem under considerations can be stated as follows: Given a rational proper matrix

T(s) = RP™(s) , find a set of its positive asymptotically stable realizations (2.11).

In this paper necessary and sufficient conditions for existence of the set of the positive
asymptotically stable realizations for a given T(s) will be established and a procedure for
computation of the set of realizations will be proposed.
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Systems with real negative poles

In this section the single-input single-output linear continuous-time linear systems with
the proper transfer function

b,s" +b, ;8" +...+ s +b,
s"+a,_s"t+..+as+a,

T(s)= 3.1

having only real negative poles (not necessarily distinct) — ag, — ay, ..., — ay, i.€.

P,(S)=(s+a)(S+a,)...5+a,)=s"+a, ;8" +..+as+a,,
=g +ta,+..+a, ,=oy(a,+ay+..+a,)+a(ag+o,+..+a,)+. o,

ay =,

(3.2)
will be considered.
First we shall address the problem for n = 1 with the transfer function
T(s):M,a>0. (3.3)
s+a
Theorem 3.1. There exists the set of positive asymptotically stable realizations
A =PAP* B =PB,C,=CP* D, =D,,k=1.2 (3.4)
for any positive parameter P > 0 and Ay, By, C, D having one of the forms
A =[-a], B =[], C =[b,—-ab], D,=[b] (3.5)
or
A =[-a], B,=[b,—ah], C,=[1], D,=[b] (3.6)
of the transfer function (3.3) if and only if
a>0, b>0, by—ab >0. (3.7)

Proof. It is easy to check that the matrices (3.5) are a realization of (3.3). The matrix
A eM, and C, eR™, D, eR™ if and only if the conditions (3.7) are satisfied.
By Lemma 2.3 the matrices (3.4) are a positive asymptotically stable realization of (3.3)
for any P > 0 if and only if the matrices (3.5) are its positive asymptotically stable

realization. Proof for matrices (3.6) is similar.
Theorem 3.2. There exists the set of positive asymptotically stable realizations
Au =PAyP " eM,, B =PB, eR*, C, =CP'eR"®, D, =D, eR,
k=12 (3.8)
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for any monomial matrix P e SRiXZ and Ay, Bk, Ck, Dy having one of the forms
-a aa-a’- b, —ab, + (ag, —a,)b 0
An=| 0 ol B=| Wl el -| 7] b =by],
1 a-a b, —ab, 1
O<a<a, aa—-a’-a,>0
(3.9a)
-a 1 0 b, —ab, +(ag, —a,)b
AMZZAIM: 2 ) BZZ[ } CZT: ° o ) D2:[b2],
aa-a‘-a, a-a 1 b, —ab,

2
O<a<a, aa-a"—a,=0

(3.9b)
of the transfer function
T(s) =% (3.10)
if and only if
al —4a, >0 (3.11)
and
b,>0, b,—ab +(aa —a,)b, 20, b —ab, >0 for 0<a<a. (3.12)

Proof. The matrix Ay, € M, if and only if its characteristic polynomial

2
s+a a’+a,-aa
Yl=s*+as+a,

det[l,5— Ay, =

-1 S+a,—a

has negative real zeros and this is the case if and only if the condition (3.11) is met and
0 <a<a. The matrix

D, = limT(s) =[b,] € %"
if and only if b, > 0. The strictly proper transfer function has the form
bis +by

Tp(®)=T(E)-Dy=5————
s*+as+a,

(3.13)

where b =b, —a)b,, b, =b, —agb, . Assuming C; = [0 1] we obtain
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s+a a’+ay- ala}_l{bn} _b,s+b, +ab,

Tep(8) =Cill,5— Ay, 1B, =[0 1]{ -1 S+a,—a by, s’ +as+a,
(3.14)

From comparison of (3.13) and (3.14) we have

b, =b =b —ab,,

by =by —aby, =hy —agh, —a(b, —ab,) =by —ab +(aa —a)b,.  (3.19)
From (3.15) it follows that B, € %> if and only if the conditions (3.12) are satisfied.
The proof for (3.9b) is similar. By Lemma 2.3 the matrices (3.8) are a positive
asymptotically stable realization for any monomial matrix P e %2? if and only if
the matrices (3.9) are its positive asymptotically stable realization.
Example 3.1. Compute the set of positive asymptotically stable realizations (3.8) of

the transfer function

25?2 +12s+26

T(s)=
(®) s +55+6

(3.16)

The transfer function (3.16) satisfies the conditions (3.11) and (3.12) since

a’ —4a, =1>0 and

b, =2, by—ab +(aa —a,)b, =14-2a>0, b —ab,=2>0for0<a<7.
Using (3.9) we obtain

-a 5a-a’-6 14-2a
Am{l a-5 } { 2 } C=[0 1, D,=[2] (@179
and
—a 1 0
AMZ{Sa—aZ—G a—S} Bz:M’ C,=[14-2a 2], D,=[] (3.17b)

for the parameter a satisfying 2 < a < 3. The desired set of positive asymptotically stable
realizations of (3.16) is given by

A, - P[—la 5a225_ 6})_1, 5 - P{M;Za} &[0 1P B2
(3.18)

and
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KW:P{ o }P‘l, §2=Pm, C,=[14-2a 2P, D,=[2]
5a-a"-6 a->5 1
(3.18b)
where P e %2 is any monomial matrix.
Theorem 3.3. Let the transfer function
R T 18
have only real negative poles — ay, — ap, — a3, i.€.
ds(s) = (s+ ) (s +a)(s+as) =S +a,s° +as+a, (3.20a)
where
L= +o,+ay, g =a(a, +ay)+ a0, 8=aa,0;. (3.20b)
There exists the set of positive asymptotically stable realizations
A =PALP ' eMy, B, =PB, eR®*, C =C,P T eR>,
D, =D, =[b,]eR** k=12 (3.21)
for any monomial matrix P e *}{ixs and Ay, Bk, Ck, Dy having one of the forms
- 1 0 0 by —ayb, + b, + (A, — a8, + a,a)b,
An=l 0 -a, 1 | B =[0], C]=|b—(a+a,)b,+[ay(cq+a,)-alb; || D =[h]
0 -a 1 b, —a,b,
(3.22a)
or
Av,=Ay, B,=C/, C,=B/, D,=D (3.22b)
of the transfer function (3.19) if and only if the conditions
by — ayby, + b, + (8,0 — 8y + a,a )b, >0 (3.23a)
b — (e +,)b, +[a, (g +,) —a,]b, >0 (3.23b)
b, —a,b; >0 (3.23c)
are met.

Proof. The matrix Ay, € My ifand only if ¢, >0 for k = 1,2,3. The matrix

D, = limT (s) = [b,] %
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if and only if b3 > 0. The strictly proper transfer function has the form

b,s* +bs+h,

T (8)=T(s)-Dy=— > (3.24)
S°+a,5" +aS+4a,
where b, =b, —a,b,, b =b, —ab;, by =b; —ab;.
Assuming B/ =[0 O 1] we obtain
s+a, -1 0o 1Yo
Tsp(s):Cl[|3S_AMl]_181:[cl c, ¢] O s+a, -1
0 0 S+a,| |1
- 2
__ o ¢ ¢l s+a, _ Cg8” +[Cy + Gy + )]s +Cy + 4y + 4Gy
3 2 3 2
$°+a,8° +a,5+3a, (s+a)(s+a,) s®+a,s° +a,;5+a,
(3.25)

From comparison of (3.24) and (3.25) we have
Cy =b, =b, —a,h;,
Cy =by —Cy(oy +a,) =by —ah; —Cy(ay + ) = by — ( + @,)b, +[a, (o + ;) — &y Jb,
¢, =by = by —agh; —C,01 — o, = by — by + b, + (8,0, — 89 + 8,01 )b,
(3.26)

From (3.26) it follows that C, € %" if and only if the conditions (3.23) are met. The proof
for (3.22b) follows immediately from the equality that

T(s)=T'(s) =[Cy[l35 - Anl ‘B +D] = BlT[I3S— Ay 1Cl +Dy
=C,y[l3s— AM2]7182 +D,.

By Lemma 2.3 the matrices (3.21) are a positive asymptotically stable realization of (3.19)

(2.27)

for any monomial matrix P e%R>? if and only if the matrices (3.22) are its positive
asymptotically stable realization.
Theorem 3.4. There exists the set of positive asymptotically stable realizations
Ay =PA,PteM,, B =PB eR™, C, =CP'e®R™, D, =D, e R,
k=12 (3.28)

for any monomial matrix P € R"™" and Awx, By, Ck, Dk having one of the forms
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-¢¢ 1 0 .. O 0 By — 84Cy = Ap(Cs —-..— &1 4Cy
0 -a, 1 .. O : :
Au=| . :2 : . Bi=lg) cl = = , Dy=[b,]
: o 0 B, =&, 1,_2C,
0 0 0 .. -q 1 b,
(3.29a)
or
AYVIZZA;\r/Il’ BZ=C1T, szBlTa D, =D, (3.29b)
of the transfer function (3.1) with only real negative poles — a1, — ay, ..., — a, if and only if
the conditions
c,=b,,—a,,b,20
‘Cn—l = bn—z - an—zbn - gn—l,n—zcn 20 (3308)

Cy = by — g, —&4C; — @03 == 8y 10C, 20

where

o=y, Gy=040y, A=+, Ay=0400;, A=ai(a,+03)+ta0,, &y=0+a,+as,

Ay 10 =000y, Ay =0y +as+. ot ay) (e +a,+ot o) ot .

A=+ +.+a,

(3.30b)
are met.
Proof. The matrix A, € M ifand only e, >0 for k= 1,2,...,n. The matrix
D, = limT(s) =[b,] e R** (3.31)
S—>o0
if and only if b, > 0. The strictly proper transfer function has the form
- _
T, (8) =T(9)- D, = —oa® £ty (3.324
s"+a, ;S +.+as+a,
where
b, =b, —a.b, fork=0,1,...,n—1. (3.32b)

Assuming B =[0 ... 0 1]eR"" we obtain
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S+op -1 0o .. 0 0
0 S+a, -1 .. 0 :
Tsp(s):Cl[InS_AMl]ilBl:[Cl SN : : i : : 0
0 0 0 S+a, 1
1
:[Cl . Gyl p.(s) :CI+CZp1(S)+...+Cnpn,1(S)
d,(s) : d,(s)
Pn-1(S)
(3.33a)

where
d,(s)=s"+a,,s" +..+as+a,,
p(s) =S+, =s+ay a,=a,

- — — —
P(8)=(S+a)(S+ay) =5"+ayS+8y, Ay=a;+a,, 8=y,

1 = -2 — —
Pra(8)=(S+a)(S+ay)..(S+ay ) =8"" +a, 1,8+ 81,5+,

Aan2 =+t + Qg 810 = U0, .
(3.33b)
From comparison of (3.33a) and (3.32a) we have
C, = Bn—l - bn—l - an—lbn’
'Cn—l = bn—2 - an—l,n—ZCn = bn—2 - an—an - gn—l,n—zcn’ (334)

€, =by —&,C) —8eCs — = &y 4 Cy-

From (3.34) it follows that C, € ™" if and only if the conditions (3.30) are met. The proof
for (3.29b) follows immediately from (2.27). By Lemma 2.3 the matrices (3.28) are
a positive asymptotically stable realization of (3.1) for any monomial matrix P € RT" if
and only if the matrices (3.29) are its positive asymptotically stable realization.

From above considerations we have the following procedure for computation of the set of
positive asymptotically stable realizations (3.28) of the transfer function (3.1) with real
negative poles.
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Procedure 3.1.

Step 1. Check the conditions (3.30). If the conditions are met, go to Step 2, if not then
does not exist the set of realizations.

Step 2. Using (3.29) compute the matrices Awk, Bk, Ck, Dy for example for k = 1 or
k=2

Step 3. Using (3.28) compute the desired set of realizations.

Example 3.2. Compute the set of positive asymptotically table realizations of the transfer
function

0.2s* +2.2s® +8.65% +12.45+ 7.8

T(s)=
®) st +65°+1352 +12s5+ 4

(3.35)

The transfer function (3.35) has two real double poles - =-a,=-1,

—a, =—a, =—2. Using Procedure 3.1 we obtain the following.
Step 1. The conditions (3.30) are satisfied since

C, =hy—a5b, =1>0,

c;=h, —ab, —a,,c, =2>0,

C, =by —ah, —a,,C; - a5c, =1>0, %)
Cy = by — a4, —8y4C; —850Cs —B30C4 = 2> 0.
Step 2. In this case the matrices (3.29a) have the forms
-1 1 0 0 0
0 -1 1 0 0
Ay, = 0 0 -2 1! B = of C,=[2 1 2 1], D,=[0.2]. (3.37)
0 0 0 -2 1

Step 3. The desired set of realizations of (3.35) is given by

-1 1 0 O 0

_ 0 -1 1 0| ., = 0| = a4 =

Ay, =P 0 0 -2 1 pt, Blpo, C,=[2 1 2 1P, D,=[0.2]
O 0 0 -2 1

(3.38)

for any monomial matrix P € R¥“.



21 ITHEA

Systems with complex conjugate poles

In this section the single-input single-output linear continuous-time system with
the transfer function (3.1) having at least one pair of complex conjugate poles will be
considered.

Theorem 4.1. There exists the set of positive asymptotically stable realizations
Auk =PAP €My, B, =PB, e R, C, =C,P7 e R)?,

D, =D, =[b,]eR** k=12 (4.1)

for any monomial matrix P € %%*® and the matrices A, By, Ci, Dk having one of the

forms
p+tp,—-a, 1 a3 b1+(pz_az)b2+(322_al_a2p2)b3
Aur = 0 -P a3 | B= bO_plbl+p12b2+(a1pl_a0_a2p12)b .
1 0 -p b, —a,h;

C1=[0 0 1]’ Dl:[bS]x

A3 =(a = Py = P2)(Py+ P2)+ PiPy —a, A3=(3, = Py— P2) PLP, — 3P — 3

(4.2a)
or
Av,=Ay, B,=C/, C,=B, D,=D (4.2b)
of the transfer function
o= “9
if and only if the coefficients of the polynomial
ds(s) =5 +a,s° +as+a, (4.4)
satisfies the conditions
a;—3a, >0, —2aj+9aa,—27a,>0 (4.5)
and
b, +(p, —a,)b, + (aZ —a, —a,p,)b, >0,
by — P, + pPb, + (a,p, —a, —a, pf)bs >0, (4.6)

b, —a,b; >0

are where py, p; are positive parameters satisfying 0 < p; + p, < a,.
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Proof. If the matrix A,,; € My if and only if its characteristic polynomial

s+a,-p—-p, -1 —a;,
ds(s) = det[l,s — Ayl = 0 S+P, —a,|=s’+a,s’+as+a,
-1 0 s+p,
(4.7
has the coefficients satisfying the conditions (4.5) [19] and 0 < p; + p, < a,.
The matrix
D, = limT(s) =[b,] e ®** (4.8)
if and only if b3 > 0. The strictly proper transfer function has the form
N
T, (8)=T(s)-D; = 25 RS +Do (4.9)
S°+a,s +as+a,
where
b, =b, —a,b;, b, =b, —ab;, by =by —agb;. (4.9b)
Assuming C, =[0 O 1] we obtain
s+ta,-p—p, -1 —a; B by
Tsp(s)=C1[|35_AM1]71B =[0 0 1] 0 S+Pp —ap by,
-1 0 S+p,| b
by
_ [s+p 1 (s+a,—p—p)(s+Pp)l b,
s*+a,s® +as+a, 2
b5
_ bas” +[by + (8, — P2)bisls + b1, + Pibyy + (8, — Py — P,) Pibs .
s®+a,s® +as+a,
(4.10)

From comparison of (4.9a) and (4.10) we have
by;=b, =b, —a,b;,
by = 51 —(@, = P)bis=by +(p, —a,)b, + (5‘22 — 3 —3,P,)b,, (4.11)
by, =D — Pibyy — (8, = Py = P2) Pibis =D — iy + Py, + (@, py — 29—, py)by.
From (4.11) it follows that B, € %> if and only if the conditions (4.6) are met. The proof
for (4.2b) is similar. By Lemma 2.3 the matrices (4.1) are a positive asymptotically stable
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realization for any monomial matrix P e R>® of (4.3) if and only if the matrices (4.2) are
its positive asymptotically stable realization.
Remark 4.1. The matrix Ay in Theorem 4.1 can be replaced by the matrices [19]

ptp,—a, O 1 PprtP,—a & 0
Az = ay -p 0 | A= 0 -p 1 (4.12a)
a3 1 -p, 1 a;, — P,

and the matrix Ay, by Ay, Ay, . For Ays the matrices B; and C; have the forms

b, —a,b, 1
B, =| by — Py + prb, + (a,p, —a, —a,pf)by |, C5 =|0 (4.12b)
by —(py + P2)b, +[a,(py + p,) —ayIbs 0
and for Ay the matrices B, and C, have the forms
by + (Py + P, = 3,)oy +[(Py + P,)* ~azlb, + (P, + P, —ap)[8; —a —a,(py + p,)lbs 0
B, = b, —a,b , Ci=|1
b, +(p, +a,)b, + (a2 —a, —a,p,)b, 0
(4.120)

From above considerations we have the following procedure for computation of the set of
positive asymptotically stable realizations.

Procedure 4.1.

Step 1. Check the conditions (4.5) and (4.6). If the conditions are met, go to Step 2, if not
then does not exist the set of realizations.

Step 2. Using (4.2) compute the matrices Ak, Bk, Cx, Dy for example fork = 1 or k = 2.
Step 3. Using (4.1) compute the desired set of realizations.

Example 4.1. Compute the set of positive asymptotically table realizations of the transfer
function

0.1s% +s? +4s+12

T = o 1255417 413)
Using Procedure 4.1 we obtain the following.
Step 1. The transfer function (4.13) satisfies the conditions (4.5) and (4.6) since
a;—3a,=6>0, 414)

-2a5 +9a,a, —27a, =108>0

and
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b +(p, —ay)b, + (615 -8, —,p,)b; =0.6+0.1p, >0,
by — Py + pib, + (3,py —ag — @, Pr)b; =103+ py(0.1p; ~1.5) > 0, (4.14b)
b, —ab; =0.1>0
forO<p;+p,<9.
Step 2. Using (4.2a), (4.13) and (4.14b) we obtain

p+p,-9 1 a, 0.6+0.1p, 0
Ay = 0 —p, @ |, B =|103+p(0.1p,-15)| C=|0|, D,=[0.1]
1 0 -p 0.1 1
(4.15)
where

a3 =[9—(p, + P)I(PL + P2) + PP, — 25
895 =[8— (P, + P2)IPLP, —9(Py + Po) + (P, + P2)* +8
and p1, p, are arbitrary parameters satisfying 0 < p; + p, < 9.
Step 3. The desired set of positive stable realizations is given by
Awi=PA,P", B=PB, C,=CP™", D,=D (4.16)
for any monomial matrix P e :R%°.
Theorem 4.2. There exists the set of positive asymptotically stable realizations

A =PAP eM,, B =PB eR{*, C =C,PeR™, D, =D, eR™*

+

(4.17)
for any monomial matrix P € R%** and the matrices A, By, Ci, D having one of the
forms

-p 1 0 G 61
0 -p, 1 A4 b,
_ B =|2| c,=[0 0 0 1, D,=[b,],
A 0 0 -p, a, L & [ ] [b,]
1 0 0  p+py+p;—ag b,

b, — (P, + Py + P3)bs +[ag(py + P, + P3) — b,
= (P, + P3)b, +(p§ + p§ + P, P3)l; +[a5(p, + p3)—a1—a3(p§ + p§ + P, Ps)]o,
b — Pay + P3b, — P3bs +[a, Ps — 8, +2, P, Py — 5P, Ps b,

=R IR =g =
I
(SEEN=2

o
S

Il
K=a

|

QD
w
=

(4.18a)
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and
Ay, = Py(az— P) + Po(@3— Py — Py) + P3(@3— Py — P, — P3) — 8, 20,
Ay, = (Py+ P2) P3(@3— Py — Py — P3) + P1P2 (83— Py — Py) —au(Py + P3) — & 20,
34 = P1P,P3(83 — Py — Py — P3) — @4 P, P3 —ay,P3— 89 =0
(4.18b)
or
A=Ay, B,=C/, C,=B/, D,=D, (4.18c)
of the transfer function
4 3 2
T(s):b“f +b3§ +b22 +bs+b, (4.19)
s*+a,s’ +a,8° +a;s+4a,
if and only if the coefficients of the polynomial
d,(s)=s*+a;s° +a,s° +as+a, (4.20)

satisfies the conditions

3a% —-8a,>0, —a+4a,a,—8a >0, 3a; —16a,a; +64a,a, —256a, >0 (4.21)
and
b, — (P, + P, + Py)bs +[as(py + P, + P3) —,]0, 20
by — (P, + P3)by + (P + P + P2Ps)bs +[85 (P, + Ps) — & —ag(P; + P3 + P, P3)lb, >0
by — Pab; + P3b, — p3by +[8y Py — 8 +8,P, P — 8P, Pslby > 0

(4.22)
are where py, P2, ps are positive parameters satisfying 0 < p; + p, + p3 < as.
The proof is similar to the proof of Theorem 4.1.
Remark 4.2. The matrix Ay in Theorem 4.2 can be replaced by the matrices
—p 1 &y 0 | -p &, 1 0
Ays= 2 _(;32 a3 1 e 1 -p O 0
—Ps 0 0 a, -p; 1
| 0 0 a3 p+p,+p;—2as ] 0 a, 0 p+p+p;—a
[-p, 0 0 1 i
a -p, O 0
= , 0 a
Aus a, 1 -p, 0 <Pt Pyt P3<ag
_a41 0 1 p1+p2+p3_a3_

(4.23)
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and the matrix A, by the matrices Als, Ays Ays-
In general case let us consider the transfer function

bs"+b " +..+hs+h
n n-1 0

T(s) = n n—1
s"+a, "+ +as+a,

(4.24)

with at least one pair of complex conjugate poles.
Theorem 4.3. There exists the set of positive asymptotically stable realizations

Ay =PA,P'eM,., B =PB eR”™, C, =C,P'eR™, D, =D, e R

(4.25)
for any monomial matrix P € R™" and Aw, By, Ck, Dx having one of the forms
-p, 1 0 .. 0 a, ]
0O -p, 1 .. O ay,
0 0 -p; ... O a3,
A= : o : : ,
0 0 0o .. 1 8y 2n
0 0 0 .. -pa &, 1,
1 0 o .. 0 P+t Py~ |
bn—z - an—zbn - é\'n,n—zbl,n
B, = X R X , C/=[0 .. 0 1], D,=[b,]
by — by, =&, obyn — 8400y — = 500142 . '

bn 478, —1bn
(4.26a)

where py, P, ..., Pn-1 are positive parameters satisfying 0 < p; + po +...+ pr.1 <an_1
or

A1\/|2=A1Twla BQZC1T: C2=B1Tv D2=D1 (4-26b)
and
A =P = P+ (8= Pr—P2) +ot Pra(@g = Pr == Pog) —20,
an—l,n = pl"'pn—l(an—l —Pp—= pn—l) - é'loal,n T T é'n—Z,Oa'n—Z,n
(4.26¢)

of the transfer function (4.24) if and only if the coefficients of the polynomial

d,(s)=s"+a, " +..+as+a, (4.27)
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satisfies the conditions

2
C{%) ~a,,>0,

3 2
a,_ a,_ of 8,
o] e8] - ()0

n 2 n-2
a._ a,_ _of a,_ a, .
Cﬁ(”le c;( . 1} -a,_, [C] Z(nle - —Cf(”Tl)—ao >0
1
cr = n!
k!(n—k)!
(4.28)
and
bn—z - an—an - én,n—2b].,n >0
' \ ) ) (4.29a)
by — 3Py — &, by — 810y — . =8y 5002 20
b,,—a,4b, 20
where

9= PpP3e-Po1s 8p0= P3PyePygsenBno = PrPoPyas

8103 =Py + Patot Py 8o g =Pyt Pytot Prgieenily g o = Pyt Pptont Py
(4.29b)
Proof. It is well-known [Kaczorek 2012] that there exists Ay, € M, if and only if
the coefficients of the polynomial (4.27) are positive and satisfy the conditions (4.28).
The matrix
D, = limT(s) =[b,] e ®** (4.30)
S—0
if and only if b, > 0. The strictly proper transfer function has the form

- _
b, ;s +..+bs+b,

s"+a, ,s" +..+as+a,

Tsp (8)=T(s)- D, = (4318)
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where
b =b —ab, fork=12..n—-1. (4.31b)
Assuming C, =[0 ... 0 1]eR>" we obtain

Tsp(s) = C1[Ins - 'A‘M:l:rl Bl

[s+p, -1 0 .. 0 -a,
0 s+p, -1 .. 0 -a,,
0 0 S+p; .. 0 -8y, bfl (4.322)
:[0 .0 1] : : : : : :
0 0o .. -1 ~a, 5, blb’l“
0 0 0 .. S+p,, —a, 1, i
| -1 0 0o . 0 S+a, 3~ Py~ Poa |
by
_IPs) e pa(S)]] P | PuS)ouy + P(S)brp ot Py (S)B
d,(s) By o d,(s)
by
where
PL(S) = (5+ P,)(5+ Pg).-(5+ Ppy) ="+ al,n—e,er3 +.. a8 +a,
i p3=Pot Pyt Pogrendio = PoPaPrss
P,(8) =(s+ pP3)(s+Py)...(5+ Pyg) = s"0+ ";‘z,n—45n_4 +.t 88 + 8y,
Ayng= Pyt Pyttt Pogseendog = P3Pye-Poss
(4.32b)

pn—z(s) =S+ Py =S+ én—2,0’ én—Z,O = Pp1s
pn—l(s) =1
dp(S)=(S+ P)(S+ Pyp)e(5+ Poy) =S" " +8, 1 p8" 7 +oot 8,8+ o,

Ay =P+ Pyttt Py g = PrPae P

From comparison of (4.31a) and (4.32a) we have
bl,n = t:_)n—l = bn—l - a'n—lbn’
bll = 5n—2 - é'n,n—zbl,n = bn—z - an—zbn - aA'n,n—zbl,n’

bl,n—l = 6o - éln,obl,n - él10b11 T éln—2,0b1,n-2 = bo - aobn - én,Obl,n - él10bn T éln—2,0b1,n—2-
(4.33)
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From (4.33) it follows that B, € R™* if and only if the conditions (4.29a) are met.

The proof for (4.26b) follows immediately from (4.27). By Lemma 2.3 the matrices (4.25)
are apositive asymptotically stable realization of (4.24) for any monomial matrix

PeR™" if and only if the matrices (4.26) are its positive asymptotically stable
realization.
Remark 4.2. The matrix Ay in Theorem 4.2 can be replaced by the matrices

-p, 1 0 ... a,, 0
0 -p, 1 .. a,, 1
0 0 —-p; ... 33,4 0
Ays=| : D : :
0 0 0 ... &0 0
0 0 .. =P 0
i 0 0 Qn1 Pt Pog =g
[-p, 0O 0 .. O 1 ] (4.23)
8 -p 0 .. 0 0
83 1 -p3 .. O 0
A=l : Do :
a,_,; O o .. 0 0
8y O 0 . —P 0
a, 0 o .. 1 P+ + Py

where p1, P2, ..., Pn-1 are positive parameters satisfying 0 <p; + po +...+ pr.1<an_1
and the matrix A, by the matrices A{5,..., Al.z -

To compute the desired set of positive asymptotically stable realizations (4.25) of (4.24)
Procedure 4.1 with slight modifications can be used.

Conclusion

The problem of existence and computation of the set of positive asymptotically stable
realizations of a proper transfer function of linear continuous-time systems has been
formulated and solved. Necessary and sufficient conditions for existence of the set of
realizations have been established (Theorems 3.1 — 3.4 and 4.1 — 4.3). Procedure for
computation of the set of realizations for transfer functions with only real negative poles
and with at least one pair of complex conjugate poles have been proposed
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(Procedures 3.1 and 4.1). The effectiveness of the procedures have been demonstrated
on numerical examples. The presented methods can be extended to positive
asymptotically stable discrete-time linear systems and also to multi-input multi-output
continuous-time and discrete-time linear systems. An open problem is an existence of
these considerations to fractional linear systems [Kaczorek 2011c].
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