
177 ITHEA

ON COMBINATION OF DEDUCTION AND ANALYTICAL

TRANSFORMATIONS IN E-LEARNING TESTING

Vitaly Klimenko, Alexander Lyaletski, Mykola Nikitchenko

Abstract: We investigate a possible way for solving the problem of combination of logical

inference search methods and symbolic computation tools in e-learning testing on the

basis of the approaches developed at the Kiev schools of automated theorem proving and

analytical transformations. The investigations started in the first half of 1960s at the

Institute of Cybernetics of the Academy of Sciences of Ukraine. Some years later the

Faculty of Cybernetics of the Kiev State University was involved in the corresponding

projects. The current state of investigations on the topic as well as their theoretical and

practical background is described in the paper.

Keywords: analytical transformation, automated theorem proving, deduction, e-learning,

intelligent tutoring system.

ACM Classification Keywords: I.2.3 Deduction and Theorem Proving – Deduction. I.2.4

Knowledge Representation Formalisms and Methods – Predicate logic. G.4 Mathematical

software. K.3.2 Computer and Information Science Education.

Introduction

At the beginning of the 1960th, Academician V.M. Glushkov initiated two approaches to

the development and implementation of computer-aided mathematics: one was concerned

with symbolic computations (i.e. computer algebra systems in the modern terminology)

and the other with automated theorem-proving (i.e. automated reasoning systems in more

general sense). Now, these two approaches occupy an important place in information

technologies and intelligent tutoring systems, in particular. That is why it is interesting to

know what impact that their combination may have on the development of intelligent

testing in e-learning in current days. In this connection, we first describe the approaches

and discuss their impact after this.

Deduction in testing

Deductive testing consists in logical verification of reasoning steps expressed in a formal

language. In accordance with Glushkov's paper [Glushkov, 1970], the language should be

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 178

formal and maximally be close to a natural language. Deductive testing is to be used in

mathematical disciplines having the form of formal axiomatic theories containing logical

inference rules. It also can be useful (within intelligent tutoring systems) for applying it in

other applied domains, for example, in jurisprudence, where the testing consists in

performing legally and logically valid reasoning steps, or in creating legal documents

consistent with the current legislation.

Deductive approach

The deductive approach itself is based on the declarative way of representation and

logical processing of knowledge having the form of formalized texts (containing axioms,

definitions, propositions, and so on, when we deal with mathematical problems). Systems

exploiting it usually are called automated reasoning systems or, in particular, systems for

automated theorem proving. Note that this approach turns out to be the most adequate for

the automated logical inference search as well as for verification of a formal text

(mathematical or not), namely, checking the validity of all the reasoning steps in it.

For the purposes of deductive testing, we adhere to the following requirements for

a testing environment:

- For presentation of reasoning, a trainee must use a (semi-)formal language

which is close to the natural language of mathematical publications.

This language preserves the structure of the problem in question and the texts in

this language can be translated into some representation convenient for

computer processing.

- Each reasoning step (in a natural form) from the text under verification must be

"obvious" to a computer in the sense that can be checked by it. A checking

procedure must evolve for incrementing reasoning steps as much as possible.

It must combine general methods of logical inference search with heuristic

reasoning techniques such as induction, case reasoning, definition handling,

and so on. Such collection of reasoning techniques must also grow and evolve.

- Formal knowledge accumulated in the system (and used in training) must be

organized in a hierarchical information environment.

The deductive paradigm is actively investigated in Ukraine from 1990, mainly at the

Faculty of Cybernetics of the Kiev State University later renamed as Taras Shevchenko

National University of Kyiv.

179 ITHEA

The SAD System: a Current State

As a result, the System for Automated Deduction (SAD) has been constructed. It can be

downloaded or accessed online on the web-site of the Evidence Algorithm project

http://nevidal.org (see also the papers on SAD: [Lyaletski, 2004], [Anisimov, 2006],

[Lyaletski, 2010], [Lyaletski, 2006], [Vershinin, 2000]).

The SAD system conceptually consists of the following components:

- original formal language ForTheL [The Otter, 2012] that is close to the natural

English language of mathematical publications; ForTheL texts can be translated

into first-order language to allow automated inference search in different logics;

- special module "reasoner" that dispatches a set of traditional proving techniques

of mathematical reasoning such as decomposition of a problem, simplification,

reasoning by general induction, and others;

- efficient automatic provers: one of them presents the native prover Moses

constructed on original sequent-based logical inference search; the other ones

are the famous powerful external theorem provers such as, for example, SPASS

[The SPASS, 2012], Otter [The Otter, 2012], or Vampire [The Vampire, 2012].

Note that Moses operates in natural language environment exploiting only the signature of

an initial theory and, in the case of necessity, has a possibility to use tools for analytical

transformations, in particular, some of the tools of the "Analitic-2007" programming

system.

The SAD system was used for the formalization and verification of a number of real (non-

trivial) mathematical theorems such as Ramsey's Finite and Infinite theorems, Cauchy-

Bouniakowsky-Schwarz inequality, Chinese Remainder Theorem and Bezout's Identity

(in terms of abstract rings), Tarski's fixed point theorem. Thus, the SAD provides a solid

basis for the construction of a deductive testing system.

The following simple example presents a session of testing knowledge of a trainee in Set

Theory who knows the ForTheL language. Suppose that after reading the basics of Set

Theory, the trainee received the task to prove that a set being a subset of any set is

empty. He has a possibility to generate the following ForTheL-text as an input text for the

SAD system (containing the proposition to be proved along with its proof and all the

necessary definitions, axiom, and several "explanations"):

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 180

Fig. 1. An example of a ForTheL-text to be verified

After checking the above-given text with the help of the SAD system using the Moses

prover, the trainee will be able to know that his text is valid (that is, he correctly wrote the

proof):

Fig. 2. The last part of the listing being generated during the SAD session

Analytical transformations in testing

This kind of testing is needed when a solution for an equation must have the form of an

analytical (symbolic) expression, for example, a root of an algebraic equation or an

equation in partial derivatives. In order to perform such a testing, we need a "shell" that

can assure that the symbolic expression proposed by the examinee is correct, that is,

it can be transformed into a formula, given by an examiner by means of symbolic

computation. Such analytical verification is very appropriate for testing in various domains

of physics, trigonometry, algebra, and so on. In the first place, it requires the following

generic tools:

- procedures of arbitrary-precision computation for integers, rational and complex

numbers;

- methods for determining whether two symbolic expressions are equal; these are

usually based on various systems of term rewriting rules;

181 ITHEA

- methods of term normalization (in particular, normalization to certain

conventional mathematical forms);

- tools for analytical transformations of mathematical expressions defined in terms

of hierarchical data structures of arbitrary complexity.

The Institute of Problems of Mathematical Machines and Systems of National Academy of

Sciences of Ukraine, (IPMMS NASU) started research in this domain in 1960s and

created a family of hierarchically developing computer algebra systems in the frame of the

"Analitic" project. The specialized computer series "MIR" (Mashina dlya Inzhenernyh

Raschetov - Engineering Computation Machine, cf. [Glushkov, 1971],): "MIR-1", "MIR-2",

and "MIR-3" having their input languages of the three first version of the "Analitic"

language. Later, the developed algorithms were implemented into the SM 1410 computers

("Analitic-79" [Glushkov, 1979]) and into the standard IBM PC ("Analitic-93"

[Morozov, 1995] and "Analitic-2000" [Morozov, 2001). Now, the modern project versions

called "Analitic-2007" [Morozov, 2007] and "Analitic-2010" [Klimenko, 2010]. are in

progress and usage. Let us give a brief description of some of their features and

implementation.

Analitic-2007

The "Analitic-2007" version was implemented at the beginning of 2007 [Morozov, 2007].

It inherited all main features of all its predecessors and differed from the previous versions

by deeper algebraic transformations, more detailed classification of algebraic tools,

sophisticated facilities of calculations control, and improved interactive methods.

The "Analitic-2007" programming system is intended for IBM PCs and is operated as an

application for the operating system Windows-98 and higher. It consists of the system

kernel and a number of program packages. The compact kernel provides a user with

a large quantity of programs, supports the semantic integrity of the "Analitic" language,

the universality of its functional properties, and the operability of the "Analitic-2007"

system in the environment of the different Windows operating systems. It performs

compiling and recompiling programs and data, executing programs, transforming

language objects (including programs being considered as objects of the language).

The system automatically determines the size of memory accessible for performing

a program and occupies the maximal scope of accessible memory by default. A user has

a possibility for determining the size of memory necessary for the normal execution of his

programs. In the case of exceeding the existent memory size, the "Analitic-2007"

programming system uses virtual memory.

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 182

Analitic-2010

The last version "Analitic-2010" [Klimenko, 2010] was significantly changed in its kernel

and migrated on the .NET platform. A new user-friendly graphic interface missing in

the previous versions was developed.

When implementing "Analitic-2010", the main efforts were directed to the improvement of

operating stability of the kernel. For this the parser was recoded without any changes in

the language "Analitic". As a result, the software of the previous versions was transferred

to the new one.

The new interface is oriented to the efficient handling of data in the interactive mode and

the faster generation of new programs. It is equipped with a complete code editor

supporting intelligent input and all the possibilities inherent in a modern integrated

development environment.

All the "Analitic" family systems are used actively for finding analytical solutions of tasks in

mechanics, astronomy, differential equations theory. Besides, a number of experiments

were performed in automated analytical transformation in various mathematical learning

fields such as, for example, checking algebraic and trigonometric identities.

Combination of deduction and analytical transformations in testing

There exist a great number of software systems for authoring of "electronic textbooks" for

various disciplines being taught in secondary schools, colleges, and universities.

Their common feature is their orientation towards a broad spectrum of educational

branches and, owing to this, towards the simplest kind of examination of trainee's

knowledge based on choosing a right answer from a number of alternatives proposed by

an examiner. The downside of this technique is that it gives the trainee an incentive to

guess a right answer rather than really look for it, which does not allow a tutor to estimate

trainee knowledge correctly. A list of "prescribed answers" is notably inconvenient for

mathematical disciplines, where a solution to a problem often consists in deriving an

analytic (symbolic) expression or in a formal proving when a chain of deductive steps

assuring the validity of a statement under consideration must be constructed. Thus, we

have the following ways for the computer-aided testing of knowledge obtained by

a trainee in the (e-)learning of a subject: the query-answering method, the analytical

transformation, the deductive construction, and, their combinations.

The state of the art in automated reasoning and symbolic computation has initiated

transition from the simple "choose-an-answer" testing to the more intelligent and complex

ones: the deductive and analytical reasoning. As it was mentioned above, the first

183 ITHEA

approach is useful in studying a mathematical theory allowing its complete formalization

for computer checking logical steps of a trainee proving a certain sentence of a theory

under consideration (the same concerns any knowledge domain, where formalization and

deduction are admissible). The second one is suitable for testing on the base of finding

analytical solutions of tasks in algebra, trigonometry, physics, and so on (for both

secondary schools and higher education institutions).

We can mention a number of computer proof assistants (for example, Mizar

[The Mizar, 2012]. and Isabelle [The Isabelle, 2012], some details can be found in

[FmathL, 2012],) as good candidates for using deduction in testing. As to analytical

transformation, there exists the great number of computer algebra systems (for example,

Mathematica [Wolfram, 2003] and Reduce [20]) one of main purposes of which is to test

the correctness of an analytical expression given by a trainee. But in real mathematics,

a trainee is faced with texts requiring performing logical steps along with symbolic

computation. This leads to the construction of tools for the combination of deduction with

analytical transformations.

The last problem can be resolved by means of the "incorporation" of Analitic operators

into the FortheL language for using of a linguistic extension in SAD architecture of which

was designed in such a way that provided using computer algebra tools in the case of

necessity [Verchinine 2007]. Of course, such a reconstruction of ForTheL and SAD will

require essential efforts on the consistency of at least data formats of SAD and Analitic,

but the authors are sure that moving in this direction will give a new impulse to the

improvement of testing a trainee and, as a result, to the appearance on new testing

standards and the increasing of e-learning quality.

Extending semantic models for the logical and analytical languages

During the last decade new approach for constructing semantic models for formal

languages is being developed at the Faculty of Cybernetics of Taras Shevchenko National

University of Kyiv. This approach is called a composition-nominative approach

[Nikitchenko, 1998]. It aims to construct a hierarchy of program models of various

abstraction and generality levels. The main principles of the approach are the following.

- Development principle (from abstract to concrete): program notions should be

introduced as a process of their development that starts from abstract

understanding, capturing essential program properties, and proceeds to more

concrete considerations.

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 184

- Principle of priority of semantics over syntax: program semantic and syntactic

aspects should be first studied separately, then in their integrity in which

semantic aspects prevail over syntactic ones.

- Compositionality principle: programs can be constructed from simpler programs

(functions) with the help of special operations, called compositions, which form

a kernel of program semantics structures.

- Nominativity principle: nominative (naming) relations are basic ones in

constructing data and programs.

Here we have formulated only principles relevant to the topic of the article; richer system
of principles is developed in [Nikitchenko, 2009].

The above described principles specify program models as composition-nominative

systems (CNS) [Nikitchenko, 1998]. Such a system may be considered as a triple of

simpler systems: composition, description, and denotation systems. A composition system

defines semantic aspects of programs, a description system defines program descriptions

(syntactic aspects), and a denotation system specifies meanings (referents)

of descriptions. Program semantics is considered as partial multi-valued functions over

class of data processed by programs; compositions are n-ary operations over functions.

Thus, composition system can be specified as two algebras: data algebra and function

algebra.

Function algebra is the main semantic notion in program formalization. Terms of this
algebra define syntax of programs (descriptive system), and ordinary procedure of term
interpretation gives a denotation system.

CNS can be used to construct formal models of various programming, specification,

and database languages [Nikitchenko, 1998], [Nikitchenko, 2009]. The program models

presented by CNS are mathematically simple, but specify program semantics rather

adequately; program models are highly parametric and can in a natural way represent

programs of various abstraction levels; there is a possibility to introduce on a base of CNS

the notion of special (abstract) computability and various axiomatic formalisms

[Nikitchenko, 2001], [Nikitchenko, 2008], [Nikitchenko, 2010].

CNS are classified in accordance with levels of abstraction of their parameters: data,

functions, and compositions. For constructing program models three levels of data

consideration are chosen: abstract, Boolean, and nominative. At the abstract level data

are treated as "black boxes", thus no information can be extracted. At the Boolean level to

abstract data new data considered as "white boxes" are added. Usually, these are logical

values T (true) and F (false) from the set Bool. At the nominative level data are

considered as "grey boxes", constructed of "black" and "white boxes" with the help of

naming relations. The last level is the most interesting for programming. Data of this level

185 ITHEA

are called nominative data. The class of nominative data is constructed inductively over

a set of names V and a set of basic values W .

Concretizations of nominative data can represent various data structures, such as

records, arrays, lists, relations, etc. [Nikitchenko, 1998], [Nikitchenko, 2009]. For example,

a set {s1, s2, ..., sn} can be represented by a nominative data [1s1, 1s2, ..., 1sn],

where 1 is treated as a standard name. Thus, the following data representation principle

can be formulated: program data can be represented as concretizations of nominative

data.

The above formulated levels of data abstraction may be treated as data intensions.

They respectively specify three levels of semantics-based program models: abstract,

Boolean, nominative. The models of each level constitute extensions of that level

intension. Program models of abstract level are very poor (actually, only sequencing

compositions can be defined). Program models of Boolean level are richer and permit to

define structured programming constructs (sequence, selection, and repetition). This level

is still too abstract and does not explicitly specify data variables. At last, models of

nominative level permit to formalise compositions of traditional programming. This level

(its intension) involves variables of different types.

Consider, for example, a simple educational programming language WHILE

[Nielson, 2009], which is based on three main syntactic components: arithmetic

expressions, Boolean expression, and statements. States of WHILE programs can be

considered as partial functions from the set V of variables to the set A of basic values and

here are denoted by VA (= V 
p

A). Thus, semantics of these components is

the following: arithmetic expressions specify functions of the type FnV,А = VA 
p

 A

(called partial quasiary functions), Boolean expressions define functions of the type PrV,А

= VA 
p

 Bool (partial quasiary predicates), statements specify functions of the type

PrgV,А = VA 
p

VA (partial biquasiary functions). Note that VA is a class of single-valued

nominative data. Functions over nominative data are called nominative functions. Main

operations over nominative data with the name v as a parameter are naming, denaming,

and checking. The main compositions (assignment, sequential, conditional, while

compositions) can be formally defined over nominative functions. Obtained CNS formalize

semantics of simple programming languages. Formalization of more complex languages

requires more powerful classes of nominative data (hierarchic, with complex names,

indirect naming, etc.) and more powerful compositions (recursive, concurrent, etc).

CNS can specify the main aspects of programming languages, and, as a consequence,
it is possible to construct e-learning tools that support studying of various aspects of
programming.

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 186

Based on described composition-nominative program models of various abstraction levels

new logics which correspond to such models were developed. Such logics were called

composition-nominative logics (CNL) and are oriented on program reasoning. They are

logics of partial quasiary predicates and functions. Their compositions are derived from

Kleene’s strong connectives that permit to work with partial predicates.

Three kinds of logics can be constructed based on composition-nominative program

models:

- logics, which use only partial quasiary predicates (pure predicate logic);

- logics, which use additionally partial quasiary functions (predicate-function

logics);

- logics, which use also biquasiary functions (program logics).

The first type of logics generalizes classical pure predicate logics, the second type

corresponds to classical predicate logic (with functions and equality), and the third type

can present various logics, which use program constructs.

The following classification of these kinds of logics was proposed.

For logics of pure quasiary predicates we identify renominative, quantifier, and quantifier-
equational levels.

Renominative logics are the most abstract among the above-mentioned logics. The main
composition for these logics is the composition of renomination (renaming), which is

a total mapping nvv

nxx
R

,...,
,...,

1
1

: PrV,А 
t

PrV,А. Intuitively, given a quasiary predicate P and

a nominative set d, the value of nvv

nxx
R

,...,
,...,

1
1

(P)(d) is evaluated in the following way: first,

a new nominative set d  is constructed from d by changing the values of the names
v1,...,vn in d to the values of the names x1,..., xn respectively; then predicate P is applied

to d . The obtained value of P (if it was evaluated) will be the result of nvv

nxx
R

,...,
,...,

1
1

(P)(d).

For simplicity’s sake the notation v
xR for renomination composition is also used.

The basic composition operations of renominative logics are , , and v
xR .

At the quantifier level, all basic (object) values can be used to construct different
nominative sets to which quasiary predicates can be applied. This allows one to introduce

the compositions of quantification x in style of Kleene’s strong quantifiers. The basic

compositions of logics of the quantifier level are , , v
xR , and x.

At the quantifier-equational level, new possibilities arise for equating and differentiating
values using special 0-ary compositions, i.e., parametric equality predicates =xy . Basic

compositions of logics of the quantifier-equational level are , , v
xR , x, and =ху .

All specified logics (renominative, quantifier, and quantifier-equational) are based on
algebras which have only one sort: a class of quasiary predicates.

187 ITHEA

For quasiary predicate-function logics we identify function and function-equational
levels.

At the function level, extended capabilities of formation of new functions and predicates

are obtained. At this level it is possible to introduce the superposition composition
xS

(see [Nikitchenko, 2008]), which formalizes substitution of functions into predicate (or
function). It also seems natural to introduce special 0-ary compositions, called denaming
functions 'x. Given a nominative set, 'x yields a value of the name x in this set. Introduction
of such functions allows one to model renomination compositions with the help of

superposition. The basic compositions of logics of the function level are , ,
xS , x,

and 'x.

At the function-equational level a special equality composition = can be introduced

additionally. The basic compositions of logics of the function-equational level are , ,
xS , x, 'x, and = . At this level different classes of first-order logics can be defined.

This means that two-sorted algebras (with sets of predicates and functions as sorts and
above-mentioned compositions as operations) form a semantic base for first-order CNL.

The level of program logics is quite rich. First, program compositions should be defined
that describe the structure of programs. In the simplest case of structured programming
these are:

- assignment composition ASx: FnV,А 
t

PrgV,А,

- composition of sequential execution : PrgV,АPrgV,А 
t

PrgV,А,

- conditional composition IF: PrV,АPrgV,АPrgV,А 
t

PrgV,А,

- cycling composition WH: PrV,АPrgV,А 
t

PrgV,А.

Let us note that above presented logics of partial predicates can be considered

generalizations of classical logics. First of all, this concerns types of predicates: while

classical logic is semantically based on total n-ary predicates, CNL are based on partial

quasiary predicates, defined on a special type of nominative data. For such logics valid

and complete sequent calculi were constructed [Nikitchenko, 2008]. More complex CNL

are defined over hierarchic nominative data. Importance of such data is explained by their

representational power that permits to model data structures of specification and

programming languages. Characteristic feature of such languages is usage of composite

names to access data components. The constructed logics also use composite names.

On the next generalization steps modal and temporal CNL are defined and investigated

[Nikitchenko, 2008].

Concerning the educational aspects of the proposed approach to formal languages

specification, we can admit that this approach permits to integrate on one methodological

and mathematical basis such disciplines as programming, mathematical logic, and

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 188

computability theory [Nikitchenko, 2010]. The integration is based on the idea that all

these disciplines have as their kernel the notion of a specialized language system.

Integration of such disciplines can be achieved by

- usage of common methodological construction principles of such disciplines;

- uniform development of main notions of disciplines;

- construction of uniform formal models of the main notions;

- constructing of the uniform e-learning tools.

This approach seems to be useful in e-learning systems because

- it is based on a small number of universal methodological principles applicable to

different discipline;

- it widely uses the principle of development which proposes a number of levels

starting from simple to more elaborate thus giving possibility to present more

complex concepts on later stages of teaching;

- it leads to simple formal language models thus permitting their thorough

investigation with further implementation of e-learning tools.

So, the constructed formal models of programming and logical languages permit to extend

possibilities for deduction tools developed in Kiev by including a program reasoning

component. Such extension will usually require transformation of CNL formulas into first-

order classical logic [Nikitchenko, 2012].

Conclusion

The above-given analysis of Kiev approaches to symbolic computation and deduction

demonstrates that the advances made by researches at IPMMS and Taras Shevchenko

National University of Kyiv allow introducing and implementing various forms of distant

e-learning based on a more thorough and unbiased evaluation of an examinee, which can

improve the quality of learning for disciplines which admit (at least partial) formalization.

Moreover, integration of analytical and deductive testing in a common framework

(say, within intelligent tutoring systems) based on extended logical languages allow these

two forms of intelligent testing to complement and enforce each other. Constructed tools

can be incorporated into the existing e-learning systems taking into account the specifics

of a domain under study. Also, one can use the proposed framework to design and

implement electronic courses and textbooks, containing learning material as well as

exercises for simple and intellectual testing for objective evaluation of student's

knowledge.

189 ITHEA

Bibliography

[Glushkov, 1970] Glushkov V.M. Some problems of automata theory and artificial intelligence
(in Russian). Kibernetika, No. 2, 1970, P. 3–13.

[Lyaletski, 2004]. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof
verification in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Mathematical
Knowledge Management: Third International Conference, MKM-04, Volume 3119 of Lecture
Notes in Computer Science, Springer, 2004, P. 236–250.

[Anisimov, 2006]. Anisimov A. V. and Lyaletski A. V., (2006). The SAD system in three dimensions,
Proceedings of the SYNASC'06, Timisoara, Romania, 2006, P. 85-88.

[Lyaletski, 2010]. Lyaletski A. and Verchinine K. Evidence Algorithm and System for Automated
Deduction: A retrospective view. Intelligent Computer Mathematics: 10th International
Conference AISC/Calculemus/MKM 2010 (Paris, France, July 2010), Vol. 6167 of Lecture
Notes in Computer Science, Springer-Verlag, 2010, P. 411-426.

[Lyaletski, 2006]. Lyaletski, A., Paskevich, A., Verchinin, K.: SAD as a mathematical assistant —
how should we go from here to there? Journal of Applied Logic, Vol. 4(4), 2006, P. 560–591.

[Vershinin, 2000]. Vershinin, K., Paskevich, A.: ForTheL — the language of formal theories.
International Journal of Information Theories and Applications, Vol. 7(3), 2000, P. 120–126.

[The SPASS, 2012] The SPASS Prover: http://www.spass-prover.org/.
[The Otter, 2012]. The Otter automated deduction system:

http://www.mcs.anl.gov/research/projects/AR/otter/.
[The Vampire, 2012], The Vampire prover: http://www.vprover.org/.
[Glushkov, 1971], Glushkov V. M., Bodnarchuk V. G., Grinchenko T. A., Dorodnizyna A. A.,

Klimenko V. P., Letichevsky A. A., Pogrebinsky S. B., Stogniy A. A., and Fishman Yu. S.
ANALITIK (an algorithmic language for description of computational processes using analytical
transformations) (in Russian), Kibernetika, No.3, 1971, P. 102-134.

[Glushkov, 1979], Glushkov V. M., Grinchenko T. A., Dorodnizyna A. A., Drakh A. M., Klimenko
V. P., Pogrebinsky S. B., Savchak O. N., Fishman Yu. S., and. Tsaryuk N. P. ANALITIK-79
(in Russian), Technical report, Institute of Cybernetics, Kiev, USSR, 1979.

[Morozov, 1995]. Morozov A. A., Klimenko V. P., Fishman Yu. S., Bublik B. A., Gorovoy V. D., and
Kalina E. A. ANALITIK-93 (in Russian), Kibernetika i sistemnyj analiz, No.5, 1995, P. 127-157.

[Morozov, 2001]. Morozov A. A., Klimenko V. P., Fishman Yu. S., Lyakhov A. L., Kondrashov S.V.,
and Shvalyuk T. N. ANALITIK-2000 (in Russian), Matematicheskie mashiny i sistemy, No. 1-2,
2001, P. 66-99.

[Morozov, 2007]. Morozov A. A., Klimenko V. P., Fishman Yu. S., and Shvalyuk T. N. ANALITIK-
2007 (in Russian), Mathematical Machines and Systems, No. 3-4, 2007, P. 8-52.

[Klimenko, 2010]. Klimenko V. P., Lyakhov A.L., Gvozdik D.N., Zakharov S.A., and Shvalyuk T. N.
On the implementation of a new version of the Analitic family CAS (in Russian), Proceedings of
the International conference CMSEE-2010, Poltava, 2010.

[The Mizar, 2012], The Mizar system: http://www.mizar.org/.
[The Isabelle, 2012], The Isabelle system: http://www.cl.cam.ac.uk/research/hvg/Isabelle/.
[FmathL, 2012], FMathL - Formal Mathematical Language:

http://solon.cma.univie.ac.at/FMathL.html
[Wolfram, 2003], Wolfram S., (2003). The Mathematica Book, Fifth Edition, Wolfram Media, Inc.
[Reduce, 2012], The computer algebra system Reduce: http://reduce-algebra.sourceforge.net/.
[Verchinine 2007], Verchinine, K., Lyaletski, A., and Paskevich, A. System for Automated

Deduction (SAD): a tool for proof verification. In Automated Deduction, 21st International

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 190

Conference, CADE-21 (Bremen, Germany, July 2007), F. Pfenning, Ed., vol. 4603 of Lecture
Notes in Computer Science, Springer-Verlag, P. 398-403.

[Nikitchenko, 1998], Nikitchenko, N.S.: A Composition Nominative Approach to Program

Semantics. Technical Report ITTR 1998-020, Technical University of Denmark, 103 p., 1998.
[Nikitchenko, 2009], Nikitchenko M.S., Composition-nominative aspects of address programming,

Kibernetika I Sistemnyi Analiz, 2009, 6, P. 24-35 (In Russian)
[Nielson, 2009], Nielson H.R., Nielson F.: Semantics with Applications: A Formal Introduction. John

Wiley & Sons Inc, 1992.
[Nikitchenko, 2001]. Nikitchenko N.S., Abstract computability of non-deterministic programs over

various data structures, In: Bjørner D., Broy M., Zamulin A.V. (Eds.), Perspectives of System
Informatics, LNCS, 2001, 2244, P. 471-484.

[Nikitchenko, 2008]. Nikitchenko M.S., Shkilnyak S.S., Mathematical logic and theory of
algorithms, Publishing house of Taras Shevchenko National University of Kyiv, Kyiv, 2008,
528 p. (in Ukrainian)

[Nikitchenko, 2010]. Nikitchenko M.S. Integrating programming-related disciplines: main principles
and notions. In: Proc. of 8th Int. Conference on Emerging eLearning Technologies and
Applications. The High Tatras, Slovakia, October 28-29, 2010, P. 49–56.

[Nikitchenko, 2012]. Nikitchenko M.S., Tymofieiev V.G.: Satisfiability Problem in Composition-
Nominative Logics of Quantifier-Equational Level. In: Proc. 8-th Int. Conf. ICTERI 2012,
Kherson, Ukraine, June 6-10, 2012. CEUR-WS.org/Vol-848, P. 56-70.

Authors' Information

Vitaly Klimenko – Deputy Director of the Institute of Problems of

Mathematical Machines and Systems of NAS of Ukraine, 42, Acad.

Glushkova Ave., 03680, Kyiv, Ukraine;

e-mail: klimenko@immsp.kiev.ua

Major Fields of Scientific Research: Computer algebra, Mathematical

software, Architecture of computer systems

Alexander Lyaletski – Senior researcher of the Faculty of Cybernetics

at the Taras Shevchenko National University of Kyiv, 64, Volodymyrska

Street, 01601 Kyiv, Ukraine;

e-mail: lav@unicyb.kiev.ua

Major Fields of Scientific Research: Automated Reasoning, Proof theory,

Mathematical and Applied Logics

Mykola Nikitchenko – Chairman of the department of theory and

technology of programming at the Taras Shevchenko National University

of Kyiv, 64, Volodymyrska Street, 01601 Kyiv, Ukraine; e-mail:

nikitchenko@unicyb.kiev.ua

Major Fields of Scientific Research: Foundations of informatics, Formal

software system development, Mathematical logic, Computability theory,

Courseware for informatics

mailto:klimenko@immsp.kiev.ua
mailto:lav@unicyb.kiev.ua
mailto:nikitchenko@unicyb.kiev.ua

