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Abstract: We investigate a possible way for solving the problem of combination of logical 

inference search methods and symbolic computation tools in e-learning testing on the 

basis of the approaches developed at the Kiev schools of automated theorem proving and 

analytical transformations. The investigations started in the first half of 1960s at the 

Institute of Cybernetics of the Academy of Sciences of Ukraine. Some years later the 

Faculty of Cybernetics of the Kiev State University was involved in the corresponding 

projects. The current state of investigations on the topic as well as their theoretical and 

practical background is described in the paper.  
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Introduction 

At the beginning of the 1960th, Academician V.M. Glushkov initiated two approaches to 

the development and implementation of computer-aided mathematics: one was concerned 

with symbolic computations (i.e. computer algebra systems in the modern terminology) 

and the other with automated theorem-proving (i.e. automated reasoning systems in more 

general sense). Now, these two approaches occupy an important place in information 

technologies and intelligent tutoring systems, in particular.  That is why it is interesting to 

know what impact that their combination may have on the development of intelligent 

testing in e-learning in current days. In this connection, we first describe the approaches 

and discuss their impact after this.  

Deduction in testing  

Deductive testing consists in logical verification of reasoning steps expressed in a formal 

language. In accordance with Glushkov's paper [Glushkov, 1970], the language should be 
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formal and maximally be close to a natural language. Deductive testing is to be used in 

mathematical disciplines having the form of formal axiomatic theories containing logical 

inference rules. It also can be useful (within intelligent tutoring systems) for applying it in 

other applied domains, for example, in jurisprudence, where the testing consists in 

performing legally and logically valid reasoning steps, or in creating legal documents 

consistent with the current legislation. 

Deductive approach 

The deductive approach itself is based on the declarative way of representation and 

logical processing of knowledge having the form of formalized texts (containing axioms, 

definitions, propositions, and so on, when we deal with mathematical problems). Systems 

exploiting it usually are called automated reasoning systems or, in particular, systems for 

automated theorem proving. Note that this approach turns out to be the most adequate for 

the automated logical inference search as well as for verification of a formal text 

(mathematical or not), namely, checking the validity of all the reasoning steps in it. 

For the purposes of deductive testing, we adhere to the following requirements for 

a testing environment: 

- For presentation of reasoning, a trainee must use a (semi-)formal language 

which is close to the natural language of mathematical publications. 

This language preserves the structure of the problem in question and the texts in 

this language can be translated into some representation convenient for 

computer processing. 

- Each reasoning step (in a natural form) from the text under verification must be 

"obvious" to a computer in the sense that can be checked by it. A checking 

procedure must evolve for incrementing reasoning steps as much as possible. 

It must combine general methods of logical inference search with heuristic 

reasoning techniques such as induction, case reasoning, definition handling, 

and so on. Such collection of reasoning techniques must also grow and evolve. 

- Formal knowledge accumulated in the system (and used in training) must be 

organized in a hierarchical information environment. 

The deductive paradigm is actively investigated in Ukraine from 1990, mainly at the 

Faculty of Cybernetics of the Kiev State University later renamed as Taras Shevchenko 

National University of Kyiv.  
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The SAD System: a Current State 

As a result, the System for Automated Deduction (SAD) has been constructed. It can be 

downloaded or accessed online on the web-site of the Evidence Algorithm project 

http://nevidal.org (see  also the papers on SAD: [Lyaletski, 2004], [Anisimov, 2006], 

[Lyaletski, 2010], [Lyaletski, 2006], [Vershinin, 2000]). 

The SAD system conceptually consists of the following components: 

- original formal language ForTheL [The Otter, 2012] that is close to the natural 

English language of mathematical publications; ForTheL texts can be translated 

into first-order language to allow automated inference search in different logics;  

- special module "reasoner" that dispatches a set of traditional proving techniques 

of mathematical reasoning such as decomposition of a problem, simplification, 

reasoning by general induction, and others; 

- efficient automatic provers: one of them presents the native prover Moses 

constructed on original sequent-based logical inference search; the other ones 

are the famous powerful external theorem provers such as, for example, SPASS 

[The SPASS, 2012], Otter [The Otter, 2012], or Vampire [The Vampire, 2012]. 

Note that Moses operates in natural language environment exploiting only the signature of 

an initial theory and, in the case of necessity, has a possibility to use tools for analytical 

transformations, in particular, some of the tools of the "Analitic-2007" programming 

system. 

The SAD system was used for the formalization and verification of a number of real (non-

trivial) mathematical theorems such as Ramsey's Finite and Infinite theorems, Cauchy-

Bouniakowsky-Schwarz inequality, Chinese Remainder Theorem and Bezout's Identity 

(in terms of abstract rings), Tarski's fixed point theorem. Thus, the SAD provides a solid 

basis for the construction of a deductive testing system. 

The following simple example presents a session of testing knowledge of a trainee in Set 

Theory who knows the ForTheL language. Suppose that after reading the basics of Set 

Theory, the trainee received the task to prove that a set being a subset of any set is 

empty.  He has a possibility to generate the following ForTheL-text as an input text for the 

SAD system (containing the proposition to be proved along with its proof and all the 

necessary definitions, axiom, and several "explanations"): 
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Fig. 1. An example of a ForTheL-text to be verified 

After checking the above-given text with the help of the SAD system using the Moses 

prover, the trainee will be able to know that his text is valid (that is, he correctly wrote the 

proof):  

 

Fig. 2. The last part of the listing being generated during the SAD session 

Analytical transformations in testing 

This kind of testing is needed when a solution for an equation must have the form of an 

analytical (symbolic) expression, for example, a root of an algebraic equation or an 

equation in partial derivatives. In order to perform such a testing, we need a "shell" that 

can assure that the symbolic expression proposed by the examinee is correct, that is, 

it can be transformed into a formula, given by an examiner by means of symbolic 

computation. Such analytical verification is very appropriate for testing in various domains 

of physics, trigonometry, algebra, and so on. In the first place, it requires the following 

generic tools: 

- procedures of arbitrary-precision computation for integers, rational and complex 

numbers; 

- methods for determining whether two symbolic expressions are equal; these are 

usually based on various systems of term rewriting rules; 
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- methods of term normalization (in particular, normalization to certain 

conventional mathematical forms);  

- tools for analytical transformations of mathematical expressions defined in terms 

of hierarchical data structures of arbitrary complexity. 

The Institute of Problems of Mathematical Machines and Systems of National Academy of 

Sciences of Ukraine, (IPMMS NASU) started research in this domain in 1960s and 

created a family of hierarchically developing computer algebra systems in the frame of the 

"Analitic" project. The specialized computer series "MIR" (Mashina dlya Inzhenernyh 

Raschetov - Engineering Computation Machine, cf. [Glushkov, 1971],): "MIR-1", "MIR-2", 

and "MIR-3" having their input languages of the three first version of the "Analitic" 

language. Later, the developed algorithms were implemented into the SM 1410 computers 

("Analitic-79" [Glushkov, 1979]) and into the standard IBM PC ("Analitic-93" 

[Morozov, 1995] and "Analitic-2000" [Morozov, 2001). Now, the modern project versions 

called "Analitic-2007" [Morozov, 2007] and "Analitic-2010" [Klimenko, 2010]. are in 

progress and usage. Let us give a brief description of some of their features and 

implementation. 

Analitic-2007 

The "Analitic-2007" version was implemented at the beginning of 2007 [Morozov, 2007]. 

It inherited all main features of all its predecessors and differed from the previous versions 

by deeper algebraic transformations, more detailed classification of algebraic tools, 

sophisticated facilities of calculations control, and improved interactive methods. 

The "Analitic-2007" programming system is intended for IBM PCs and is operated as an 

application for the operating system Windows-98 and higher. It consists of the system 

kernel and a number of program packages. The compact kernel provides a user with 

a large quantity of programs, supports the semantic integrity of the "Analitic" language, 

the universality of its functional properties, and the operability of the "Analitic-2007" 

system in the environment of the different Windows operating systems. It performs 

compiling and recompiling programs and data, executing programs, transforming 

language objects (including programs being considered as objects of the language).  

The system automatically determines the size of memory accessible for performing 

a program and occupies the maximal scope of accessible memory by default. A user has 

a possibility for determining the size of memory necessary for the normal execution of his 

programs. In the case of exceeding the existent memory size, the "Analitic-2007" 

programming system uses virtual memory. 
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Analitic-2010 

The last version "Analitic-2010" [Klimenko, 2010] was significantly changed in its kernel 

and migrated on the .NET platform. A new user-friendly graphic interface missing in 

the previous versions was developed. 

When implementing "Analitic-2010", the main efforts were directed to the improvement of 

operating stability of the kernel. For this the parser was recoded without any changes in 

the language "Analitic". As a result, the software of the previous versions was transferred 

to the new one.  

The new interface is oriented to the efficient handling of data in the interactive mode and 

the faster generation of new programs. It is equipped with a complete code editor 

supporting intelligent input and all the possibilities inherent in a modern integrated 

development environment.  

All the "Analitic" family systems are used actively for finding analytical solutions of tasks in 

mechanics, astronomy, differential equations theory. Besides, a number of experiments 

were performed in automated analytical transformation in various mathematical learning 

fields such as, for example, checking algebraic and trigonometric identities. 

Combination of deduction and analytical transformations in testing 

There exist a great number of software systems for authoring of "electronic textbooks" for 

various disciplines being taught in secondary schools, colleges, and universities. 

Their common feature is their orientation towards a broad spectrum of educational 

branches and, owing to this, towards the simplest kind of examination of trainee's 

knowledge based on choosing a right answer from a number of alternatives proposed by 

an examiner. The downside of this technique is that it gives the trainee an incentive to 

guess a right answer rather than really look for it, which does not allow a tutor to estimate 

trainee knowledge correctly. A list of "prescribed answers" is notably inconvenient for 

mathematical disciplines, where a solution to a problem often consists in deriving an 

analytic (symbolic) expression or in a formal proving when a chain of deductive steps 

assuring the validity of a statement under consideration must be constructed. Thus, we 

have the following ways for the computer-aided testing of knowledge obtained by 

a trainee in the (e-)learning of a subject: the query-answering method, the analytical 

transformation, the deductive construction, and, their combinations.  

The state of the art in automated reasoning  and symbolic computation has initiated 

transition from the simple "choose-an-answer" testing to the more intelligent and complex 

ones: the deductive and analytical reasoning. As it was mentioned above, the first 
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approach is useful in studying a mathematical theory allowing its complete formalization 

for computer checking logical steps of a trainee proving a certain sentence of a theory 

under consideration (the same concerns any knowledge domain, where formalization and 

deduction are admissible). The second one is suitable for testing on the base of finding 

analytical solutions of tasks in algebra, trigonometry, physics, and so on (for both 

secondary schools and higher education institutions). 

We can mention a number of computer proof assistants (for example, Mizar 

[The Mizar, 2012].  and Isabelle [The Isabelle, 2012], some details can be found in 

[FmathL, 2012],) as good candidates for using deduction in testing. As to analytical 

transformation, there exists the great number of computer algebra systems (for example, 

Mathematica [Wolfram, 2003] and Reduce [20]) one of main purposes of which is to test 

the correctness of an analytical expression given by a trainee. But in real mathematics, 

a trainee is faced with texts requiring performing logical steps along with symbolic 

computation. This leads to the construction of tools for the combination of deduction with 

analytical transformations. 

The last problem can be resolved by means of the "incorporation" of Analitic operators 

into the FortheL language for using of a linguistic extension in SAD architecture of which 

was designed in such a way that provided using computer algebra tools in the case of 

necessity [Verchinine 2007]. Of course, such a reconstruction of ForTheL and SAD will 

require essential efforts on the consistency of at least data formats of SAD and Analitic, 

but the authors are sure that moving in this direction will give a new impulse to the 

improvement of testing a trainee and, as a result, to the appearance on new testing 

standards and the increasing of e-learning quality.  

Extending semantic models for the logical and analytical languages 

During the last decade new approach for constructing semantic models for formal 

languages is being developed at the Faculty of Cybernetics of Taras Shevchenko National 

University of Kyiv. This approach is called a composition-nominative approach 

[Nikitchenko, 1998]. It aims to construct a hierarchy of program models of various 

abstraction and generality levels. The main principles of the approach are the following.  

- Development principle (from abstract to concrete): program notions should be 

introduced as a process of their development that starts from abstract 

understanding, capturing essential program properties, and proceeds to more 

concrete considerations. 
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- Principle of priority of semantics over syntax: program semantic and syntactic 

aspects should be first studied separately, then in their integrity in which 

semantic aspects prevail over syntactic ones. 

- Compositionality principle: programs can be constructed from simpler programs 

(functions) with the help of special operations, called compositions, which form 

a kernel of program semantics structures. 

- Nominativity principle: nominative (naming) relations are basic ones in 

constructing data and programs. 

Here we have formulated only principles relevant to the topic of the article; richer system 
of principles is developed in [Nikitchenko, 2009].  

The above described principles specify program models as composition-nominative 

systems (CNS) [Nikitchenko, 1998]. Such a system may be considered as a triple of 

simpler systems: composition, description, and denotation systems. A composition system 

defines semantic aspects of programs, a description system defines program descriptions 

(syntactic aspects), and a denotation system specifies meanings (referents) 

of descriptions. Program semantics is considered as partial multi-valued functions over 

class of data processed by programs; compositions are n-ary operations over functions. 

Thus, composition system can be specified as two algebras: data algebra and function 

algebra. 

Function algebra is the main semantic notion in program formalization. Terms of this 
algebra define syntax of programs (descriptive system), and ordinary procedure of term 
interpretation gives a denotation system. 

CNS can be used to construct formal models of various programming, specification, 

and database languages [Nikitchenko, 1998], [Nikitchenko, 2009]. The program models 

presented by CNS are mathematically simple, but specify program semantics rather 

adequately; program models are highly parametric and can in a natural way represent 

programs of various abstraction levels; there is a possibility to introduce on a base of CNS 

the notion of special (abstract) computability and various axiomatic formalisms 

[Nikitchenko, 2001], [Nikitchenko, 2008], [Nikitchenko, 2010]. 

CNS are classified in accordance with levels of abstraction of their parameters: data, 

functions, and compositions. For constructing program models three levels of data 

consideration are chosen: abstract, Boolean, and nominative. At the abstract level data 

are treated as "black boxes", thus no information can be extracted. At the Boolean level to 

abstract data new data considered as "white boxes" are added. Usually, these are logical 

values T (true) and F (false) from the set Bool. At the nominative level data are 

considered as "grey boxes", constructed of "black" and "white boxes" with the help of 

naming relations. The last level is the most interesting for programming. Data of this level 
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are called nominative data. The class of nominative data is constructed inductively over 

a set of names V and a set of basic values W .  

Concretizations of nominative data can represent various data structures, such as 

records, arrays, lists, relations, etc. [Nikitchenko, 1998], [Nikitchenko, 2009]. For example, 

a set {s1, s2, ..., sn} can be represented by a nominative data [1s1, 1s2, ..., 1sn], 

where 1 is treated as a standard name. Thus, the following data representation principle 

can be formulated: program data can be represented as concretizations of nominative 

data. 

The above formulated levels of data abstraction may be treated as data intensions. 

They respectively specify three levels of semantics-based program models: abstract, 

Boolean, nominative. The models of each level constitute extensions of that level 

intension. Program models of abstract level are very poor (actually, only sequencing 

compositions can be defined). Program models of Boolean level are richer and permit to 

define structured programming constructs (sequence, selection, and repetition). This level 

is still too abstract and does not explicitly specify data variables. At last, models of 

nominative level permit to formalise compositions of traditional programming. This level 

(its intension) involves variables of different types.  

Consider, for example, a simple educational programming language WHILE 

[Nielson, 2009], which is based on three main syntactic components: arithmetic 

expressions, Boolean expression, and statements. States of WHILE  programs can be 

considered as partial functions from the set V of variables to the set A of basic values and 

here are denoted by VA (= V 
p

A). Thus, semantics of these components is 

the following: arithmetic expressions specify functions of the type FnV,А  = VA 
p

 A 

(called partial quasiary functions), Boolean expressions define functions of the type PrV,А 

= VA 
p

 Bool (partial quasiary predicates), statements specify functions of the type 

PrgV,А = VA 
p

 
VA (partial biquasiary functions). Note that VA is a class of single-valued 

nominative data.  Functions over nominative data are called nominative functions. Main 

operations over nominative data with the name v as a parameter are naming, denaming, 

and checking. The main compositions (assignment, sequential, conditional, while 

compositions) can be formally defined over nominative functions. Obtained CNS formalize 

semantics of simple programming languages.  Formalization of more complex languages 

requires more powerful classes of nominative data (hierarchic, with complex names, 

indirect naming, etc.) and more powerful compositions (recursive, concurrent, etc).   

CNS can specify the main aspects of programming languages, and, as a consequence, 
it is possible to construct e-learning tools that support studying of various aspects of 
programming.  
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Based on described composition-nominative program models of various abstraction levels 

new logics which correspond to such models were developed. Such logics were called 

composition-nominative logics (CNL) and are oriented on program reasoning. They are 

logics of partial quasiary predicates and functions. Their compositions are derived from 

Kleene’s strong connectives that permit to work with partial predicates. 

Three kinds of logics can be constructed based on composition-nominative program 

models: 

- logics, which use only partial quasiary  predicates (pure predicate logic); 

- logics, which use additionally partial quasiary  functions (predicate-function 

logics); 

- logics, which use also biquasiary  functions (program logics). 

The first type of logics generalizes classical pure predicate logics, the second type 

corresponds to classical predicate logic (with functions and equality), and the third type 

can present various logics, which use program constructs.  

The following classification of these kinds of logics was proposed. 

For logics of pure quasiary predicates we identify renominative, quantifier, and quantifier-
equational levels.  

Renominative logics are the most abstract among the above-mentioned logics. The main 
composition for these logics is the composition of renomination (renaming), which is 

a total mapping nvv

nxx
R

,...,
,...,

1
1

: PrV,А 
t

PrV,А. Intuitively, given a quasiary predicate P and 

a nominative set d, the value of nvv

nxx
R

,...,
,...,

1
1

(P)(d) is evaluated in the following way: first, 

a new nominative set d  is constructed from d by changing the values of the names 
v1,...,vn in d to the values of the names  x1,..., xn respectively; then predicate P is applied 

to d . The obtained value of P (if it was evaluated) will be the result of nvv

nxx
R

,...,
,...,

1
1

(P)(d). 

For simplicity’s sake the notation v
xR  for renomination composition is also used.  

The basic composition operations of renominative logics are , , and v
xR .  

At the quantifier level, all basic (object) values can be used to construct different 
nominative sets to which quasiary predicates can be applied. This allows one to introduce 

the compositions of quantification x in style of Kleene’s strong quantifiers. The basic 

compositions of logics of the quantifier level are , , v
xR , and x. 

At the quantifier-equational level, new possibilities arise for equating and differentiating 
values using special 0-ary compositions, i.e., parametric equality predicates =xy . Basic 

compositions of logics of the quantifier-equational level are , , v
xR , x, and =ху . 

All specified logics (renominative, quantifier, and quantifier-equational) are based on 
algebras which have only one sort: a class of quasiary predicates.  
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For quasiary predicate-function logics we identify function and function-equational 
levels. 

At the function level, extended capabilities of formation of new functions and predicates 

are obtained. At this level it is possible to introduce the superposition composition 
xS  

(see [Nikitchenko, 2008]), which formalizes substitution of functions into predicate (or 
function). It also seems natural to introduce special 0-ary compositions, called denaming 
functions 'x. Given a nominative set, 'x yields a value of the name x in this set. Introduction 
of such functions allows one to model renomination compositions with the help of 

superposition. The basic compositions of logics of the function level are  , , 
xS , x, 

and 'x. 

At the function-equational level a special equality composition = can be introduced 

additionally. The basic compositions of logics of the function-equational level are  , , 
xS , x, 'x, and = . At this level different classes of first-order logics can be defined. 

This means that two-sorted algebras (with sets of predicates and functions as sorts and 
above-mentioned compositions as operations) form a semantic base for first-order CNL.  

The level of program logics is quite rich. First, program compositions should be defined 
that describe the structure of programs. In the simplest case of structured programming 
these are:  

- assignment composition ASx: FnV,А 
t

PrgV,А, 

- composition of sequential execution : PrgV,АPrgV,А 
t

PrgV,А,  

- conditional composition IF: PrV,АPrgV,АPrgV,А 
t

PrgV,А,  

- cycling composition WH: PrV,АPrgV,А 
t

PrgV,А.   

Let us note that above presented logics of partial predicates can be considered 

generalizations of classical logics. First of all, this concerns types of predicates: while 

classical logic is semantically based on total n-ary predicates, CNL are based on partial 

quasiary predicates, defined on a special type of nominative data. For such logics valid 

and complete sequent calculi were constructed [Nikitchenko, 2008]. More complex CNL 

are defined over hierarchic nominative data. Importance of such data is explained by their 

representational power that permits to model data structures of specification and 

programming languages. Characteristic feature of such languages is usage of composite 

names to access data components. The constructed logics also use composite names. 

On the next generalization steps modal and temporal CNL are defined and investigated 

[Nikitchenko, 2008]. 

Concerning the educational aspects of the proposed approach to formal languages 

specification, we can admit that this approach permits to integrate on one methodological 

and mathematical basis such disciplines as programming, mathematical logic, and 
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computability theory [Nikitchenko, 2010]. The integration is based on the idea that all 

these disciplines have as their kernel the notion of a specialized language system.  

Integration of such disciplines can be achieved by 

- usage of common methodological construction principles of such disciplines; 

- uniform development of  main notions of disciplines;  

- construction of uniform formal models of the main notions;  

- constructing of the uniform e-learning tools. 

This approach seems to be useful in e-learning systems because 

- it is based on a small number of universal methodological principles applicable to 

different discipline; 

- it widely uses the principle of development which proposes a number of levels 

starting from simple to more elaborate thus giving possibility to present more 

complex concepts on later stages of teaching; 

-  it leads to simple formal language models thus permitting their thorough 

investigation with further implementation of e-learning tools. 

So, the constructed formal models of programming and logical languages permit to extend 

possibilities for deduction tools developed in Kiev by including a program reasoning 

component. Such extension will usually require transformation of CNL formulas into first-

order classical logic [Nikitchenko, 2012]. 

Conclusion 

The above-given analysis of Kiev approaches to symbolic computation and deduction 

demonstrates that the advances made by researches at IPMMS and Taras Shevchenko 

National University of Kyiv allow introducing and implementing various forms of distant  

e-learning based on a more thorough and unbiased evaluation of an examinee, which can 

improve the quality of learning for disciplines which admit (at least partial) formalization. 

Moreover, integration of analytical and deductive testing in a common framework 

(say, within intelligent tutoring systems) based on extended logical languages allow these 

two forms of intelligent testing to complement and enforce each other. Constructed tools 

can be incorporated into the existing e-learning systems taking into account the specifics 

of a domain under study. Also, one can use the proposed framework to design and 

implement electronic courses and textbooks, containing learning material as well as 

exercises for simple and intellectual testing for objective evaluation of student's 

knowledge. 
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