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SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF 

MALIGNANT AND BENIGN LESIONS 

Anatoli Nachev, Mairead Hogan 

Abstract: This paper presents an exploratory study of the effectiveness of support vector 

machines used as a tool for computer-aided breast cancer diagnosis. We explore the 

discriminatory power of heterogeneous mammographic and sonographic descriptors in 

solving the classification task. Various feature selection techniques were tested to find 

a set of descriptors that outperforms those from similar studies. We also explored how 

choice of the SVM kernel function and model parameters affect its predictive abilities. 

The kernels explored were linear, radial basis function, polynomial, and sigmoid. 

The model performance was estimated by ROC analysis and metrics, such as true and 

false positive rates, maximum accuracy, area under the ROC curve, partial area under 

the ROC curve with sensitivity above 90%, and specificity at 98% sensitivity. Particular 

attention was paid to the latter two as lack of specificity causes unnecessary surgical 

biopsies. Experiments registered that an appropriate reduction of variables can greatly 

improve the predictive power of the model, as long as the choice of the kernel affects 

the model performance marginally. We also found that the SVM is superior to the common 

classification technique used in the field - MLP neural networks. 

Keywords: data mining, support vector machines, heterogeneous data; breast cancer 

diagnosis, computer aided diagnosis. 

ACM Classification Keywords: I.5.2- Computing Methodologies - Pattern Recognition – 

Design Methodology - Classifier design and evaluation. 

Introduction 

A proper treatment of breast cancer disease requires timely, reliable, and accurate 

diagnosis, which allows radiologists and physicians to differentiate between benign and 

malignant lesions. Many computer-aided detection/diagnosis (CAD) tools currently 

support medical practices by capturing knowledge from previous cases and applying that 

knowledge to the new cases. CAD is a typical machine-learning problem, which has been 

dealt with by various data mining techniques and tools such as linear discriminant analysis 

(LDA), logistic regression analysis (LRA), multilayer perceptions (MLP), etc. [Chen et al., 

2009].  
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Most of the current implementations tend to use only one information source, usually 

mammographic data in the form of data descriptors defined by the Breast Imaging 

Reporting and Data System (BI-RADS) lexicon, developed by the American College of 

Radiology (ACR) in order to standardize the mammographic language and interpretations, 

and to facilitate communication between clinicians [BI-RADS, 2003], [Kopans, 1992]. 

Jesneck et al. [2007] have used a novel combination of BI-RADS mammographic and 

sonographic descriptors and some proposed by Stavros et al. [1995] in order to build 

a predictive model based on MLP, which shows superior characteristics to those that use 

one data source. Our study takes that approach, but investigate another predictive 

technique - support vector machines (SVM). We also address the problem of high false 

positive rate of indication for biopsy (specificity rate), which causes unnecessary surgical 

biopsies, lowers the efficiency of the diagnosis, exposes patients to discomfort, and 

creates financial burden as procedures cost thousands of euros each [Lacey et al., 2002]. 

Further to the study of Jesneck et al. [2007] who used a set of fourteen descriptors to train 

and test a MLP neural network, we explore the discriminatory power of all descriptors in 

order to seek alternative sets that when applied to SVM can ensure even higher sensitivity 

and specificity. 

The paper is organized as follows: Section 2 provides a brief overview of the support 

vector machines used as data mining tools; Section 3 introduces the dataset used in this 

study and discusses variable selection as part of the data preprocessing; Section 4 

presents and discuses results obtained from experiments; and Section 5 gives 

the conclusions. 

Support Vector Machines 

Support vector machines are common machine learning techniques. They belong to the 

family of generalized linear models, which achieve a classification or regression decision 

based on the value of the linear combination of input features. Using historical data along 

with supervised learning algorithms, SVM generate mathematical functions to map input 

variables to desired outputs for classification or regression prediction problems.  

SVM, originally introduced by Vapnik [1995], provide a new approach to the problem of 

pattern recognition with clear connections to the underlying statistical learning theory. 

They differ radically from comparable approaches such as neural networks because SVM 

training always finds a global minimum in contrast to the neural networks. SVM can be 

formalized as follows. Training data is a set of points of the form 

  ,       (1) 
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where the ci is either 1 or -1, indicating the class to which the point xi belongs. Each data 

point xi is a p-dimensional real vector. During training a linear SVM constructs a p-1-

dimensional hyperplane that separates the points into two classes (see Figure 1). 

Any hyperplane can be represented by: w  x – b = 0 where w is a normal vector and   

denotes dot product. Among all possible hyperplanes that might classify the data, SVM 

selects one with maximal distance (margin) to the nearest data points (support vectors). 

When the classes are not linearly separable (there is no hyperplane that can split the 

two classes), a variant of SVM, called soft-margin SVM, chooses a hyperplane that splits 

the points as cleanly as possible, while still maximizing the distance to the nearest cleanly 

split examples. The method introduces slack variables, i , which measure the degree of 

misclassification of the datum xi. Soft-margin SVM penalizes misclassification errors and 

employs a parameter (the soft-margin constant C) to control the cost of misclassification. 

Training a linear SVM classier solves the constrained optimization problem (2). 
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In dual form the optimization problem can be represented by (3) 
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 . Data points xi for which 0i  are called support vectors, since 

they uniquely define the maximum margin hyperplane. Maximizing the margin allows one 

to minimize bounds on generalization error.  

If every dot product is replaced by a non-linear kernel function, it transforms the feature 

space into a higher-dimensional one, thus though the classifier is a hyperplane in the 

high-dimensional feature space (see Figure 2). The resulting classifier fits the maximum-

margin hyperplane in the transformed feature space. The kernel function can be defined 

as  

    (4) 
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where  (x) maps the vector x to some other Euclidean space. The dot product xi × xj  
in 

the formulae above is replaced by k(xi, xj )  so that the SVM optimization problem in its 

dual form can be redefined as: maximize (in i) 
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A non-linear SVM is largely characterized by the choice of its kernel, and SVMs thus link 

the problems they are designed for with a large body of existing work on kernel-based 

methods. Some common kernels functions include: 

 Linear kernel: k(x,x’) = (xx’) 

 Polynomial kernel: 
dcxsxxxk )(),(   

 RBF kernel: 
2( , ) exp( ( ) )k x x x x     

 Sigmoid kernel: ))(tanh(),( cxxsxxk   

Once the kernel is fixed, SVM classifiers have few user-chosen parameters. The best 

choice of kernel for a given problem is still a research issue. Because the size of the 

margin does not depend on the data dimension, SVM are robust with respect to data with 

high input dimension. However, SVM are sensitive to the presence of outliers, due to the 

regularization term for penalizing misclassification (which depends on the choice of C). 

The SVM algorithm requires O(n2) storage and O(n3) to learn. 

The SVM method can also be applied to the case of regression. A version of SVM for 

regression, called support vector regression (SVR), was proposed by Drucker et al. 

[1997]. The basic idea of SVR is that a non-linear function learns by a linear learning 

method in a kernel-induced higher dimensional space. Similarly to how SVM classification 

ignores data points that are not support vectors, the SVR depend on a small subset of 

training data points. 

The SVM’s major advantage lies with their ability to map variables onto an extremely high 

feature space. This, in essence facilitates a means for the exploration of nonlinear kernel-

based classifiers [Oladunni and Singhal, 2009; Burges, 1998], however, it has been 

discovered they do not favour large datasets, due to the demands imposed on virtual 

memory, and the training complexity resultant from the use of such a scaled collection of 

data [Horng et al., 2010]. Work from Fei et al. [2008] highlighted three “crucial problems” 

in the use of support vector machines. These are attaining the optimal input subset, 

correct kernel function, and the optimal parameters of the selected kernel, all of which are 

prime considerations within this study. 
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Dataset and Preprocessing 

This study uses a dataset that contains data from physical examination of patients, 

including mammographic and sonographic examinations, family history of breast cancer, 

and personal history of breast malignancy, all collected at Duke University Medical Centre 

[Jesneck et al., 2007]. Samples included in the dataset are those selected for biopsy only 

if the lesions corresponded to solid masses on sonograms and if both mammographic and 

sonographic images taken before the biopsy were available for review. Data contain 803 

samples, 296 of which are malignant and 507 benign. Out of 39 descriptors, 13 are 

mammographic BI-RADS, 13 sonographic BI-RADS, 6 sonographic suggested by Stavros 

et al. [1995], 4 sonographic mass descriptors, and 3 patient history features. There is also 

a class label, -1 and 1, that indicates if a sample is malignant or benign. 

The data features are as follows: mass size, parenchyma density, mass margin, mass 

shape, mass density, calcification number of particles, calcification distribution, 

calcification description, architectural distortion, associated findings, special cases 

(as defined by the BI-RADS lexicon [BI-RADS, 2003]: asymmetric tubular structure, 

intramammary lymph node, global asymmetry, and focal asymmetry), comparison with 

findings at prior examination, and change in mass size. The sonographic features are 

radial diameter, antiradial diameter, anteroposterior diameter, background tissue echo 

texture, mass shape, mass orientation, mass margin, lesion boundary, echo pattern, 

posterior acoustic features, calcifications within mass, special cases (as defined by the BI-

RADS lexicon: clustered microcysts, complicated cysts, mass in or on skin, foreign body, 

Fig. 1. Maximum-margin hyperplane for a SVM 
trained with samples from two classes. Samples 

on the margin are support vectors 

Fig. 2. Kernel function: a linearly inseparable input 
space can be mapped to a linearly separable 

higher-dimmensional space 
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intramammary lymph node, and axillary lymph node), and vascularity. The six features 

suggested by Stavros [Stavros et al., 1995] are mass shape, mass margin, acoustic 

transmission, thin echo pseudocapsule, mass echogenicity, and calcifications. The four 

other sonographic mass descriptors are edge shadow, cystic component, and two 

mammographic BI-RADS descriptors applied to sonography—mass shape (oval and 

lobulated are separate descriptors) and mass margin (replaces sonographic descriptor 

angular with obscured). The three patient history features were family history, patient age, 

and indication for sonography [Jesneck et al., 2007]. 

Using the dataset in its original format for classification with SVM would be problematic 

due to the large amplitude of feature values caused by the different nature of the data 

variables and different units of measurements used. For example, the mass size values 

range from 0 to 75, as long as calcification ranges from 0 to 3. Such an inconsistency 

could affect the predictive abilities of a SVM classifier as some variables can be viewed as 

more ‘influential’ than others. The approach we used to address that problem was to 

process each data variable (data column) separately by transformation (6). It scales down 

the variables within the unit hypercube. 

    (6) 

We also explored how presence or absence of variables presented to the model for 

training and testing affects the classifier performance. Removing most irrelevant and 

redundant features from the data helps to alleviate the effect of the curse of 

dimensionality and to enhance the generalization capability of the model, and to speed up 

the learning process and to improve the model interpretability. The feature selection also 

helps to acquire better understanding about data and how they are related with each 

other. The exhaustive search approach that considers all possible subsets of variables is 

best for datasets with small cardinality, but impractical for large number of features as in 

our case. Jesneck et al. [2007] proposed a feature subset of 14 descriptors (s14) for their 

experiments with neural networks. They were derived by the stepwise feature selection 

technique. There is no guarantee, however, that an optimal variable selection for one 

classification technique will be optimal for another. In order to find the alternative 

selections for the SVM model we considered several feature selection algorithms, which 

generally fall into two categories: feature ranking and subset selection. The latter is more 

advanced and widely used in practice, which made us focus on it. We considered best 

first, subset size forward selection, race search, scatter search and genetic search 

combined with a set evaluation technique that considers individual predictive ability of 

each feature along with the degree of redundancy between them [Goldberg, 1989; 
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Hall, 1998]. We propose a set of 17 variables (s17) derived by the linear forward selection 

technique, proposed by Guetlien et al. [2009]. The feature set we obtained consists of the 

following variables: patient age, indication for sonography, mass margin, calcification 

number of particles, architectural distortion, anteroposterior diameter, mass shape, mass 

orientation, lesion boundary, special cases, mass shape, mass margin, thin echo 

pseudocapsule, mass echogenicity, edge shadow, cystic component, and mass margin. 

Two of these are general descriptors; three - mammographic BI-RADS; five - sonographic 

BI-RADS; four - Stavros’; and three - sonographic mass descriptors. The feature set is 

relatively balanced in representing different categories of data. In our experiments we also 

used the set of 14 variables (s14) mentioned above and the original full set of 39 variables 

(s39). 

Empirical Results and Discussion 

Using the training and testing datasets described above, we built a classification model 

based on SVM. For the purposes of the ROC we used the support vector regression 

technique, which outputs predictions as real numbers between -1 and 1, which mapped to 

the class labels (either -1 or 1). In order to minimize the bias in results associated with the 

random sampling of the training and testing data samples, we applied five-fold cross-

validation, a.k.a. rotation estimation. The dataset was randomly spit into five mutually 

exclusive subsets (folds) of equal size. The model was trained and tested five times so 

that each time it was trained on one combination of four folds and tested on the remaining 

one. The cross-validation estimate of the overall model accuracy was calculated by (7). 

,     (7) 

where the number of folds k=5, CVA is the cross-validation accuracy, and Ai is 

the accuracy measure of the i-th fold (e.g. hit-rate, sensitivity, specificity). 

The primary source for estimating the model accuracy is the confusion matrix (a.k.a. 

contingency table), illustrated in Figure 3. Results from experiments were summarized in 

four categories: true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). The numbers along the primary diagonal in the matrix represent correct 

predictions, as long as those outside the diagonal represent the errors. 
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Fig. 3. Confusion matrix for tabulation of classification results 

In order to estimate the model performance we used the following derivations from 

the confusion matrix: 

 True Positive Rate (TPR), a.k.a. sensitivity, hit rate, or recall is the ratio of 

correctly classified positives divided by the total positive count. 

TPR=
TP

TP+ FN
      (8) 

 False positive rate (FPR), a.k.a. fall-out, or (1-specificity) is the ratio of incorrectly 

classified positives divided by the total negative count. 

FPR=
FP

FP+TN
     (9) 

 Accuracy (ACC) is the ratio of correctly classified instances (both positives and 

negatives) divided by the total number of instances.  

ACC =
TP+TN

TP+TN + FP+ FN
     (10) 

 

Estimating the accuracy of the built SVM model is important for the following two reasons: 

first, it can be used to estimate the future prediction accuracy, which could imply the level 

of confidence, the potential users may have; secondly, it can be used for choosing 

a particular instance of the SVM model among available options, e.g. selection of kernel 

function and parameter settings.  

Accuracy is a common performance estimator in machine learning and data mining, but in 

many cases and problem domains it is not sufficient metric. Sometimes, accuracy can be 
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misleading, for example where important classes are underrepresented in the datasets 

and class distribution is skewed. In that case accuracy is helpless in counting different 

costs and consequences from misclassifications. This is the case of the domain we 

consider, as misdiagnosed malignant and benign samples have different consequences 

and even may cost life. Another drawback of the accuracy is that it depends on 

the classifier’s operating threshold. When SVM runs as a regression function that outputs 

real numbers between -1 and 1, mapping outputs to class labels requires defining 

a threshold between -1 and 1, so that the output can fall below or above it, i.e. mapped to 

one or another class label. Applying different thresholds produces different instances of 

the classification model, each of which features a specific accuracy. 

In order to address those accuracy deficiencies, we did Receiver Operating 

Characteristics (ROC) analysis [Fawcett, 2006].  This is a graphical assessment technique 

where the true positive rate is plotted on the Y-axis and false positive rate is plotted on the 

X-axis (Figure 4). In the ROC space, a classification model is a step curve plotted by 

connecting all model instances made by varying the threshold value. 

The line that links (0,0) and (1,1) is the no-discrimination line. It represents the worst 

possible model, which predicts by a completely random guess. Any other classifier should 

appear above that line. If it pops below the line, a negation of its predictions would move it 

above the no-discrimination line.  

On the other hand, the 'ideal' classifier would be represented by the point (0,1), the top-left 

corner, which shows that all true positives are found and no false positives are found. 

Any model performance can be measured by its proximity to the 'ideal' classifier. The 

closer the ROC curve is as a whole to the north-west corner, the better. That is also the 

most distant from the no-discrimination line, the better. Given a curve, the most ‘north-

west’ point of the curve represents the model instance with maximal accuracy. 

The ROC analysis also provides means for quantification of a model performance, these 

are Area Under the ROC Curve (AUC) and partial Area Under the ROC curve (pAUC) 

where sensitivity is above a certain value (p). The AUC / pAUC are scalars that measure 

the overall model performance, regardless of the operational threshold. The bigger 

the values, the better the model is. As long as AUC provides an overall estimation 

of the model, the pAUC is more relevant to the application area, as the potential users of 

CAD tools are particularly interested in working with high levels of sensitivity. It is believed 

that sensitivity above 90% (0.90AUC) is relevant to the application field. Another clinically 

relevant metric that we estimated is specificity at given sensitivity. In order to be 

consistent with previous studies [Jesneck et al., 2007], we considered specificity at 98% 

sensitivity. 
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Table 1 summarizes results from numerous experiments where the SVM model was 

trained and tested using four kernels: linear, polynomial, RBF, and sigmoid. For each of 

those kernels we experimented with three different sets of variables: s39 that contains all 

of them in the original dataset and the selections s14 and s17 discussed above.  

 

 

 

 

SVM linear s39 s17 s14 Radiologist  
SVM 

polynomial 
s39 s17 s14 Radiologist 

AUC 0.91 0.91 0.89 0.92  AUC 0.91 0.91 0.89 0.92 

0.90AUC 0.71 0.74 0.62 0.52  0.90AUC 0.72 0.74 0.62 0.52 

Spec /98% 

sens 

0.36 0.30 0.22 0.52  Spec /98% 

sens 

0.36 0.29 0.23 0.52 

ACCmax 0.84 0.85 0.85 n/a  ACCmax 0.84 0.85 0.84 n/a 

 

SVM FBF s39 s17 s14 Radiologist  SVM sigmoid s39 s17 s14 Radiologist 

AUC 0.90 0.91 0.88 0.92  AUC 0.91 0.91 0.88 0.92 

0.90AUC 0.64 0.75 0.58 0.52  0.90AUC 0.67 0.75 0.62 0.52 

Spec /98% 

sens 

0.29 0.32 0.20 0.52  Spec /98% 

sens 

0.27 0.36 0.20 0.52 

ACCmax 0.83 0.85 0.83 n/a  ACCmax 0.85 0.84 0.83 n/a 

 

The table figures show that the selection of descriptors for training and testing plays 

a significant role in the SVM performance. According to all metrics and no matter which 

kernel is selected, it is evident that the variable set s14, proposed by Jesneck et al. [2007] 

for classification with MLP is outperformed by both s39 and s17. As mentioned before, 

that is not surprising as an optimal variable selection for one classification model would 

not be optimal for another. We also show that the alternative selection of variables, s17, 

can outperform both s14 and s39. That selection significantly improves the 0.90AUC of s14 

from 12% to 17%, depending on which kernel is used, and also outperforms 

the radiologist value by 23%. The other clinically relevant metric, specificity at 89% 

sensitivity, is also improved by s17 in comparison with s14 - from 6% to 16%. In some 

cases s39 performs as well as s17, but it never gets better. The variable set s17 shows 

itself as the best performer regarding AUC and ACCmax with only few exceptions.  

Table 1. Performance of SVM with linear, polynomial, RBF, and sigmoid kernels. Metrics for 

comparison  include: area under the ROC curve (AUC), partial AUC at sensitivity above 90%  

(0.90AUC), specificity at 98% sensitivity, and maximal accuracy (ACCmax). Models have been 

tested with three variable selections: s39, s17, and s14. Typical radiologist assessment values 

are also included. Figures in bold show best values. 
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a)                     b)  

c)                     d)  

e)                     f)  

g)                     h)  

 

 

 

Fig. 4. Performance of SVM with linear, polynimial, RBF, and sigmoid kernels with three 
variable sets: all attributes (s39); selection of 17 attributes based on the subset size forward 

selection method (s17) Guetlin et al. [2009]; and selection of 14 attributes proposed by 
Jesneck et al. [2007] 
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We also explored how choice of the kernel function influences the SVM predictive abilities. 

This is particularly important when data belong to classes, which are not linearly 

separable. In those cases we can expect that the SVM model with linear kernel wouldn't 

perform well in contrast to the non-linear ones. Table 1 shows the results for each kernel 

function. The SVM works well with all of them. Considering s17 only, AUC for all four 

kernels is 91% and 0.90AUC is from 74% to 75%. Specificity at high sensitivity, however, 

varies with different kernels. Regarding this metric, the sigmoid kernel outperforms 

the others, followed by the RBF, linear, and polynomial.  

Our findings also could be compared with those from studies that use models based on 

the most common neural networks - MLPs, given that all methods use the same dataset 

and variable sets (Nachev & Stoyanov, 2010). SVM shows the same AUC as MLP, 

but improves 0.90AUC by 7% (68% vs. 75%) and max accuracy by 2% (83% vs. 85%). 

Fig. 4 gives further details on the SVM ROC analysis, The left-hand figures illustrate 

the ROC curves and AUC for each kernel and variable set; the right-hand figures illustrate 

the area of sensitivity above 90% and list 0.90AUC.  

Conclusion 

This study explores support vector machines utilized as predictors of malignant breast 

masses, trained and tested  with data from mammographic and sonographic 

examinations. We used data collected from Duke University Medical Centre, which 

contains 39 descriptors. Our study was focused on two issues: how reduction 

of dimensionality of the training and testing data affect the discriminatory power 

of the model; and how choice of the SVM kernel function and model parameters affect its 

predictive abilities.  

In order to quantify the model performance we did ROC analysis and utilized metrics, 

such as true positive rate, false positive rate, area under the ROC curve, partial area 

under the ROC curve, and specificity at high sensitivity. 

Our results show that the reduction of dimensionality plays a significant role in the model 

performance. We propose a set of 17 variables, which outperforms the 14 variables set of 

Jesneck et al. [2007]. The choice kernel function among linear, polynomial, RBF, 

and sigmoid, however, does not influences the model performance, with exception of one 

metric - specificity at high sensitivity. In that case the sigmoid kernel is the best performer. 

The fact that the linear kernel shows similar performance to that of the non-linear kernels 

is an indication that the feature space is linearly separable and data points are distributed 

in a way that makes the classification task linear in terms of complexity. 
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We also found experimentally that the SVM outperform a common classification technique 

used in the field - MLP neural networks. SVM shows the same AUC, but improves 0.90AUC 

by 7% (68% vs. 75%) and max accuracy by 2% (83% vs. 85%). 

In conclusion, we believe that SVM is a promising technique for breast cancer diagnosis, 

but when used, it requires a careful reduction of dimensionality and well-selected model 

parameters. 

Bibliography 

[BI-RADS, 2003] American College of Radiology. BI-RADS: ultrasound, 1st ed. In: Breast imaging 
reporting and data system: BI-RADS atlas, 4th ed. Reston, VA: American College of Radiology, 
2003 

[Burges, 1998] Burges, C.  A Tutorial on Support Vector Machines for Pattern Recognition. Data 
Mining and Knowledge Discovery, 2, 121-167, 1998. 

[Chen et al., 2009] Chen, S., Hsiao, Y., Huang, Y., Kuo, S., Tseng, H., Wu, H., Chen, D.: 
Comparative Analysis of Logistic Regression, Support Vector Machine and Artificial Neural 
Network for the Differential Diagnosis of Benign and Malignant Solid Breast Tumors by the 
Use of Three-Dimensional Power Doppler Imaging. Korean J Radiol vol. 10, 464-471 2009. 

[Drucker et al., 1997] Drucker, H. Burges, C., Kaufman, L., Smola, A., and Vapnik, V., Support 
vector regression machines, Advances in Neural Information Processing Systems 9, pages 
155-161, Cambridge, MA, MIT Press, 1997. 

[Fawcett, 2006] Fawcett, T. “An introduction to ROC analysis”; Pattern Recognition Letters, Vol. 27 
Issue 8, pp. 861-874, 2006. 

[Fei et al., 2008] Fei, L., Li, W. & Yong, H. Application of least squares support vector machines for 
discrimination of red wine using visible and near infrared spectroscopy. Intelligent System and 
Knowledge Engineering, ISKE' 08, 2008. 

[Goldberg, 1989] Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning, 
Addison-Wesley: Reading, MA, 1989. 

[Guetlein et al., 2009] Guetlein, M., Frank, E., Hall, M., Karwath, A. “Large Scale Attribute Selection 
Using Wrappers”; In Proc. IEEE Symposium on CIDM, pp.332-339, 2009. 

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten. I., 
2009. The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 1, 10-18, 2009. 

[Horng et al., 2010] Horng, S., Su, M., Chen, Y., Kao, T., Chen, R., Lai, J. and Perkasa, C. A novel 
intrusion detection system based on hierarchical clustering and support vector machines. 
Expert Systems with Applications, 38, 306-313, 2010. 

[Jesneck et al., 2007] Jesneck, J., Lo, J., Baker, J. “Breast Mass Lesions: Computer-Aided 
Diagnosis Models with Mamographic and Sonographic Descriptors”; Radiology, vol.244, Issue 
2, pp 390-398, 2007. 

[Kopans, 1992] Kopans D. “Standardized mammographic reporting”; Radiol Clin North Am, Vol. 30, 
pp. 257–261, 1992 

[Lacey et al., 2002] Lacey, J., Devesa, S., Brinton, L. “Recent Trends in Breast Cancer Incidence 
and Mortality.”; Environmental and Molecular Mutagenesis, Vol. 39, pp. 82–88, 2002. 

[Nachev & Stoyanov, 2010] Nachev, A. and Stoyanov, B., “An Approach to Computer Aided 
Diagnosis by Multi-Layer Preceptrons”, In Proceedings of International Conference Artificial 
Intelligence (IC-AI’10), Las Vegas, 2010. 

[Oladunni and Singhal, 2009] Oladunni, O. O. & Singhal, G. 2009. Piecewise multi-classification 
support vector machines. International Joint Conference on Neural Networks, IJCNN'09, 2009. 



Artificial Intelligence Methods and Techniques for Business and Engineering Applications 324 

 [Stavros et al., 1995] Stavros, A., Thickman, D., Rapp, C., Dennis, M., Parker, S., Sisney, G. 
“Solid Breast Modules: Use of Sonography to Destinguish between Benign and Malignant 
Lesions”; Radiology, Vol. 196, pp. 123-134, 1995. 

[Vapnik, 1995] Vapnik, V., The Nature of Statistical Learning Theory. Springer, New York (1995) 

Authors' Information 

Anatoli Nachev – Business Information Systems, Cairnes Business 

School, National University of Ireland, Galway, Ireland; e-mail: 

anatoli.nachev@nuigalway.ie 

Major Fields of Scientific Research: data mining, neural networks, support 

vector machines, adaptive resonance theory. 

 

Mairead Hogan – Business Information Systems, Cairnes Business 

School, National University of Ireland, Galway, Ireland;  e-mail: 

mairead.hogan@nuigalway.ie  

Major Fields of Scientific Research: HCI, usability and accessibility in 

information systems, data mining. 

mailto:anatoli.nachev@nuigalway.ie
mailto:mairead.hogan@nuigalway.ie

