
ITHEA 

 

140

SYSTEM MODIFICATION MODEL CREATING SYNTHESIS FOR ALGORITHM 
FORMULAS 

Magdalena Niziołek, Volodymyr Ovsyak 

Abstract: An analysis of the basic system for the synthesis of formulas of algebra algorithms was conducted The 
need for a construction of an expanded system for computer synthesis that would allow simplifying the notation of 
algebra formulas was demonstrated. Basing on functional criterion purpose a three-level model of decomposition 
was created. The model is recorded with the help of formulas of algebra algorithms. An implementation of the 
created model was made in the MS Visual Studio 2010 platform in C# programming language and samples are 
presented. 

Keywords: Algebra, algorithm, model, formula, subsystem, operations: formatting editor 

ACM Classification Keywords: F.2 Analysis of algorithms and problem complexity   

Introduction 

The basic editor allowed operations only over two trivial uniterms. For more advanced algorithms the large 
amount of symbols led to surplus of form over content. A necessary for a new, advanced editor occurred. A new 
model of a computer system was created. As next, based on that model an actual editor was build. The editor 
assist in writing the algorithm's algebra formulas, saving it and loading exiting formulas as well as editing the data. 
It automatically compute the places for new elements, thus users don't need to manually correct the formulas, as 
it has place in the standard editors.  

An example of the Euclidean algorithm written as block-diagram and as Ovsyak's formula written in the new editor 
is as given (Figure 1). 

  

 
Fig. 1. An egzample of Euclidean algorithm in form of Ovsyak's formula 

Where x, y are non-negative integers, z contains value of the modulo operation and *W is output message. 

 



Artificial Intelligence Driven Solutions to Business and Engineering Problems 
 

141

Computer system for creating formulas 

Describing algorithms in the form of algebra forms allows not only the advantage of the formal description, it 
allows also to simplify transformation an algorithm into an actual computer data, thus an easier automatic 
optimization. 

The new formula editor is written in Microsoft Visual Studio .NET 2010 with use of the modern languages XAML 
and C#. The actual algorithm is created and visible in the main editor in its graphic form, where a code that is 
easy for interpretation for a computer is at the same time written as an XML document. A description of creating 
complex uniterms was described in [Ovsyak, Niziołek, 2011], [Niziołek,Ovsyak, 2011]. This paper will describe the 
creation of operation in the above mentioned system.  

Model 

All models  are shown as formulas of Ovsiak's algebra. The system's main model  (@G) is as follow (Figure 2). 
The explanation of the operations and the symbols of the algebra are given in [Ovsyak, 2008]. 

 

 
Fig. 2.  Formula of the systems main model 

where G is the main system, that is composed of two parts @G and %G, where @ indicate the functional 
subsystem and % indicate the graphic part of the system. The subsystem of creating complex uniterms is 
composed of @Q an abstract subsystem for terms, @W a subsystem for creating single uniterms, and @C that 
creates the complex uniterm. %I is its graphic part. Subsystem for creating operations is composed of @Q and 
%P.  

The model of subsystem responsible for creating operations has the following formula (Figure 3), where: 

 all the uniterms are given access method pub, which implements a well-known definition as public, with 
the exception of DrwCnt that has access method prv (private),  

 Sprtr, Orntn and Drct are variables from the standard subsystem, enum holds information about the 
operation's separator, orientation and direction 



ITHEA 

 

142

 
Fig. 3. Form of the subsystem for creation operations 

 trmy variables from the standard subsystem List is a list of all uniterms that the operation will contain 

 sDBA and Fl - variables from the standard subsystem Brush contains information about the main and 
second brush, that is used to paint the actual operation's symbol 

 pcz and p - variables from the standard subsystem  Point are uniterms that contain the beginning and 
current coordinate of where the operation should be placed in the main window 

 DrwCnt - variable from the standard subsystem DrawingContext  

 sprtr, orntn and drct  - variables from the above mentioned enum type and  are part of the operation that 
held information about the separator symbol, orientation and direction of the selected object 

 nrFNrosU, spc and kF - variables from the standard subsystem Int and store information needed for 
creating the operation's object 

 O() is the constructor, that create  given operation   

 ClcltSz() calculates the height and width for the new operation 

 Dslct() deceslect the operation if it was chosen in the main window 

 ChkFrClk() check if the operation was chosen 

 Drw() draw the borders to indicate the choose of the operation, as well as others elements that are 
needed  

 DrwOprtn() draws the specific symbol of the chosen operation 

 CrtXML() creates a XML document basing on the editor nodes. 



Artificial Intelligence Driven Solutions to Business and Engineering Problems 
 

143

As an example of the functional uniterm a part (due to it's actual length) of the model of Drw() is shown (Figure 4).  

 
Fig. 4. The beginning and end of an functional uniterm 

The model contain uniterms from the subsystem @Q and system @G, as well the standard systems.  

Implementation 

 The main system contains classes that are system classes like MyCanvas or Form and those that were created 
based on the system model, like Uniterm or Sequence (Figure 5). 

The model for operations is implemented for three classes: sequence, elimination and parallelization, as well 
partially for their cyclic counterparts.  The class diagram for sequence is as follow (Figure 6). 

 



ITHEA 

 

144

 
Fig. 5. Classes used in implementation of the system 

 

 
Fig. 6. Implementation of the operation's subsystem in the form of a class for creating sequences 

To add an operation to the formula one has to choose an object in the main window and as next the operation 
symbol. The object (uniterm or operation) will be converted to the requested operation. A subsystem is called that 
call a graphic window for forming an operation. Next the constructor Sequence() is called and creates a new 
object with chosen parameters. The functional uniterm ChkFrClk() examine what part of the form was chosen. If it 
was uniterm, simple operation or complex operation. After receiving the information Dslct() is called. It deselect 
the chosen object. As next the functional uniterm ClcltSz() is calculating the size that the new operation will need 
in the main window (that is the size of all uniterms, separators and the operator sign size). The Drw() functional 
uniterm is drawing requested uniterms and call on the DrwOprtn(), that draws the requested operation symbol. At 
the end DrwCnt() redraws requested contents in the main window. The CrtXML()  functional uniterm is called 
when the user saves his work. 



Artificial Intelligence Driven Solutions to Business and Engineering Problems 
 

145

Example 

The editor showed has a tool menu divided in three sections. The first section shows button for the mostly used 
operations (Figure 7), that is sequencing, elimination, parallelization and their cyclic counterparts (the red frame). 
The second section show button for manipulating the data: creating complex uniterms, adding correct etc. of the 
data, connecting to database. The third section allows to customize the editor area.  

To start working with the editor an uniterm or operation is need to be selected. Adding an operation to the formula 
is intuitively easy, by choosing the requested option from the main menu or toolbox menu. A new window will 
appear, that contains parameters for the new operation (Figure 8). 
 

 
Fig. 7.  Main window of the implemented system for creating Ovsyak's formuls. 

 

 
Fig. 8. Windows (part of subsystem) for setting parameters for operation 

The parameters are as following. The orientation of the operation can be horizontal or vertical, the separator can 
be a coma or a period.  Accepting the parameters new operation is added to the editor (Figure 9). Now only data 
in the uniterms are need to be added. 

 

 
Fig. 9. Operations  in the editor: a) without  data, b) with data 

The XML allows easy saving and loading the formula into the editor. Because of it's popular format it can be also 
easy imported and edited in another editors, like notepad, if the required structure is being preserved.  



ITHEA 

 

146

The example gives the following code: 

<?xml version="1.0" encoding="utf-8"?> 

<root> 

  <parallelisation direction="beginning" separator="comma" orientation="horizontal"> 

    <sequence direction="ending" separator="comma" orientation="vertical"> 

      <uniterm nr=”0”>a</uniterm> 

      <uniterm nr=”1”>b</uniterm> 

      <uniterm nr=”2”>c</uniterm> 

    </sequence> 

    <elimination direction="beginning" separator="semicolon" orientation="vertical"> 

      <uniterm nr=”0”>d</uniterm> 

      <cyclic-sequence orientation="horizontal"> 

        <uniterm nr=”0”>e+1</uniterm> 

        <uniterm nr=”1”>a=3</uniterm> 

      </cyclic-sequence> 

      <uniterm nr=”2”>d&gt;e</uniterm> 

    </elimination> 

  </parallelisation> 

</root> 

The change in the notation between the basic and the extended editor are visible (Figure 10). In the extended 
editor only one symbol is needed for the same operation over more than two uniterms. The dot indicated witch 
uniterm shall be considered as a first. The extended editor has also an option for reducing the number of the 
symbols, that could appear while editing the algorithm or after optimization.  At the same time the XML file is 
extended to cover the additional information. 

 
Fig. 10. Example of forms in: a) basic, b) the extended editor 

Conclusion 

Using algebra of algorithms allows algorithms to be described like a mathematical formula. The operations inform 
about connection between the parts. To help creating algorithm formulas a computer system was build, that 
allows easy edition of the formula and help to create computer friendly data for further use, in example 
optimization of the algorithm. 



Artificial Intelligence Driven Solutions to Business and Engineering Problems 
 

147

Bibliography 

[Shannon, 1949] C.E.Shannon. The Mathematical theory of communication. In: The Mathematical Theory of Communication. 
Ed. C.E.Shannon and W.Weaver. University of Illinois Press, Urbana, 1949. 

[Ovsyak, 2008] Ovsyak V.K. Computation models and algebra of algorithms. Informatsiyni systemy ta merezhi. Visnyk 
Natsionalnoho universytetu “Lviska politekhnika”. 2008. vol 621 - pp.3-15.  

[Niziołek, Ovsyak, 2011] Niziołek M., Ovsyak V.: A concept of a model of a computer system for forming complex uniterms. 
ITHEA IBS ISC No.: 24,  Rzeszow, Poland;  Sofia, Bulgaria, 2011, pp. 35-39.   

[Ovsyak, Niziołek, 2011] Ovsyak V., Niziołek M.: Modele składowe unitermów złożonych. Pomiary, automatyka, kontrola, 
2011,vol 9. - S. 1090-1092. 

[Post, 1936] Post E. L., Finite Combinatory Processes - Formulation 1. Journal of Symbolic Logic, 1936, vol 1, pp. 103-105,. 

[Turing, 1936] Turing A. M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of 
London Mathematical Society, series 2, vol. 42 (1936-1937), pp. 230-265;  

[Kolmogorov, 1958] Kolmogorov A. N., Uspensky V.A.: On the definition of algorithm. Uspekhi Mat. Nauk 13:4 (1958),  
pp. 3-28 

[Schönhage, 1970] Schönhage A.: Universelle Turing Speicherung. In J. Dörr and G. Hotz, Editors, Automatentheorie und 
Formale Sprachen, Bibliogr. Institut, Mannheim, 1970, pp. 369-383. 

[Aho, 1974] Aho A.V, Hopcroft J.E, Ullman J.D.: The design and analysis of computer algorithms. Addison-Wesley 
Publishing Company, 1974.  

[Markov, 2001] Markov A.A., Nagorny N.M.: The Theory of Algorithms (Mathematics and its Applications). Springer, 2001.  

[Church, 1936] Church A.: An unsolvable problem of elementary number theory. American Journal of Mathematics, vol. 58 
(1936), pp. 345-363. 

[Kleene 1981] Kleene S.C.: Origins of recursive function theory. Annals of the Theory of Computing, 1981, vol. 3,  pp. 52-67. 

[Krinitski, 1988] Krinitski N.A.: Algorithms around us. Mir, Moscow, 1988 

[Gluschkov, 1980] Gluschkov W.M., Zeitlin G.E., Justchenko J.L.: Algebra. Sprachen. Programmierung. Berlin: Akademie-
Verlag, 1980–340 p. 

[Cejtlin, 1998] Cejtlin G.E. Vvedenije v algoritmiku. K. Sfera, 1998. pp. 310 

[Doroszenko, 2003] Doroszenko A.E., Cejtlin G.E. Algebroautomatnyje specyfikacji paralelnych program nad obszczej 
i rapredelonnoj pamiatiu /Problemy programuvannia, 2003, vol 3, pp.5-21. 

[Cejtlin, 2008] Cejtlin G.E., Zakharija L.M. Algebraicheskije aspekty polnoty: abstrakciji, biologia i ekologia /Problemy 
programuvannia. 2008, vol 2-3, pp.31-36 

Authors' Information  

Magdalena Niziołek – Opole University  of  Technology, Faculty of Electrical, Control and 
Computer Engineering, ul. Sosnkowskiego 5, 45-271 Opole, Poland; e-mail: 
m.niziolek@doktorant.po.opole.pl 

Major Fields of Scientific Research: programming, theory of algorithms,  

Volodymyr Ovsyak – Opole University of Technology, Opole, Poland and Ukrainian University 
of Printing, L’vov , Ukraine ; ovsyak@rambler.ru  

Major Fields of Scientific Research:Theoretical and applied computer science, theory of 
algorithms, programming, information systems, mathematical modeling. 

 


