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Abstract: This paper describes a method of forecasting the guaranteed operating time using the quantile zones.
There are presented an equations and graphics for calculations of the guaranteed time operating error.
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Introduction

It is known that among of the precision devices output parameters drift process a great part is non-stationary
processes, which are variables not only the expectation and standard deviation of instantaneous values, but also
dependent on the placement time interval correlation function. These processes are not ergodic is enough inertia
in time irreversibility is determined by the gradual accumulation of changes, in turn, leads to smooth changes in
the nature of mathematical expectation. The mean square deviation of a random component is much less than
the tolerance field, because such processes are called kind of quasidetermined. Probabilistic prediction of
parametric reliability of products can be made by prediction changes in the density distribution f[x(ti)] and
determining on this basis since the possible options to achieve the threshold with some confidence probability.
Known that to describe the drift of mathematical expectation use exponential or linear model, and to describe
changes in standard deviation use linear model. Using these dependencies can build models of change over time
fractile parameter values, and they help to make a prediction of the reliability with given probability of finding the
parameter in the prescribed range. Guaranteed uptime Ty and its variation is determined by the points of
intersection of the functions of mathematical expectation m(t), upper fractile a1(t) and lower fractile ay(t) in setted
tolerance levels Ay and A. This Tgr is defined as the average time without a parametric failure, t1 and t;
respectively its minimum and maximum values. Dispersion since losing parametric reliability AT defined period
between t; and t,. This method is relatively simple and accurate, and allows to determine not only for 50%
resource, but to other probability need only identify the fractile. But not always such processes can be processed
using this method. In some cases, AT can be overwhelming, and sometimes altogether uncertain. As a result, it is
necessary to study the method for its suitability in a particular case. Develop some criteria which would allow to
check on the suitability of the method during the minimum number of calculations to statistical data processing.
[Bobalo, 1996]
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Describing of the method

If the experimental values of the parameter xs, s =1 .. k, in the intervals At, i = 1 .. n, thenin each such period
of products state is characterized by the density f[x(1)]. The probability of preservation efficiency is determined
by the equations:

P(t;) = P{x(t,) > Ay} = [ fDx(t,)dx. §)
P(ty) = Pix(t) < Ay} = | fTx(t)lds. @

X = A is the limit (permissible) value of x(t); f[x(t)] - density distribution of instantaneous values of the
parameter in the range At. Accordingly, the probabilistic prediction of parametric reliability of products can be
made by changes forecasting in the density distribution f[x(t)] and determining on this basis since the
possible options to achieve the threshold. Guaranteed uptime of Tgsr and its variation is determined by the
intersections of functions m(t), a1(t) and ay(t) tolerance in levels of Ay and Ay:

Tgar = arg|m(t) = A1 | ! Tgar = arg|m(t) = A2| :
f=arge ()= A 1 =arga, () =A,]; 3)
ty =argla; (1) = A,|; 1, =argla, (1) =4,
Device guaranteed uptime error AT estimated by equation:
ATlgar = Tgar —1I
AT2gar = ZLZ _Tgar ’ (4)
AT =AT,,, +AT,,, -

[Nedostup, 1998]

The study of guaranteed operating time error depending on the slope coefficients

For linear parameter drift processes

For linear change of ~mathematical expectation and standard  deviation of  change construct the  following
equations.
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Fig. 2. Graph of the mathematical expectation and fractile for 3 different values of k for fixed value of k1.

From the pictures can be noted that the increased k1 do that the time difference between both fractile interception
is reduced, with increased ki AT error decreases but decreases and guaranteed time (intentionally increase kj
lead only to deterioration of circumstances). And there is another dependency ky: increasing  kp AT
error increases and the value of guaranteed time is independent of ko. Therefore advisable to try to reduce the ka.
Equating formed to determine the intersection points with the tolerance level Tgar, 11, to.

m(t):mo(l—le ):AI’ (7

gar

a,(t) = mlt,)—uc, —uk,t, = A,

(8)
a, (t) = m(t2)+ uo, +uk,t, =A,.
And:
mo =4
Toyr =——
o mok,
; :mO—MO'O—A1 ©)
1

myk, +uk,
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;M +uoc, — A,
2 -_—— .
myk, —uk,

Errors are defined as follows:

my—A, my-—uocy—A,
ATlgar:Tgar_tl:|: -

myk, mok, +uk,

mok,

my—Ay  my+ucy—A

ATZgar =1, _Tgar :|:

Losing parametric reliability time dispersion AT determined by the sum:

AT = AT,

1gar

+ AT.

2gar *

(11)

To determine the influence coefficients ki, ko for guaranteed time prediction error construct graph family of
the error depending for the first fractile and the second fractile (AT1gar, ATogar).
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Fig. 3. Graph of guaranteed time error equation on k1 factor.
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Fig. 4. Graph of guaranteed time error equation on k factor.
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Graphin fig. 3 show that for certain values of ki error ATogr behaves unclear due to the factthat in
this case AToger i unclear and since a value  of ky error starts to ~ decrease from  infinity. Thatcan  be
determined that an increase inthe coefficient ki decrease error but the decrease a guaranteed time to, in
addition there is the extent to which ki less error is uncertain, this limit is lower at lower values of k.. The graph in
fig. 4 illustrate that an increase of the coefficient ko increases measurement errors ATigar, ATogar SO that AT1gar
tends to t when m(t)=A, and tends to infinity ATogsr When approaching k. to a certain extent which is greater at
larger values of ki.

Behaviour of error indicated that there are some limits to the values of ki and k.. Based on the nature of
relationships and graphic material received is below these values ki and k2 in which fractile a, becomes equal
to a constant:

a,(t)=my —mok,t +uc, +uk,t=c. (12)
This constant is easy to find it is the initial fractile value :
c=a,(0)=m, +uo, . (13)

Where is the following condition: —mokst must compensate ukot. The result is the equation:

—myk,t =uk,t .
To get the limit equation will reduce t:
k _—u
kK, m : (14)
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Fig. 5. Graph of the mathematical expectation and fractile for ~ Fig. 6. Graph of the mathematical expectation and fractile for
3 different values of k1 for fixed value of k. 3 different values of k: for fixed value of ki.
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Fig. 7. Graph of guaranteed time error equation on k1 factor.  Fig. 4. Graph of guaranteed time error equation on k: factor.

The limit for the case of the growing nature of drift takes the form:

For the exponential parameter drift processes

Consider the descending process. In the linear approximation moments Tgar, 11, t2are determined from
the equations:

m(Tgar):mO exp(_legar):Al; (16)

a,(t) =mg exp(—k 1)) —uoc —ukyt; = A}
(17)

o, (t)=mgexp(—kity)+uocy +uk,t, =A,.

Solving the first equation we get:
e
T = h{%} . (18)

The second and third equation is transcendental relative to t1, t2precise methods of their solutions do not
exist. Therefore, schedule exponent ¢ ™" in series:

2 3
(_kl't) +(_klt) .

exp(—k,t)=1-kt + 3

(19)

This alternating series as  known is converge for any kiti. Where as kit; may be small, can be neglected
components with the powers number begin from second. That is consider that [Korn, 1984]:

exp(—k,t)=1—kit.
And:

2 (—kt)
o3 ,)- (20)

n=2 n.
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Then equation (17) can be rewritten as:

mo(l—lega, )—uao —ukyTg, = A . (21)
And:
‘~ my,—A, —uo,
: myk, +uk,
similarly:
_—my+A —uo,
? —myk, +uk,
So:
Jo g — A -
AT,y ~T, 1y ~ m{ﬂj _my =4, —uoy
A mok, +uk,
22
m %l —-my+A; —uo )
ATy =ty =Tyy ~ 1n[—°) -1 70
A, —myk, +uk,
And AT is determined by the sum:
AT =AT,,,, +AT,,, .
In the case of the growing exponential and linear approximation we obtain the relation:
m(t) =mq|1—exp(—k Ty, ) |= A ; (23)
o, (t) = mo[l — exp(—kltz)]—ua0 —ukyt, =A,;
(24)
a, (t) = my[l —exp(~kt,) |+ uc, +uk,t, = A, .
Guaranteed time errors is calculated by the equations:
m %l A, —uo,
ATy, =T,, —t =1 - ;
1gar gar 1 n(mo —Az ] —mokl +1/lk2 (25)
1
m AI A, +uo
ATy, =ty —T,, ~In| =L | - —2 "0
2gar 2 gar H[Al j mokl +Mk2 (26)

Losing parametric reliability time dispersion, as in the previous case, determined by the sum:

AT = AT,

lgar

+ AT

2gar *

Now consider the case of quadratic approximation of decreasing and increasing exponentials, according to
preliminary considerations will describe the exponential quadratic equation. Then:
(_klt)z

exp(—k,t)=1—kt+ B (27)
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The equations of mathematical expectation m(t) and fractiles as(t) and ax(t) when descending exponentially take
the form:

m(t) =m exp(_kl Tgar) = A1 9 (28)

~kt, )
a,(t) = m{l—k]tl +%}—uao —uk,t, =A;

(29)
(_ kltz )2
a,(t)y=my|1-kgt, +T +uo, +ukyt, =A,.
The solution of these equations Tgar, t1, t2 are :
mg %l .
Tgar =In| A_l ) (30)
(mokl +uk, )i \/(mOkl +uk, )2 - 2(’”0 —uo, —A, )mokl2 .
1 ~ ’
m0k12
(31)
(mok1 + uk, )i \/(mok1 —uk, )2 - 2(m0 +uoc, —A, )mokl2
’ mok12 .
Changing the output setting for the growing exponential law describes by the dependencies:
m(t) = mo |1 - exp(~ki Ty, )| = Ay ; (32)
kP )]
a,(t) = m{l—(l—klt2 +(#2) —uo, —ukyt, =A,;
_ (39)
(_ kltl )2
a,(t)y=my|1-| 1=kt +T +uoc, +ukyt, =A,,
(mokl +uk, )i \/(mokl +uk, )2 - 2(A2 —Uuo, )m0k12 .
t, = > ; (34)
myk;
, (mok1 +uk2)ir\/(m0k1 —uk, )2 —2(A2 +uo, )mokf
2 ¥ . (34)

2
mk;

The choice of linear or quadratic approximation of the average change in alue during the operation carried out by
comparing the approximation error with the requirements for the accuracy of prediction reliability.
These dependences reflect the relationship between the reliability of the devices, the initial values of parameters
and patterns of change in service. It is clear that among the characteristics most subject to management during
the initial values of parameters that can be set rationally considering reasonable manufacturing tolerances. Based
on the above equations are built dependency graphs of mathematical expectation and fractiles for different values
of slope ki1 and kz (Fig. 9, 10).
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Fig. 9. Graph of the mathematical expectation and fractiles
for different values of k1 for fixed values of ke.
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Fig. 10. Graph of the mathematical expectation and fractiles
for different values of k: for fixed values of ki.

Onfig. 9 and 10 shown that there are times when fractile not cross tolerance level changing its direction to
reversed. It is similar situation as with linear drift. To determine the moment of time in which fractile change their
direction build derivatives of each fractile. From mathematics we know that the derivative shows tangent angle
function, so when derivative crossed with zero level the fractile is a change direction (Fig. 11).

ATlgar (k1
AT2gar (k1
;lgar(kl
AT2gar (k1
ATlgar (k1

AT2gar (k1

Fig. 12. Graph of guaranteed time error equation on ki factor.
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Fig. 11. Family of derivatives on fractiles a1, az.
On fig. 11 shown time points when fractile a, begin to increase (t =1, 1.5, 5.5), but if the fractile not crossed
the tolerance level to it time it will not cross never.
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Fig. 13. Graph of guaranteed time error equation on k: factor.
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For exponential character of drift error behaves similarly to linear drift. We can identify the limit equation from the
following equation systems:

(35)

But formed equation is transcendent.
Similar properties have a growing process. Schedules for the growing process are shown in fig. 14, 15, 16, 17.

T T T T 0.8 T T T T
—
m(t, 1) P -~
) P m(t,0.5)
— 08 - = 06~ ]
m(t,0.5) e ] Az
Ay // I al(t,0.5,0.01)
< e -
al(t,1,0.05) 0.6~ // //// b a2(t,0.5,0.01) 0.4 Sl
-~ -~

92(t,1,0.05) 7 ~ - o al(t,0.5,0.05)
@l(t,2,0.05) oy pd -
— - I i a2(t,0.5,0.05)

04
a2(t,2,0.05) Vs I o 02
— A o al(t,0.5,0.1)
al(t,0.5,0.05) V(Y T

—

a2(t,0.5,0.05) Y 02(4,03,0.0

0. = 0 n

// s
7, 0
///
| | | | | L | |

0 0.2

0.4

0.6
t

0.8

Fig.14. Graph of the mathematical expectation
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Fig. 15. Graph of the mathematical expectation and fractile for
different values of k. for fixed values f k.
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Fig. 17. Graph of guaranteed time error equation on k factor.

Conclusion

As a result of the research is presented the some boundary conditions ("limit") to which method is suitable and
effectiveness. For linear drift parameter limit is determined and clearly established (14, 15), and in the case of
exponential nature of the drift parameter limit becomes transcendental form and therefore requires the solution of
the transcendent equation for each case is derived from (35). Also found that reducing the error of guaranteed
time desired is the increase in steepness parameter drift and drift reducing the slope standard deviation, but in
terms of reliability necessary to reduce both the coefficients of steepness becouse is advisable to reduce the
slope coefficient of standard deviation drift .
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