
ITHEA

133

COMPUTING

SYSTEM OF PROGRAMS PROVING

Alexander Letichevsky, Olexander Letichevskiy,
Marina Morokhovets, Vladimir Peschanenko

Abstract: The paper is devoted to the methods of programs proving in the Insertion Modeling System IMS.

Architecture and functional possibilities of IMS, the main notions of insertion modeling were presented in this

work. Floyd’s insertion machine and the methods of the satisfiability checking, and the usage of those methods

for programs proving were described in the paper.

Keywords: multi-agent systems, insertion modeling, program proving.

ACM Classification Keywords: D.2 SOFTWARE ENGINEERING D.2.4 Software/Program Verification.

Introduction

The system of programs proving - a new and modern system programs proving that is designed to maintain a

high level of training of qualified specialists in the field of programming. This system is designed on the basis of
insertion modeling system IMS [IMS, 2011], the algebraic programming system APS [APS, 1989], developed in

the last century at the Glushkov Institute of Cybernetics [CYB, 2012], with the participation of authors of Kherson

State University [KSU, 2012] under the leadership of prof. Alexander Letichevsky.

Ukraine has a high potential for training in information technologies. These specialists are appreciated throughout
the world, primarily because a system of basic training in information technologies, especially of software

developers, is created in our country. However, their training lags behind the world level, because it is very
important not only to write programs, but to verify, improve reliability and efficiency. To do this, for example,
Microsoft has created a new system of Spec # [SPEC, 2012], which is connected to the development of the

highest qualification specialists: mathematicians, engineers, etc.

Recently the idea of using high-tech industries of software, which proved correct, has become increasingly

popular in the world. However, in the software market of Ukraine and abroad the software products able to prove
the correctness of programs are absent. This is due to the fact in order to create such software it is required very

qualified specialists in sphere of technologies, as well as in basic sciences. In addition, when mastering training
courses of relevant disciplines, students don’t have opportunities to learn proving programming with use of

modern software. The use of such system of proving programming in higher educational institutions of Ukraine
may significantly improve the quality of basic training of our programmers.

The article is devoted to proving methods of program correctness in insertion modeling system IMS. The section

“Possibilities – Present and Future” describes the present possibilities of our system and shows the future
opportunities of it. The section "Insertion modeling" provides basic information about the insertion modeling, and

describes the architecture and functionality of the Insertion Modeling System IMS. The following section

Problems of Computer Intellectualization

134

describes the architecture of the insertion machine system IMS, developed for the validation of programs and
based on the method of Floyd annotation programs. In the section "Tools for checking the satisfiability of
formulae" attention is paid to the methods of checking the satisfiability of formulae that arise in the process of

correctness proving of programs using Floyd. In the section "Example of programs proving" describes some
applications of the method of Floyd insertion machine to verify imperative program.

Possibilities – Present and Future

Program’s proving system should ideally consist of the following modules: Preparation module, Verification

module, Dialog module, Knowledge of verification module.

The functionality of Preparation module:

• creates an environment for the annotated program;

• proposes set of various kinds of annotated examples of the programs;

• configures the subject area by type of verifiable programs (sequential, parallel), in the form of assertions

in the annotations to be checked (approval of the integers, real numbers etc), by type of structured

objects (defined by a set of tools required for verification);

• configures the subsystem verification.

The functionality of Verification module:

• proves the statements of annotations (using internal and external tools of the system);

• proves and checks satisfiability of statements in various subject areas.

The functionality of Dialog module:

• provides opportunities to follow the process of verification, giving hints;

• prepares a report on verification with varying degrees of details;

• allocates errors in the program;

• gives recommendations for program improving (if the result of the verification program is not recognized

as correct).

The functionality of Knowledge of verification module:

• stores annotated examples of programs of various kinds;

• stores general recommendations for creation of annotations;

• stores other background information (syntax of annotation, etc).

This article discusses the first proving programming system version including only the Verification module. Other
modules will be discussed in the future publications of the authors.

Insertion modeling

Insertion modeling - an approach to modeling complex distributed systems based on the theory of interaction of
agents and environments [Letichevsky, 1996]. Mathematical foundations of this theory have been presented in

[Letichevsky, 1998]. During the last decade insertion simulation was used to verify the software requirements
[Letichevsky, 2008]. Theory of Interaction of agents and environments has been proposed as an alternative to

known theories of interaction, such as Milner's CCS [Milner, 1989] and the π-calculus [Milner, 1999], CSP Hoare
[Hoare, 1985] and mobile ambient Cardelli [Cardelli, 1998], etc. The idea of decomposition of the system and

ITHEA

135

presenting it as a composition of the medium and agents that are immersed in this environment is implicit in all
theories of interaction.

Another source of ideas for the insertion modeling is to find universal programming paradigms (i.e. ASM Gurevich

[Gurevich, 1995], the universal theory of programming Hoare [Hoare, 1998], rewriting logic Meseguer [Meseguer,
1992]). These ideas have been adopted as the basis for insertion modeling system IMS [IMS, 2003], developed

as an extension of the algebraic programming system APS [APS,1989]. The first version of the IMS system and
some simple examples of its use can be found in [APS&IMS, 2012]. IMS has many successful applications, one

of these applications, the focus of this work, the proving of programs correctness in the insertion modeling.

Floyd’s insertion machine. The study process validation program has a long history that began with the work of
Hoare [Hoare, 1969] and Floyd [Floyd, 1967]. Conditions for the correctness of the program are of the form

βα >→< P or βα][P→ . Formula α and β (pre-and post-condition) are the formulae of the language

specification (i.e., language, first order predicate calculus), P - the specification of the program (it is assumed that
the initial state of memory is given). The first formula means if the conditionα is valid and the program P

terminates, then the condition β is also valid in the final state of memory. The second formula β is correct and

complete and it means that if the condition α is valid, then the program ends and the condition β is also valid.

In the current implementation of the system, we consider the reduced version of the analytical insertion machine

(it is designed for the analysis of the model, check its properties, etc.) based on the annotation of programs by

Floyd.

Usually, insertion function is denoted as][uE were E is the state of environment and u is the state of an agent

(agent in a given state).][uE is a new environment state after insertion an agent u . So, the expression

]],,[],[[zyxFvuE denotes the state of a two level environment with two agents inserted into it. At the same

time E is an external environment of a system],,[zyxF and F is an internal environment of it. All agents and

environments are labeled or attributed transition systems (labeled systems with states labeled by attribute labels

[Letichevsky, 2008]). The states of transition systems are considered up to bisimilarity, denoted as B~ . This

means that we should adhere to the following restriction in the definition of states: if '~ EE B and '~ uu B then

]'['~][uEuE B (B~ denotes bisimilarity).

The general architecture of insertion machine is presented on fig. 1.

The main component of insertion machine is model driver, the component which controls the machine movement
along the behavior tree of a model. The state of a model is represented as a text in the input language of insertion
machine and is considered as an algebraic expression. The input language of Input model includes the recursive

definitions of agent behaviors, the notation for insertion function, and possibly some compositions for environment

states. Before computing insertion function the state of a system must be reduced to the form ,...],[
21

uuE . This

Model Driver

Fig. 1. The general architecture of insertion machine

E[u1,u2,…]

E' [u'1,u'2,…]

Agent behavior
unfolder

Environment
interactor

Input
model

Problems of Computer Intellectualization

136

functionality is performed by the module called Agent behavior unfolder. To make the movement, the state of
environment must be reduced to the normal form

∑
∈

+
Ii

ii Ea ε.

where ia are actions, iE are environment states, ε is a termination constant. This functionality is performed by

the module Environment interactor. It computes the insertion function calling if it is necessary the Agent behavior

unfolder. If the infinite set I of indices in the normal form is allowed, then the weak normal form GFa +. is used,

where G is arbitrary expression of input language.

The insertion function of Floyd’s insertion machine is the permitting function for sequential or parallel insertion.
Formulae of predicate calculus are environment state. The transition relation of system is presented by the

following rules:.

][)(

)][(,)(

)][(],[)(

])[][()(

].,[)(

)]:(*[)(

)][(),][()(

)(

)(

)(

:

Deltap

pSatp

pSatemptyp

ppp

Lmodelpp

yxpp

upSatupp

stop

assertion

assertion

assumption

Ltogo

yx

uask

ϕϕ

ψϕϕ

ψϕψϕ

ψϕϕ

ϕϕ

ϕϕ

ϕϕϕ

ψ

ψ

ψ

 →

→ →

→¬ →

∧ →

 →

= →

∧∧ →
=

0

Here p is a parallel assignment or ∆ (successful termination state). Function)(uSat , which checks

satisfiability of formula u , is used for permitting conditions. Conditional operator QelsePthenuIf is

considered as functional expression and is translated by unfolder by means of the rule:

QuaskPuaskQelsePthenuIf).(. ¬+=

Loops operators and other programming constructions could be introduced in a similar way. The Floyd’s machine
could prove the partial correctness of nondeterministic program, because nondeterministic choice is an initial
operation of an input language of the system. If unfolding for parallel composition is defined, then Floyd’s

machine could prove a partial correctness of parallel programs over shared memory.

Tools for checking the satisfiability of formulae

The system uses two different kinds of algorithms: internal and external. Three constants are used for resulting of
each satisfiable algorithm:

• proved means that a input formulae is satisfiable;

• refuted means that a input formulae is not satisfiable;

• not proved means that an input formula can’t be checked by algorithm because of some restrictions

(non-linearity of the formula - a formula in which the variables are found with degree more than one, etc).

The general algorithm of checking satisfiability of formulae looks like the next sequences of rules:

• it is used first internal algorithm. If it returns proved(refuted) then returns proved(refuted), if it returns not

proved then uses external algorithm.

• it is used external algorithm. If it returns proved(refuted) then returns proved(refuted), if it returns not

proved then uses the next external algorithm if it exists, and if not then asks user for answer.

ITHEA

137

Internal satisifiability checking algorithm. First, superpositions of functional expressions are eliminated by

successive substitution of every innermost occurrence of)(xf by a new variable y , bound with an existential

quantifier, and adding the formula)(xfy = . For example, formula)))(((xgfP is replaced by formula

)))(())(((yfPxgyy ∧=∃ . After all of such replacements, there will no more nested functional expressions.

For every attribute expression f of array or functional type, all its occurrences …),(),(
21

xfxf with different

parameters …,,
21

xx are considered:)(ixf is replaced by variable iy , bound with an existential quantifier, and

equations)()(jiji yyxx =→= are added. At this point, there will be only simple attributes and the method for

simple attributes is applied. Elimination of functional expressions imposes restrictions on the range of values of

arguments for the functional attributes of type array with integer or enumerated indexes. For example, if the

attribute f has a type),(τmarray , where m is a number, and τ is an enumerated type with constants

…,,
21

aa , then during elimination of functional expression),(uif , the generated formula will include conjunctive

constraints 1 20 1 ()i i m u a u a≤ ∧ ≤ − ∧ = ∨ = ∨… .

The result is a closed formula (i.e. a formula not containing attributes) and all bound variables have types integer,

real, or symbolic, or are enumerated types.

The deductive system of IMS contains three specialized provers: an integer prover for Pressburger arithmetic, the
Furie-Motskin algorithm for linear arithmetic over reals, and a symbolic prover that includes an algorithm of finding

the most general solution for a system of symbolic equations (modified Montanari-Rossi algorithm of unification
integrated with numerical provers). More details about internal satisfiable algorithm are in [SAT, 2012]

External satisifiability checking algorithms. We provide the next interface for developers to integration of
external tools for satisfiable checking:

• Three specific constants are implemented in class Clew[APS,1989]: proved, refuted, not_proved (this

class is a set of functions for working with tree).

• The function put_result of class Clew tells the interpreter that APLAN [APS, 1989] procedure returns a

value.

• The procedure should set the result to a predefined name APLAN verdict (proved, refuted, not_proved).

• The input function enters the formulae and description of environmental data types.

In current version of the system we implement interface of cvc3 prover [CVC3,2012]. However, the number of

systems used to test the feasibility can be extended, for example, using the following system: MathSat [MathSat,
2012], Vampire [Vampire, 2012], etc.

Example of programs proving

Let’s consider a simple example of an integral function defined recursively: 11 =)(f ,)()()(11 ++=+ nnfnf .

We write a program to compute this function, using the operators adopted in procedural programming languages:

;:;: nkfc == 0 /* assignment of initial values */

;:: 11 −= kkL /* the loop calculations */

;);;:())(:()(: 131112 LtogoLtogofcfcelsekfcfckL +=++=→≥ /* verification of the loop */

;: stopL3 /* program termination */

Here n - input variable determines the number of terms calculated amount, fc - output variable contains the

result of computing the sum, k - loop variable.

Problems of Computer Intellectualization

138

For verification of program by means of IMS system it is required: to annotate a program ("mark" it with
annotations) and to prepare verification environment.

Let’s name the considering functionSumpos . Annotated program of its calculations, prepared for the

verification by means of IMS, has the following view:

;

);

));(:(::

;);;:())(:()(

);)()((::

;::

;:;:

;::

(make_model

0

3

13111

012

11

0

10

Lverify

stop

nSumposfcassertionL

LtogoLtogofcfcelsekfcfck

nkkkSumposfcnSumposassertionL

kkL

nkfc

nassumptionL

=

+=++=→≥

≤∧≤∧++=

−=

==

≥

In addition to rewriting rules, the verification environment contains a description of variables of program of

function Sumpos calculating and formulae used for verification:

);

][:

)));)()(()(

))(()(

int)(:(:

int);int:int,:int,:int,:(:(:(

emptyinitial

wwSumposwSumposw

wSumposw

waxioms

Sumposnkfcobjattributesobjtenvironmenprogram

1

11

11

+−=→>∧

∧=→=

∀

→

The verification process is accompanied by messages screen output, allowing to monitor system performance.

For example, in case of verification program, calculating the function Sumpos, message sequence has the
following view:

coveredspaceallfinishedmodelrunningstop

provednSumposfcassertion

Ltogofcfckask

provednkkkSumposfcnSumposassertion

Ltogokk

Ltogokfcfckask

provednkkkSumposfcnSumposassertion

Ltogokk

Ltogonkfc

consistentisnassumption

Lverifystart

init

,,)

,))(()

,,:)),(()

,)))((()

,,:)

,),(:),()

,)))((()

,,:)

,,:,:)

,)()

,)

,)

12

11

31110

019

218

1117

016

215

104

13

02

1

=

+=≥¬

≤∧≤∧++=

−=

++=≥

≤∧≤∧++=

−=

==

≥

Verification was successful.

Let’s describe in details the obtained trace step-by-step. 1) – making initialization of IMS, 2) – starting model
verification from label L0, 3) – checking consistency of assumption by using Sat function, 4) – making

assignments and go to the next label L1, 5) – make assignment and go to the next label L2, 6) – the assertion

ITHEA

139

was automatically proved, 7) – checking condition, making assignment and go to the next label L1, 8) making
assignment and go to the next label L2, 9) the assertion was automatically proved, 10) the first part of this step is
check condition)(1≥kask , but this behavior is visited, then checking condition))((1≥¬ kask , making

assignment and go to the next label L3, 11) the assertion was automatically proved, 12) making end operator
stop , finish modeling process and this process covered all reachable states of search space.

Conclusion

The developed system has been used successfully in the educational processes of Kyiv Taras Shevchenko
National University and Kherson State University in teaching of proving programming. In the future we plan to
expand the number of plug-ins in order to prove the satisfiability of formulae, and we will continue to prove partial

correctness of programs on new examples (parallel programs, etc.).

Also we hope in the nearest future we will succeed in creation of rest modules, described in section:

“Possibilities: Present and Future”.

Bibliography

[IMS, 2011] A.A. Letichevsky, O.A.Letychevskyi, V.S. Peschanenko. Insertion Modeling System //PSI 2011, Lecture Notes in
Computer Science, Vol. 7162, Springer, 2011.-p. 262-274.

[APS, 1989] A. A. Letichevsky, J.V. Kapitonova, S.V. Konozenko. Algebraic programming system APS-1. In:

O.M.Tammepuu, Informatics'-89, Proc. of the Soviet-Franch symp. Tallin, 1989, p.46-55.

[CYB, 2012] Glushkov Institute of Cybernetics (Ukraine) [http://www.icyb.kiev.ua].

[KSU, 2012] Kherson State University (Ukraine) [http://www.ksu.ks.ua].

[SPEC, 2012] SPEC - Standard Performance Evaluation Corporation[http://www.spec.org].

[Letichevsky, 1996] D.R. Gilbert, A.A. Letichevsky. A universal interpreter for nondeterministic concurrent programming
languages//in: M. Gabbrielli (ed.), Fifth Compulog network area meeting on language design and semantic analysis
methods, September 1996.

[Letichevsky, 1998] A.A. Letichevsky and D.R. Gilbert. A General Theory of Action Languages// Cybernetics and System
Analyses.-1998.-vol. 1.-p. 16-36.

[Letichevsky, 2008] A. Letichevsky, J. Kapitonova, V. Kotlyarov, A. Letichevsky Jr, N. Nikitchenko, V. Volkov, and T.
Weigert. Insertion modeling in distributed system design// Problems of Programming.-2008.-vol. 4.-p. 13-39.

[Milner, 1989] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Milner, 1999] R. Milner. Communicating and Mobile Systems: the Pi Calculus, Cambridge University Press, 1999.

[Hoare, 1985] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Cardelli, 1998] Cardelli, L. and A.D. Gordon. Mobile Ambients // In Foundations of Software Science and Computational

Structures, Maurice Nivat (Ed.).-1998.-LNCS 1378.-p. 140-155.

[Gurevich, 1995] Y. Gurevich. Evolving Algebras // Lipari Guide. E. Borger (ed.), Specification and Validation Methods,
Oxford University Press.-1995.-p. 9-36.

[Hoare, 1998] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall International Series in
Computer Science, 1998.

[Meseguer, 1992] J. Meseguer. Conditional rewriting logic as a unified model of concurrency// Theoretical Computer
Science.-1992.- vol. 96.-p. 73-155.

[IMS, 2003] A. Letichevsky, J. Kapitonova, V. Volkov, V.Vyshemirsky, A. Letichevsky Jr. Insertion programming//Cybernetics
and System Analyses.-2003.-vol. 1.-p. 19-32.

[APS&IMS, 2012] History of APS&IMS Systems[http://apsystem.org.ua].

Problems of Computer Intellectualization

140

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer programming// Communications of the ACM.-1969.-vol.
12(10).-p. 576-580.

[Floyd, 1967] R.W. Floyd. Assigning meanings to programs// Proceedings of the American Mathematical Society Symposia
on Applied Mathematics, 1967, Vol. 19, pp. 19-31.

[SAT, 2012] A. Letichevsky, O. Letichevskyi, T. Weigert, V. Peschanenko. Satisfiability for symbolic verification in VRS //
Control Systems and Machines.-2012.-vol. 6 (in print).

[CVC3,2012] CVC3: The CVC3 User's Manual[http://www.cs.nyu.edu/acsys/cvc3/doc/user_doc.html].

[MathSat, 2012] The MathSat 5 SMT Solver[http://mathsat.fbk.eu/].

[Vampire, 2012] Vampire's Home Page[http://www.vprover.org/].

Authors' Information

Alexander Letichevsky – Head of the Department of Theory of Digital Automatic Machines of Glushkov Institute

of Cybernetics. P.O. Box: 40 Glushkova ave., Kyiv, Ukraine, 03187; e-mail: let@cyfra.net

Major Fields of Scientific Research: automatic-algebraic models of computer systems, algebraic theory of agents

and environments, algebraic programming and computer algebra, artificial intelligence, verification

Olexander Letichevskiy – Researcher of the Department of Theory of Digital Automatic Machines of Glushkov

Institute if Cybernetics. P.O. Box: 40 Glushkova ave., Kyiv, Ukraine, 03187; e-mail: lit@iss.org.ua

Major Fields of Scientific Research: automatic-algebraic models of computer systems, algebraic theory of agents

and environments, algebraic programming and computer algebra, artificial intelligence, verification

Marina Morokhovets - Senior Researcher of the Department of Theory of Digital Automatic Machines of

Glushkov Institute if Cybernetics. P.O. Box: 40 Glushkova ave., Kyiv, Ukraine, 03187; e-mail:

marina.morokhovets@gmail.com

Major Fields of Scientific Research: automatic-algebraic models of computer systems, algebraic theory of agents

and environments, algebraic programming and computer algebra, artificial intelligence, verification

Vladimir Peschanenko – Associate Professor of the Department of Informatics of Kherson State University.

P.O. Box: 27, 40 rokiv Zhovtnya St., Kherson, Ukraine 73000; e-mail: vpeschanenko@gmail.com

Major Fields of Scientific Research: insertion modeling, algebraic programming, verification,

mathematical pedagogical software, computer algebra algorithms, rewriting.

