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DIVERGENT AND MULTIPLE-VALUED SEQUENCES AND FUNCTIONS 

Igor Gorban  

Abstract: On the basis of the theory of hyper-random phenomena, the calculus approaches for divergent and 
multiple-valued sequences and functions have been developed. For divergent sequences and functions, a 

number of new concepts, in particular concepts of generalized limit, spectrum of limit points, convergence to 

spectrum of limit points, distribution function and density function of limit points, bounds of a distribution function 

etc. are introduced. Concepts known for single-valued functions, in particular concepts of convergence, 

continuity, derivative, differentiability, indefinite and definite integrals are generalized on multiple-valued functions. 

A link between multiple-valued and divergent functions is found. Transformation particularities of single-valued 

functions into multiple-valued functions and multiple-valued functions into single-valued ones are researched. 

Keywords: divergent function, partial limit, multiple-valued function, divergent integral, theory of hyper-random 

phenomena. 

ACM Classification Keywords: G.3 Probability and Statistics 

1. Introduction 

The limit and convergence concepts are considered as basics of modern mathematics. Main mathematical results 
have been obtained on the basis of them. Concepts of uniform convergence, continuous function, derivative, 
integral, and so on are introduced by them. 

Important request to classic definitions as of limit of the function determined in a set of real numbers, as of 

convergence of the numerical sequence to a limit, is obligatory to the existence of just a single limit. If there is no 
just a single limit, it is said that the function or the sequence has no limit or that there is a divergence of it. 

Not all sequences and functions have limits. Interesting, in the real physical world a lot of processes are divergent 
ones. Such processes, for instance, are flicker noises, statistically instable processes [Gorban, 2012-2], chaotic 
processes with strange attractors, and others ones. 

The lack of convergence is a serious problem related to many mathematical objects. However, it is not 
researched well yet. Mainly it is discussed in the limit theory and in connection with convergence disturbances of 
series and integrals [Ильин, 1985, Корн, 1973, Фихтенгольц, 1958, Xарди, 1951]. 

A divergent numerical sequence { }nx , terms nx  of which are alternately increasing and decreasing, when 

number n  tends to infinity and also a divergent function ( )x t , whose value is fluctuated in some bounds, when 

t  tends to definite value 0t  are of especial interest. 

The lack of convergence does not mean that it is impossible to say anything about the behavior of the sequence 

{ }nx , when → ∞n  or about the behavior of the function ( )x t  when 0→t t . We should emphasize that the 

limit is only one parameter from the set of them characterizing a sequence or a function under the limit passage. 

Research of different physical processes in large observation intervals showed [Gorban, 2007, 2010, 2011-1, 
2011-2, 2011-3, 2012-2] that in the overwhelming majority of cases their sample averages were not convergent. 
Search of effective methods for description of such processes led to the new physical-mathematical theory of 
hyper-random phenomena [Gorban, 2007, 2011-1] oriented on learning the physical phenomena that could not 
be characterized by single-valued probability characteristics. Researching physical objects of this theory are 
statistically unstable physical phenomena, in particular physical magnitudes, the variance of sample average of 
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which does not tend to zero, when the sample size tends to infinity. In this theory, to describe physical 
phenomena instead of concrete probability parameters and characteristics, a set of their possible alternatives are 
used. Main abstract mathematical objects of the theory are hyper-random variable, which is the set of random 
variables and hyper-random function (the latter being the set of random functions). Probability measure of these 
random variables and functions depends on a parameter which value belongs to a finite, countable, or non-
countable set. 

Research shows [Gorban, 2012-1, 2012-3] that the methods of this theory may be effectively used for solving 
many tasks including those being far away from the statistic tasks, in particular for the description of divergent 
deterministic sequences and functions, as well as of closely coupled with them multiple-valued variables, 
sequences, and functions. 

The purpose of the article is to present new scientific results in these two directions. 

 

2. Generalized limits of single-valued sequences and functions  

In [Gorban, 2012-1], the new concept of convergence for an unlimited single-valued numerical sequence 

{ } 1 2, , , ,
→∞

= … …
n

n nx x x x  has been introduced. 

According to the classic view, the sequence { } →∞n
nx  is the convergent one if just a single limit lim

→∞
= n

n
a x  

exists. The sequence that does not have just a single limit is the divergent one. 

Divergent sequences may be of different types. 

It is known, that from any infinite sequence a set of partial sequences obtaining from the initial sequence by 
deletion of some its terms can be formed. 

It has been proven that if the sequence is a converged one, then all its partial sequences are converged ones too. 
If the sequence is a divergent one, then not necessarily all its partial sequences are divergent ones. Some of 

them can converge to the definite limit points ma  (accumulation points or partial limits). The set of all limit points 

of the sequence has been called the spectrum �xS  [Gorban, 2012-1]. 

The spectrum of a divergent sequence is an analog of the limit of a convergent sequence. Analytically it can be 
written by the following expression:  

LIM
→∞

=� n

x
n

S x , (1) 

where in contrast to the classic limit lim
→∞n

 the multiple-valued generalized limit LIM
→∞n

 [Gorban, 2012-1] is used. 

The spectrum �xS  is characterized by the distribution function of limit points [Gorban, 2012-1] 

( )
( ) LIM

n

n x
F x

n→∞
=� , (2) 

where ( )n x  is a number of terms of the sequence { } 1 2, , ,= …
n nx x x x  that are less than x . 

The generalized limit (2) can be converged to a number (fig. 1a), converged to a set of numbers (fig. 1b), or can 

be a divergent one (fig. 1c). In the first two cases, the distribution function ( )�F x  is a single-valued one 

( ( ) ( )=�F x F x ) and in the third case – a multiple-valued one. 
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Fig. 1. The distribution function of limit points ( )F x�  and its bounds ( )IF x , ( )SF x  for the single-valued sequence 

{ } →∞n
nx  converging to the number 0x  (a), converging to the set of numbers (b), and for the divergent sequence (c) 

 

For description of the distribution function ( )�F x , its low ( )IF x  and upper ( )SF x  bounds (fig. 1) can be used as 

well as density functions of bounds 
( )

( ) I
I

dF x
f x

dx
= , 

( )
( ) S

S

dF x
f x

dx
= , moments of bounds: expectations of 

bounds Im , Sm , variances of bounds ID , SD , and other characteristics and parameters of the theory of hyper-

random phenomena. 

Similarly, it has been introduced [Gorban, 2012-1] the concept of convergent of a single-volume function ( )x t  

from the left-hand side (when 0 0→ −t t ) and the right-hand side (when 0 0→ +t t ) to sets (spectrums) of limit 

points 
0

0
0

( ) LIM ( )−

→ −
=�

x
t t

S t x t  and 
0

0
0

( ) LIM ( )+

→ +
=�

x
t t

S t x t  respectively. 

Sets ( )±�
xS t  can be characterized by multiple (in a general case) distribution functions of limit points ( ; )±�F x t . 

For description of the distribution functions ( ; )±�F x t  it can be used their low and upper bounds ( ; )±
IF x t , 

( ; )±
SF x t , distribution functions of bounds 

( ; )
( ; ) I

I

dF x t
f x t

dx

±
± = , 

( ; )
( ; ) S

S

dF x t
f x t

dx

±
± = , moments of bounds: 

expectations of bounds ( )±
Im t , ( )±

Sm t , variances of bounds ( )±
ID t , ( )±

SD t , and other characteristics. 

 

3. Multiple-valued variables and functions 

In mathematics, single-valued and multiple-valued variables and functions are recognized. A single-valued 
variable has a concrete value and a multiple-valued – a set of values. A single-valued function sets a single 
meaning point-to-point correspondence and a multiple-valued function – a multiple meanings correspondence.  

It will be supposed that all values of a multiple-valued variable, an argument, and values of multiple-valued 
functions are scalar real values. 

A particular case of a multiple-valued function is the multiple-valued number sequence that is the multiple-valued 
function of an integer argument. Another particular case of a multiple-valued function is a multiple-valued variable 
that is the multiple-valued function, the applicable domain of which is a number. 

We will mark a multiple-valued particularity by the tilde above a letter identifying a multiple-valued variable, 
sequence, or function. 
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Different approaches for description of multiple-valued variables and functions are known. One of them widely 
used in the trigonometry, in the theory of functions of complex variable, and others mathematical directions is 
based on the branch concept. 

A branch of the function is defined [Корн, 1973] as a single-valued continues function in its applicable domain.  

Multiple meanings of the function is interpreted as a heightened dimension of its actual range or applicable domain.  

In the first case, the multiple-valued function ( )x t�  of an argument t  is regarded as a parametrically specified 

single-valued continues function ( )gx t , the parameter of which g G∈  (where G  is a finite, countable, or non-

countable set) characterizes the branch of the function ( )x t� . 

In the second case, the multiple-valued function ( )x t�  is presented as the single-valued continues function 

( , )x t g  of two arguments: t  and g . When the argument g  is fixed, the dependence from the argument t  is a 

continues function, which is presented as the g -th branch of the function ( )x t� . 

So in both cases, the function ( )x t�  is regarded as a finite, countable, or non-countable set of branches. Notice 

that branches of a multiple-valued function can have common points, applicable domains of branches can be 
different, and there are a lot of branch decomposition variants.  

Description of multiple-valued functions by branches is very comfortable and visual, especially when a quantity of 
branches is a finite or countable one. When a branch number does not a countable, an ability of visualization is 
lost and an extraction of branches becomes a problem. 

An original approach for description of multiple-valued variables and functions proposes the probability theory. 
This theory is oriented on the study of statistical stable physical objects, in particular physical magnitudes that 
have sample averages trending to definite values, when a sample number tends to infinity. Ones of the main 
mathematical objects of the probability theory are a random variable and a random function. A random variable 
can be regarded as a multiple-valued variable, for which there is a probability measure (distribution function). A 
random function is interpreted or as a set of random variables depended from the argument of the function, or as 
a set of single-valued realizations of the multiple-valued function, for which there are a probability measure. 

The theory of hyper-random phenomena [Gorban, 2011-1] opens new possibilities for description of multiple-
valued variables and functions.  

 

4. Description of multiple-valued variables and functions on the base of the theory of hyper-
random phenomena 

Let a variable ( )x p  depends from a parameter p P∈  where P  is a neighbourhood of the point 0p . We shall 

propose that for all fixed 0p p≠  the variable has a single value. Mark, in the point 0p  the variable may be a 

multiple-volume one. 

Examine the single-valued sequence { } 1 2, , ,n nx x x x= …  obtained from the variable ( )x p  when 0p p→ . 

The generalized limit 
0

LIM LIM ( )n

n p p
x x p

→∞ →
=  of the sequence can tend to a number, to a set of numbers, or be the 

divergent limit. 

Definition 1. A multiple-valued determine variable x�  can be regarded as a generalized limit LIM
→∞

n

n
x  presented 

by the spectrum xS �
�  and the distribution function ( )F x� . 
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Mark, the spectrum of the multiple-valued variable x�  does not necessary coincide with the values of the variable 

( )x p  in the point 0p . 

The distribution function ( )F x�  can be as a single-valued as a multiple-valued one. If it is a single-valued 

( ( ) ( )F x F x=� ), the density function ( ) ( )f x dF x dx=  exists. 

More strictly, the multiple-valued variable can be defined by an assistance of the space that is the analog of the 

hyper-random space described by the tetrad ( , , , )gG PΩ ℑ  [Gorban, 2011-1], where Ω  is a set of simple events 

(for instance, values x  of the multiple-valued variable x� ), ℑ  is a sigma field, G  is a set of conditions g G∈ , 

and gP  is a measure of event’s subset that depends from conditions g . 

Definition 1a. A multiple-valued determine variable x�  can be regarded as a mathematical object specifying by 

the spectrum of values xS �
�  and the distribution function ( )F x� . 

In a particular case, when there is single conditions, the multiple-valued variable can be defined by assistance of 
the space similar to the probability space described by the triad ( , , )PΩ ℑ  [Колмогоров, 1974], where P  is a 

measure of event’s subset. Then a multiple-valued variable can be presented by the spectrum xS �
�  and the 

single-valued distribution function ( )F x . 

A multiple-valued determine function ( )x t�  can be specified as a set of multiple-valued variables according to 

fixed values of the argument t . Therefore, a function ( )x t�  can be characterized by the spectrum ( )xS t�
�  and the 

distribution function ( ; )F x t� . 

Mark, presented single-valued distribution functions ( )F x , ( ; )F x t  and according density functions ( )f x , 

( ; )f x t  are similar to correspondently distribution probability functions and probability density functions of the 

random variable and the random function. The properties of the researched characteristics are the same as the 
properties of probability analogues. 

 

5. Spectrums of multiple-valued sequences and functions 

Definition 2. A single-valued sequence formed from the multiple-valued finite { } 1 2, , ,i ix x x x=� � � �…  or infinite 

{ }i i
x

→∞
�  sequence by casting-out a part of terms and retaining in the rest terms only one value in every of them 

will be called the subsequence (partial sequence) of the sequence. 

Definition 3. A limit ma  (a number) of a single-valued m -th partial sequence formed from the multiple-valued 

sequence { }i i
x

→∞
�  will be called the m -th partial limit (accumulation point) of the sequence. 

Definition 4. A limit (a number) of a single-valued m -th partial sequence formed from the multiple-valued 

function ( )x t�  with finite volumes, when 0 0t t→ −  or 0 0t t→ +  will be called the m -th partial limit 

(accumulation point) of the function. 

Note, not all single-volume partial sequences are converged (have single limits). Therefore not all single-volume 
partial sequences of a multiple-valued sequence or a multiple-valued function have single limit points. 

For multiple-valued sequences and functions the analogue of usual limit is the set (spectrum) of limit points. 
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Let xS �
�  is the set (spectrum) of limit points of a multiple-valued sequence { }i i

x
→∞

�  and 
0( )xS t−

�
� , 

0( )xS t+
�
�  are the 

left- and right-hand sides sets (spectrums) of limit points of a multiple-valued function ( )x t� , when 0 0t t→ −  

and 0 0t t→ +  respectively. 

Analytically, the convergence of the multiple-valued sequence to the set of limit points can be written by the 

expression LIMx i
i

S x
→∞

=�� �  and the convergence of the multiple-valued function to the left- and right-hand sides 

sets of limit points – by the expressions 
0

0
0

( ) LIM ( )x
t t

S t x t−

→ −
=�

� �  and 
0

0
0

( ) LIM ( )x
t t

S t x t+

→ +
=�

� � . 

Limit points of a multiple-valued sequence { }i i
x

→∞
�  are bounded by the interval [ , ]I Sx x , where Ix , Sx  are low 

and upper bounds of limit points of the sequence. Limit points of the multiple-valued function ( )x t� , when 

0 0t t→ −  or 0 0t t→ +  are bounded by correspondently intervals 0 0[ ( ), ( )]I Sx t x t− −  and 0 0[ ( ), ( )]I Sx t x t+ + , 

where 0( )Ix t− , 0( )Sx t−  are low and upper bounds of the left-hand side limit points of the function and 0( )Ix t+ , 

0( )Sx t+  are low and upper bounds of the right-hand side limit points of it. 

Mark, the request to finite volumes of the function and to volumes of the argument 0t  figured in Definition 4 is not 

essential one. By the same manner, the concepts of a set of limit points for an unbounded multiple-valued 

function and for a multiple-valued function ( )x t�  when t → +∞  or t → −∞  can be defined too. 

 

6. The distribution function of the multiple-valued sequence  

Every term jx�  of a multiple-valued finite sequence { }ix�  ( 1,j i= ) can be presented as the generalized limit 

LIM n

j
n

x
→∞

 of the generated sequence { } 1 2, , ,n n

j j j jx x x x= …  and described by the distribution function 

( )
( ) LIM

j

j
n

n x
F x

n→∞
=� ,   

where ( )jn x  is a number of terms of the sequence { }n

jx  that are less than x . 

The spectrum �
�

ixS  of the sequence{ }� ix  can be described by the distribution function  

1

1

( )
1

( ) LIM ( )
=

→∞
=

= =
∑

∑� �

i

j i
ji

j
n

j

n x

F x F x
ni i

.  

Definition 5. The distribution function of limit points of a sequence { } →∞
�

i i
x  will call the function 

1

1

( )
1

( ) LIM ( ) LIM ( ) LIM LIM
=

→∞ →∞ →∞ →∞
=

= = =
∑

∑� � �

i

ji
ji

j
i i i n

j

n x

F x F x F x
i ni

.  

Pay attention, that the function ( )�F x  may be a multiple-volume one. If for all ( , )x ∈ −∞ +∞  it is a single-volume 

one then ( ) ( )=�F x F x . 
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Examined distribution function of limit points ( )�F x  is similar to the distribution function of limit points (2) of a 

single-volume sequence. 

We will recognize multiple-volume sequences { } →∞
�

i i
x  converging to a number, to a set of numbers and 

divergent multiple-volume sequences. 

Definition 6. A multiple-valued sequence { } →∞
�

i i
x  will be called the converging sequence to the number 0x  if 

the distribution function ( )�F x  of limit points is described by the single jump function 

0

0

0

0, when ,
sign[ ]

1, when

<
− = 

≥

x x
x x

x x
 in the point 0x , the converging sequence to the set of numbers (in 

particular to the interval) if the distribution function is described by the single-volume function in the interval 
( , )−∞ +∞ , and the divergent sequence if distribution function has a multiple meanings even in a single point x . 

So not only single-volume but multiple-volume sequences can be converging to a number, to a set of numbers, 
and can be divergent sequences. 

As in a single-value sequence case, a distribution function ( )�F x  for a multiple-volume sequence can be 

characterized by the single-value low ( )IF x  and upper ( )SF x  bounds. If for all x  the distribution function 

( )�F x  has concrete volumes (the sequence converges to a number or to a set of numbers), then the bounds are 

coincided. In the contrary case we have ( ) ( )I SF x F x≠ . 

 

7. The distribution function of the multiple-valued function 

Similar to the distribution function ( )�F x  of a multiple-valued sequence it can be introduced the concept of the 

left-hand side ( ; )−�F x t  and the right-hand side ( ; )+�F x t  distribution functions of limit points of the multiple-

valued function ( )�x t  (fig. 2) that characterize the volume frequency of the function, when the argument tends to 

t  from the left- and right-hand side respectively. 

Mark, the distribution functions ( ; )±�F x t  may be as single-volume as multiple-volume ones. 

Definition 7. A multiple-volume function ( )�x t  will be called a converging function from the left (when t  is fixed) 

to the definite number ( )−x t  if its left-hand side distribution function of limit point ( ; )F x t−�  is described by the 

single jump function sign[ ( )]−−x x t  (fig. 2a), will be called a converging function from the left to the set of 

numbers if its left-hand side distribution function is described by a single-volume function for all ( , )∈ −∞ +∞x  

(fig. 2b), and will be called a divergent function from the left if according distribution function has a multiple 
meanings even in a single point x  (fig. 2 c). 
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( ; )

( ; )

( ; )

+

+

+

=
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=

I

S
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( ; )

( ; )

( ; )

−

−

−

=

= =

=
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S
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0  
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x  ( )−x t  ( )+x t   ( )−
Sx t  ( )+
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( ; )

( ; )

( ; )

−

−

−

=

= =

=

I

S

F x t

F x t

F x t

 

0  

1  

x  ( )−
Ix t  ( )+

Ix t  

( ; )

( ; )

( ; )

+

+

+

=

= =

=

I

S

F x t

F x t

F x t

 
 

( )+
Ix t  ( )−

Ix t  ( )+
Sx t  
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IF x t  
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SF x t  

0  

1 

x  
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SF x t  

( ; )+
IF x t  

( )−
Sx t   

a    b    c 

Fig. 2. Bounds of the distribution function of limit points of the multiple-valued function ( )x t�  that converges from the left- and 

right-hand side to the number (a), converges from the left- and right-hand side to the set of numbers (b) and bounds of the 

distribution function of the divergent function ( )x t�  (c). 

 

Examining the right distribution function ( ; )+�F x t  according to the right-hand side limit of the function ( )�x t  we 

will recognize the multiple-volume function ( )�x t  converging from the right to the definite number ( )+x t (fig. 2a), 

converging from the right to the set of numbers (fig. 2b) and the divergent function from the right (fig. 2 c). 

The left- ( ; )−�F x t  and right-hand ( ; )+�F x t  side distribution functions can be characterized by single-volume 

bounds ( ; )−
IF x t , ( ; )−

SF x t  and ( ; )+
IF x t , ( ; )+

IF x t  respectively. If under ( , )∈ −∞ +∞x  they have concrete 

volumes (the function ( )�x t  is converged to a number or to a set of numbers), then according bounds are 

coincided: ( ; ) ( ; ) ( ; )− − −= =I SF x t F x t F x t , ( ; ) ( ; ) ( ; )+ + += =I SF x t F x t F x t  (fig. 2a, 2b). In the contrary case 

they are different: ( ; ) ( ; )− −≠I SF x t F x t , ( ; ) ( ; )+ +≠I SF x t F x t  (fig. 2c). 

 

8. A continuous multiple-volume function 

Definition 8. A multiple-volume function ( )�x t  will be called the continuous function in the point t  from the left 

(right) if 

1) the function is determined as in the point t  as in the left-hand (right-hand) side area of this point,  

2) the function is converged in the point t  from the left-hand (right-hand) side to a number or a set of 

numbers (according distribution function is a single-volume one), 

3) in the point t  the left-hand ( ; )−F x t  (the right-hand ( ; )+F x t ) side distribution function equals to 

the distribution function ( ; )F x t  in the point t : ( ; ) ( ; )− =F x t F x t  ( ( ; ) ( ; )+ =F x t F x t ) (the 

distribution function ( ; )F x t  is continuous along t  from the left (right)). 

In any contrary case, the function will be called the discontinuous one in the point t  from the left (right). 

Definition 9. A multiple-volume function ( )�x t  will be called the continuous function in the interval 1 2( , )t t , if it is 

a continuous in all points of this interval from the left and right. 

For a continuous function ( )�x t , it can be written the following equality: ( ) ( ) ( )− += =I I Ix t x t x t , 

( ) ( ) ( )− += =S S Sx t x t x t , where ( )Ix t , ( )Sx t  are low and upper bounds of the function ( )�x t  (fig. 3a, 3c). 

For continuous functions new branch concept can be defined. 
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a      b 
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c      d 

 

Fig. 3. Multiple-volume continuous functions ( )x t�  (а, c) and according sections of their distribution functions ( ; )F x t t− ∆ , 

( ; )F x t , ( ; )F x t t+ ∆  in the points t t− ∆ , t , and t t+ ∆  (b, d). Thin continuous lines in the fig. 3a, 3c correspond to 

branches of the function ( )x t�  and bold lines – to its bounds. 

 

Definition 10. The c -th branch ( (0,1]∈c ) of the function ( )�x t , determined in the interval 1 2( , )∈t t t  and 

describing by the distribution function ( ; )F x t  will call the single-volume function ( ) inf arg( ( ; ) )= =c
x x

x t F x t c  

(fig. 3a, 3c). 

For existence of the c -th branch in the interval 1 2( , )∈t t t , it is necessary and sufficient that the equation 

( ; ) =F x t c  has a solution (or solutions) for all 1 2( , )∈t t t  (fig. 3b, 3d). 

The number of branches may be a finite, countable, or non-countable one. 

If the number of branches is a finite (fig. 3a) or countable, then under const=t  the distribution function ( ; )F x t  

is a stepped function of the argument x  (fig. 3b). If the number of branches is a non-countable one and for all 

1 2( , )∈t t t  function volumes closely fill the interval ( ( ), ( ))I Sx t x t  (fig. 3c), then under const=t  the distribution 

function ( ; )F x t  is a strictly increasing function of x  (fig. 3d). 

Theorem 1. The branches of a multiple-volume continuous function are continuous functions that have not 
common points. 

The continuity of the branches of the multiple-volume continuous function follows from the continuity along t  of 

its distribution function ( ; )F x t . 
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The absence of common points of branches can be proofed by ex adverso. Let the multiple-volume continuous 

function ( )�x t  described by the single-volume distribution function ( ; )F x t  has branches 
1
( )cx t  and 

2
( )cx t  

( 2 1≠c c ) that have a common point when 0=t t : 
1 10 0 0( ) ( )= =c cx t x t x . It follows from this that in the point 

0 0( , )x t  the distribution function ( ; )F x t  has two different volumes: 1c  and 2c . This fact contradicts to the 

request of one-valuedness of the distribution function ( ; )F x t . 

Definition 11. A multiple-volume function ( )�x t  that is continuous in the interval 1 2( , )∈t t t  will be called the 

decomposable one on branches, if it can be presented by a set of branches: { }( ) ( ),= ∈�
cx t x t c C , where C  

is a set of branches. 

Notice, not all multiple-volume continuous functions can be decomposed on branches. If a function ( )�x t  is 

decomposed on branches, then it can be described by the set of branches C  and the distribution function 

( )cF x  of branches. 

 

9. A derivative of the multiple-volume function  

Definition 12. The left derivative ( )−′�x t of the multiple-volume continuous function ( )�x t  that can be 

decomposed on branches will call the set of the left derivatives 

0

( ) ( )
( ) LIM−

∆ →+

− − ∆
′ =

∆
� c c

c
t

x t x t t
x t

t
, (3) 

and the right derivative ( )+′�x t  – the set of the right derivatives 

0

( ) ( )
( ) LIM+

∆ →+

+ ∆ −
′ =

∆
� c c

c
t

x t t x t
x t

t
, (4) 

calculated in the point t  for all branches of ∈c C . 

Generalized limits in expressions (3) and (4) are not, in general, single-volume ones. They can converge to a set 

of numbers or be divergent limits.  

If in expressions (3) and (4) the limits are single-volume ones (LIM lim= ) for all ∈c C , then ( ) ( )± ±′ ′=�
c cx t x t  

and the derivative ( )−′x t  (derivative ( )+′x t ) is the set of velocities, with that branches ( )cx t  are changing 

when the argument is tending to t  from the left (right). 

Definition 13. A multiple-volume continuous function ( )�x t  that can be decomposed on branches will be called 

the differentiable one in the point t , if all its derivatives on branches are single-volume ones and for all branches 

the left derivative equals to the right derivative: ( ) ( ) ( )− +′ ′ ′= =c c cx t x t x t . 

Definition 14. A multiple-volume continuous function ( )�x t  that can be decomposed on branches will be called 

the differentiable one, if it is differentiated in all points of its applicable domain. 
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For a continuous derivative ( )x t′�  that can be decomposed on branches the second derivative ( )x t±′′�  can be 

defined. By iteration, for a continuous r -th derivative ( ) ( )rx t±�  that can be decomposed on branches the 1r + -

th derivative ( 1) ( )rx t+ ±�  can be defined too. 

For the differentiable function ( )x t�  with the differentiable derivative ( )x t′� , the second derivative ( )−′′�x t  

(derivative ( )+′′�x t ) in the point t  is the set of accelerations with that branches ( )cx t  are changing, when the 

argument is tending to t  from the left (right). 

A multiple-volume differentiable function ( )x t�  that in the point 0t  has single-volume derivatives ( )

0( )rx t�  of any 

order r  can be described by the set of branches ( )cx t , every of which is decomposed in the point 0t  in Taylor 

series. Therefore, the function ( )x t�  can be described by the set { }0( )x t  of volumes of function in the point 0t , 

the set { }( )

0( )rx t  ( 1,2,r = … ) of volumes of its derivatives, and the set of according distribution functions 

0( ; )F x t , ( )

0( ; )rF x t  ( 1,2,r = … ). 

 

10. Examples of multiple-volume functions 

Multiple-volume functions that are single-volume in all applicable domains except some intervals are especially 

interesting. Examples of such functions are presented in fig. 4a-4d. 

These functions are single-volume ones in the intervals 1t t< , 2t t>  and multiple-volume ones in the interval 

1 2t t t≤ ≤ . Multiple meanings of the function in fig. 4a appear spontaneously and spontaneously disappear. In 

other functions (fig. 4b-4d), the conversion to multiple meanings and then to single meaning is accompanied by 

the branch processes marked in the figures by dash lines. Part limits are formed in these zones. 

Functions presented in fig. 4a and 4b are discontinues ones. If for all points of the applicable domain of functions 

presented in fig. 4c and 4d the conditions of the Definition 8 are satisfied, then the functions are continues ones. 

The functions in fig. 4a–4c are not differentiable ones and the function in fig.4d is differentiable one (if the last is a 

continuous function). 

Examine the function 

1

1 1

1 2

2

2 2

1
sin , when ,

( )

( ) [ 1,1], when ,

1
sin , when ,

( )

t t
t t

x t t t t

t t
t t

ω

ω

  
<  

− 


= − ≤ ≤


  >  − 

�  (5) 

that is a single-volume one in intervals 1( , )t−∞ , 2( , )t +∞  and a multiple-volume one in the interval 1 2[ , ]t t , 

where 1 20, 0ω ω≠ ≠  (fig. 5a). 
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•  

•  

1t  t  

•  

2
t  

( )x t�  

1
( )x t  

2 ( )x t  

3 ( )x t  

4 ( )x t  

5 ( )x t  

 

2 ( )x t  

•  

•  

•  

1t  t  
2t  

( )x t�  

1( )x t  

3 ( )x t  

4 ( )x t  

 

a     b 

•  

•  

•  
•  

2 ( )x t  

•  

•  

•  

1t  t  
2t  

( )x t�  

1( )x t  

3 ( )x t  

4 ( )x t  

3 ( )x t  

•  •  

•  

2 ( )x t  

•  

•  

•  

1t  t  
2t  

( )x t�  

1( )x t  

4 ( )x t  

5 ( )x t  

 

c     d 

Fig 4. Multiple-volume functions: discontinuous (a, b) ones and continuous ones (if in all points of applicable domain the 

conditions of the Definition 8 are satisfied) (c, d)  

 

When t  tends to 1t  from the left-hand side and t  tends to 2t  from the right-hand side, the single-volume parts 

of the function (5) are delaminated. In this case, left 1( ; )F x t−  and right 2( ; )F x t+  distribution functions are 

described [Gorban, 2012-1] by the expression 

1 2

1 1
( ; ) ( ; ) arcsin

2
F x t F x t x

π
− += = + . (6) 

Therefore, if in the interval 1 2[ , ]t t  the distribution function ( ; )F x t  is described by the same expression (6), then 

the function (5) is a continuous and differentiable one. 

In this case, the derivative of the function (5) is a single-volume function for ( , )t ∈ −∞ +∞ : 

12

1 1 1 1

1 2

22

2 2 2 2

1 1
cos , when ,

( ) ( )

( ) 0, when ,

1 1
cos , when .

( ) ( )

t t
t t t t

x t t t t

t t
t t t t

ω ω

ω ω

  
− <  

− − 
′ = ≤ ≤


 − >  − − 
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a 
 

b 

 

c 

 

 

 

d 

Fig. 5. The multiple-volume function (5) (a), its distribution functions (6) (b), (7) (c) in the interval  1 2[ , ]t t , and its derivative 

(8) (d) ( 0,1c =  with the step 0,1): 1 3t = , 2 6t = , 2

1 10ω −= , 2

2 4 10ω −= ⋅  

 

The distribution function of the derivative is the function ( ; ) sign[ ( )]F x t x x t′ ′ ′= − . 

If the distribution function ( ; )F x t  for 1 2[ , ]t t t∈  is described by the expression  

( )
1 1

( ; ) arcsin
2

a t

F x t x
π

 
= + 
 

, (7) 

where 1

2 1

2 ( )3 1
( ) cos

4 4

t t
a t

t t

π −
= +

−
 (fig. 5c), then the c -th branch ( )cx t  of the function ( )x t�  is described by 

the equation 

( )
1 1

arcsin ( )
2

a t

cx t c
π

 + = 
 

.  

The solution of this equation is the function ( )
( ) cos

a t

cx t cπ= − . Then, the derivative can be obtained in the 

following form: 

( )
2 1/ ( )

1/ ( ) 1

2

2 1 2 1

2 ( )ln
( ) sin sin

2 ( )( )

a t
a t

c

t tc c
x t c

a t t t t t

ππ
π

 −
′ =  

− − 
.  

So in this case, the function (5) is a continuous and differentiable one for any t . In the interval 1 2[ , ]t t  its 

derivative is multiple-volume one and described by the expression 
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( )
2 1/ ( )

1/ ( ) 1

2

2 1 2 1

2π( )π ln
( ) sin π sin , (0,1]

2 ( )( )

a t
a t t tc c

x t c c
a t t t t t

  − ′ = ∈  
− −   

� . (8) 

The distribution function of the derivative ( ; )F x t′�  can be as a single-volume one (then ( ; ) ( ; )F x t F x t′ ′=� ) as a 

multiple-volume one. 

 

11. The integral from the multiple-volume function  

Definition 15. The multiple-volume differentiable function ( )y t�  determined in the interval [ , ]a b  will be called 

the primitive of the multiple-volume function ( )x t�  determined in the same interval, if in all its points the derivative 

( )′�y t  equals to the function ( )x t� . 

As any multiple-volume differentiable function (and therefore continuous and decomposable on branches), the 

primitive ( )y t�  is described by the set of volumes ( )yS t�
�  and the distribution function ( ; )F y t  of volumes. 

Definition 16. The indefinite integral from the multiple-volume function ( )x t�  determined in the interval [ , ]a b  will 

call the multiple-volume differentiable function 0( )d ( )x t t y t C= +∫ � � , where 0C  is any constant. 

Definition 17. The definite integral from the multiple-volume bounded continuous function ( )x t�  determined in 

the interval [ , ]a b  and decomposable on branches will call the set of limit points 

max 0
1

( ) LIM ( ) ,
i

b I

y c i i
t

ia

S x t dt x t c Cξ
∆ →

=

 
= = ∆ ∈ 

 
∑∫�

� � , (9) 

where 0 1 Ia t t t b= < < < =… , 1i i it t t −∆ = − , ( )ix ξ�  is the volume in any point 1[ , ]i i it tξ −∈ , and low Iy  and 

upper Sy  bounds of the integral will call accordingly low and upper boundaries of this set. 

The definite integral ( )

b

a

x t dt∫ � , as any set of limit points is described not only by the set of its volumes yS �
�  but 

also by the distribution function ( )F y�  that, in a general is a multiple-volume one. 

In the particular case, when limits in the expression (9) are single-volume ones, the set of limit points  

( ) ( ) ,

b b

y c

a a

S x t dt x t dt c C
  

= = ∈ 
  

∫ ∫�
� � .  

Mark, the Definition 17 can be generalized to nonintrinsic integrals too.  

 

12. The generalized main volume of the definite integral 

Introduced concept of the definite integral from the multiple-volume function can be useful for estimation of 

divergent integrals. Such tasks are occurred [Gorban, 2012-2], for instance, in the case of functional 

transformations.  
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Examine the continuous single-volume bounded function ( , )x t λ  of the scalar argument t  determined in the 

interval [ ( ), ( )]a bλ λ , where λ ∈Λ  is a parameter. Let the integral of this function converges, when 0λ λ≠  

and diverges, when 0λ λ= .  

Definition 18. The generalized main volume of the definite integral of the function ( ,λ)x t , when 0λ λ=  will call 

the multiple-volume (in general) set of limit points 

0

( )

( )

LIM ( , )

b

y

a

S x t dt
λ

λ λ
λ

λ
→

= ∫


�
� ,  

and the distribution function of generalized main volume – the function  

0

( )
( ) LIM

m y
F y

m
λ

λ λ
λ

→
=� ,  

where ( )m yλ  is the number of volumes of the integral 
( )

( )

( , )

b

a

x t dt
λ

λ

λ∫  that are less than y  and mλ  is the 

common number of volumes of this integral. 

The researched generalized main volume of the integral, in contrast to the main volume of a usual integral has a 

set of meanings. Bounds Iy , Sy  of this integral are low and upper boundaries of the set of limit points yS�
� . 

13. Conclusion 

On the basis of the theory of hyper-random phenomena, the calculus approaches for divergent and multiple-

valued sequences and functions have been developed.  

For divergent sequences and functions, a number of new concepts, in particular concepts of generalized limit, 

spectrum of limit points, convergence to spectrum of limit points, distribution function and density function of limit 

points, bounds of a distribution function etc. are introduced.  

Concepts known for single-valued functions, in particular concepts of convergence, continuity, derivative, 

differentiability, indefinite and definite integrals are generalized on multiple-valued functions.  

A link between multiple-valued and divergent functions is found.  

Transformation particularities of single-valued functions into multiple-valued functions and multiple-valued 

functions into single-valued ones are researched. 
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