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Automatic Control Systems Models 

POLYNOMIAL APPROACH TO FRACTIONAL DESCRIPTOR ELECTRICAL 

CIRCUITS 

Tadeusz Kaczorek 

Abstract: A new polynomial approach is proposed to analysis of the standard and positive descriptor 

electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. It is shown that for 

given descriptor fractional electrical circuit the equivalent standard fractional electrical circuit can be found by 

premultiplication of the equation of the descriptor electrical circuit by suitable polynomial matrix 

of elementary row operations. The main result is demonstrated on simple positive fractional electrical circuit. 
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Introduction 

Descriptor (singular) linear systems have been considered in many papers and books [Bru et. all, 2003a, 

2003b; Campbell et. all, 1976; Dai, 1989; Guang-Ren, 2010; Kaczorek, 2004, 1992, 2011a, 2011e, 2011f, 

2011g, 2013a, 2014a, 2014b; Virnik, 2008]. The eigenvalues and invariants assignment by state and output 

feedbacks have been investigated in [Kaczorek, 2004] and the minimum energy control of descriptor linear 

systems in [Kaczorek, 1992]. In positive systems inputs, state variables and outputs take only non-negative 

values [Farina et. all, 2000; Kaczorek, 2002]. Examples of positive systems are industrial processes 

involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental 

systems, water and atmospheric pollution models. A variety of models having positive linear behavior can be 

found in engineering, management science, economics, social sciences, biology and medicine, etc. 

The positive fractional linear systems and some of selected problems in theory of  fractional systems have 

been addressed in monograph [Kaczorek, 2011f]. 

Descriptor standard positive linear systems by the use of Drazin inverse has been addressed in Bru et. all, 

2003a, 2003b; Campbell et. all, 1976; Kaczorek, 2013a]. The shuffle algorithm has been applied to checking 

the positivity of descriptor linear systems in [Kaczorek, 2011a]. The stability of positive descriptor systems 

has been investigated in [Virnik, 2008]. Reduction and decomposition of descriptor fractional discrete-time 

linear systems have been considered in [Kaczorek, 2011e]. Standard and fractional systems and electrical 

linear circuits have been investigated in [Kaczorek, 2002, 2008, 2010, 2011c, 2011f]. Pointwise 

completeness and pointwise generacy of standard and positive 1D and 2D systems have been addressed in 

[Kaczorek, 2009, 2011b]. 

In this paper a new polynomial approach to analysis of fractional descriptor electrical circuit will be proposed. 

The paper is organized as follows. In section 2 basic definitions and theorems concerning the descriptor 

fractional and positive electrical circuits are recalled. The main result is presented in section 3, 
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where a procedure for reduction of the descriptor fractional electrical circuits  to the standard fractional 

electrical circuits is proposed. Concluding remarks are given in section 4. 

The following notation will be used:   - the set of real numbers, mn  - the set of mn  real matrices and 

1 nn , mn
  - the set of mn  matrices with nonnegative entries and 1

  nn , nM - the set of 

nn  Metzler matrices (real matrices with nonnegative off-diagonal entries), nI - the nn  identity matrix. 

Preliminaries 

The following Caputo definition of the fractional derivative will be used [Kaczorek, 2011f] 
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Consider the continuous-time fractional linear system described by the state equations 

10),()()(   tButAxtxDt ,                               (2a) 

 )()()( tDutCxty  ,                                                  (2b) 

where ,)( ntx   ,)( mtu   pty )(  are the state, input and output vectors and ,nnA   

,mnB   ,npC   .mpD   

Theorem 1. [Kaczorek, 2011f] The solution of equation (2a) is given by 
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and )( 
 AtE  is the Mittag-Leffler matrix function. 

Definition 1. [Kaczorek, 2011f] The fractional system (2) is called the internally positive fractional system if 

and only if ntx )(  and pty )(  for 0t  for any initial conditions nx 0  and all inputs 

,)( mtu   .0t  

Theorem 2. [Kaczorek, 2011f] The continuous-time fractional system (2) is internally positive if and only if 

the matrix A is a Metzler matrix and 

 mpnpmn
n DCBMA 






  ,,, .                             (6) 

Let the current iC(t) in a supercondensator (shortly condensator) with the capacity C be the α order 

derivative of its charge q(t) [Kaczorek, 2011f] 
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Using )()( tCutq C  we obtain 
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where uC(t) is the voltage on the condensator. 

Similarly, let the voltage uL(t) on coil (inductor) with the inductance L be the β order derivative of its 

magnetic flux )(t  [Kaczorek, 2011f] 
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Taking into account that )()( tLit L  we obtain 
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where iL(t) is the current in the coil. 

Consider an electrical circuit composed of resistors, n capacitors and m voltage sources. Using the equation 

(2.8) and the Kirchhoff’s laws we may describe the transient states in the electrical circuit by the fractional 

differential equation 
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where ntx )( , mtu )( , nnA  , mnB  . The components of the state vector )(tx  and input 

vector )(tu  are the voltages on the condensators and source voltages respectively. Similarly, using the 

equation (10) and the Kirchhoff’s laws we may describe the transient states in the electrical circuit by the 

fractional differential equation 
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where ntx )( , mtu )( , nnA  , mnB  . In this case the components of the state vector )(tx  

are the currents in the coils. 

Solution of the equation (11) (or (2.12)) satisfying the initial condition 0)0( xx   is given by (3). 

Now let us consider electrical circuit composed of resistors, capacitors, coils and voltage (current) source. 

As the state variables (the components of the state vector )(tx ) we choose the voltages on the capacitors 

and the currents in the coils. Using the equations (8), (10) and Kirchhoff’s laws we may write for the 

fractional linear circuits in the transient states the state equation 
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where the components 1n
Cx   are voltages on the condensators, the components 2n

Lx   are 

currents in the coils and the components of mu   are the source voltages and 

 ji nn
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i
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

 ,   2,1, ji .                                      (13b) 

Theorem 3. The solution of the equation (13) for 10;10    with initial conditions  

 10)0( xxC   and 20)0( xxL                                               (14) 
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Proof is given in [Kaczorek, 2010, 2011f]. 

The extension of Theorem 3 to systems consisting of n subsystems with different fractional orders is given in 

[Kaczorek, 2011d]. 

Reduction of descriptor linear electrical circuits to their standard equivalent forms 

The following elementary row (column) operations will be used [Kaczorek, 1992]: 

Multiplication of the ith row (column) by a real number c. This operation will be denoted by ][ ciL   

( ][ ciR  ). 

Addition to the ith row (column) of the jth row (column) multiplied by a real number c. This operation will be 

denoted by ][ cjiL   ( ][ cjiR  ). 

Interchange of the ith and jth rows (columns). This operation will be denoted by ],[ jiL  ( ],[ jiR ). 

First the essence of the polynomial approach will be shown on the following simple example. 
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Example 1. Consider the fractional descriptor electrical circuit shown in Fig. 1 with given resistances 1R , 

2R ; inductances 1L , 2L  and source current iz.  

 

Fig. 1. Fractional electrical circuit 

Using Kirchhoff’s laws we can write the equations 
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The equations (16) can be written in the form 
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Note that the matrix 
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is nonsingular and premultiplying (21) by its inverse we obtain 
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Note that the electrical circuit with (23) is positive since 2MA  and the matrices 0B  and 1B  have 

nonnegative entries. 

The standard equation (23a) can be also obtained from the equation (21) by reducing the matrix (22) to the 

identity matrix 2I  using the elementary row operations  
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Therefore, the reduction of the matrix (22) to identity matrix by the use of elementary row operations (24) is 

equivalent to premultiplication of the equation 

BUXAEs  ][                                                           (27) 
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by the polynomial matrix of elementary row operations (25), where 
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In general case let consider  the descriptor electrical circuit described by the equation 
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where ,)( ntx   mtu )(  are the state and input vectors and ,, nnAE   .mnB   It is assumed 

that det E = 0 and the pencil (E,A) is regular. 

Applying to (28) the Laplace transform with zero initial conditions we obtain the equation 
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Using (33) we can write the equation (28) in the form 
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,                                                (34a) 

uBxA 220  .                                                     (34b) 

The fractional differentiation of (34b) yields 
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







dt

ud
B

dt

xd
A 220  .                                                       (35) 

From (34a) and (35) we have 









dt

ud

B
u

B
x

A

dt

xd

A

E




































 2

11

2

1 0

00
.                                    (36) 

If the matrix 








 2

1

A

E
 is nonsingular then from (36) we have 









dt

ud
BuBxA

dt

xd
101                                           (37a) 

where 

.
0

,
0

,
0 2

1

2

1

1

1

1

2

1

0

1

1

2

1

1 



























































BA

E
B

B

A

E
B

A

A

E
A                       (37b) 

If the matrix 








 2

1

A

E
 is singular then using elementary row operations we reduced the matrix 









 2

1

A

E
 to the 

form  



















 0

2

2

1

2

E

A

E
L                                                             (38) 

and we repeat the procedure. 

It is well known that if the condition (32) is satisfied then after μ steps of the procedure we obtain the 

nonsingular matrix   










 



A

E
.                                                                  (39) 

Premultiplying the equation 






















dt

ud

Bdt

ud

B

B
u

B
x

A

dt

xd

A

E













































 


0

...
00 0,1

1,10,11
                (40) 

by the inverse matrix 

1










 



A

E
 we obtain the desired equation 













dt

ud
B

dt

ud
BuBxA

dt

xd
 ...10                             (41a) 

where 

.
0

,...,

,
0

,
0

1

0,1

1,1

1

1

0,1

1

0

1

1
























































































































BA

E
B

B

B

A

E
B

B

A

E
B

A

A

E
A

                          (41b) 
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The standard equation (41a) can be also obtained from the equation (40) by reducing the matrix (39) to the 

identity matrix In using the elementary row operations and this is equivalent to premultiplication of the 

equation (40) by suitable matrix of elementary row operations. 

nI
A

E
L 









 



 .                                                             (42) 

The desired polynomial matrix of elementary row operations (30) is given by 

.],[ diag)(
1












i

rnr sIILsL
ii

                                                (43) 

Note that the matrix sI
irn  corresponds to the fractional differentiation of the algebraic equations.  

The considerations can be easily extended to the linear electrical circuits described by the equation (13a). 

Example 2. Consider the fractional descriptor electrical circuit shown on Figure 2 with given resistances 

321 ,, RRR , inductances 321 ,, LLL  capacitance C and source voltages 21,ee .  

 

Fig. 2. Electrical circuit 

Using the Kirchhoff’s laws we can write the equations 

,33
3

311
1

11 iR
dt

id
LiR

dt

id
Le 









                                           (44a) 

33
3

322
2

22 iR
dt

id
LiR

dt

id
Le 









                                           (44b) 

,213 iii                                                                    (44c) 

.21 eeu                                                                  (44d) 

The equations can be written in the form 



























































2

1

3

2

1

3

2

1

e

e
B

u

i

i

i

A

dt

ud
dt

id
dt

id
dt

id

E

















                                                 (45a) 
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where 

.

11

00

10

01

,

1000

0111

00

00

,

0000

0000

00

00

32

31

32

31




































































 B

RR

RR

A
LL

LL

E                   (45b) 

The pencil is regular since 

.0))((])()[(

1000

0111

00

00

]det[

2233323211

3322

3311











RLsRLsRRLLsRLs

RLsRLs

RLsRLs

AEs









                  (46) 

Defining 


























































11

00
,

10

01

,
1000

0111
,

00

00
,

00

00

21

2

32

31

1

32

31

1

BB

A
RR

RR
A

LL

LL
E

         (47) 

we can write the equation (45a) in the form 



























































2

1

1

3

2

1

1

3

2

1

1
e

e
B

u

i

i

i

A

dt

ud
dt

id
dt

id
dt

id

E

















                                                 (48a) 

and 






























2

1

2

3

2

1

20
e

e
B

u

i

i

i

A .                                                              (48b) 

The α fractional differentiation of (48b) yields 











































































dt

ed
dt

ed

B

dt

ud
dt

id
dt

id
dt

id

A
2

1

2

3

2

1

20 .                                                        (49) 

From (48a) and (49) we have 
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






































































































































dt

ed
dt

ed

Be

eB

u

i

i

i

A

dt

ud
dt

id
dt

id
dt

id

A

E

2

1

22

11

3

2

1

1

3

2

1

2

1 0

00
.                               (50) 

The matrix 


































1000

0111

00

00

32

31

2

1 LL

LL

A

E
,                                                 (51) 

is nonsingular and premultiplying (50) by its inverse we obtain 





































































































dt

ed
dt

ed

B
e

e
B

u

i

i

i

A

dt

ud
dt

id
dt

id
dt

id

2

1

1

2

1

0

3

2

1

3

2

1

                                          (52a) 

where 

.

11

00

00

00

1000

0

0

0

)(

10

,

00

00

10

01

1000

0

0

0

)(

1

0

,

0000

0000

00

00

1000

0

0

0

)(

1

0

2112

31313

32332

323212

1

2

1

1

2112

31313

32332

32321

1

1

2

1

0

32

31

2112

31313

32332

32321

1

1

2

1

1

















































































































































































































LLLL

LLLLL

LLLLL

LLLLLBA

E
B

LLLL

LLLLL

LLLLL

LLLLL

B

A

E
B

RR

RR

LLLL

LLLLL

LLLLL

LLLLL

A

A

E
A

 

(52b) 

The standard equation (52a) can be also obtained from the equation (50) by reducing the matrix (51) to the 

identity matrix I4 using the elementary row operations  
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)](31[ 3LL  , ]32[ 3LL  , 


























32

321
LL

L
L , 



























32321 )(

1
1

LLLLL
L , 

]12[ 3LL  , ]113[ L , 


























32

1
1

LL
L , )]1(23[ L ,                          (53) 

Using the elementary row operations (53) on the matrix 























s

s

000

000

0010

0001

                                                               (54) 

we obtain the polynomial matrix 












































s

s
L

LL

L

L

L

L

s
L

LL

L

LL

L

L

s
L

LL

L

L

L

LL

ssL

000

0

0

0

],[

2112

31313

32332

 and 32321 )( LLLLLL             (55) 

satisfying the equations 

AssssAssssEsL  ),,,( diag]),,,( diag][[  .                       (56) 

Conclusion 

A new polynomial approach is proposed to analysis of the standard and positive descriptor electrical circuits 

has been proposed. It has been shown (Theorem 4) that for given descriptor fractional electrical circuit the 

equivalent standard fractional electrical circuit can be found by premultiplication of the equation of the 

descriptor electrical circuit by suitable polynomial matrix of elementary row operations. The essence of the 

proposed method is demonstrated on simple positive fractional descriptor electrical circuit. The 

considerations can be easily extended to descriptor electrical circuits described by system of linear fractional 

equations with different orders [Kaczorek, 2010, 2011d]. An open problem is an extension of the approach to 

two-dimensional continuous-discrete fractional linear systems. 
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