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ROBUST ADAPTIVE FUZZY CLUSTERING FOR DATA WITH MISSING VALUES 

Yevgeniy Bodyanskiy, Alina Shafronenko 

Abstract: the datasets clustering problem often encountered in many applications connected with Data 

Mining and Exploratory Data Analysis. Conventional approach to solving these problems requires that each 

observation may belong to only one cluster, although a more natural situation is when the vector of features 

with different levels of probabilities or possibilities can belong to several classes. This situation is subject of 

consideration of fuzzy cluster analysis, intensively developing today. 

In many practical Data Mining tasks, including clustering, data sets may contain gaps, information in which, 

for whatever reasons, is missing. More effective in this situation are approaches based on the mathematical 

apparatus of Computational Intelligence and first of all artificial neural networks and different modifications of 

classical fuzzy c-means (FCM) method. 

Real data often contain abnormal outliers of different nature too, for example, measurement errors or 

distributions with "heavy tails". In this situation classic FCM is not effective because the objective function 

based on the Euclidean metric, only reinforces the impact of outliers. In such conditions it is advisable to use 

robust objective functions of special form that suppress influence of outliers. For information processing in a 

sequential mode adaptive procedures for on-line fuzzy clustering have been proposed, which are in fact on-

line modifications of FCM, where instead of the Euclidean metric robust objective functions that weaken the 

influence of outliers were used. 

Situation when data set contains missing values and outliers in the fuzzy clustering problem was not 

analyzed, although such a situation can arise in many practical applications. Therefore the development of 

twice robust (for missing values and outliers) fuzzy clustering algorithm has theoretical interest and practical 

sense. 

The problem of fuzzy adaptive on-line clustering of data distorted by missing values and outliers sequentially 

supplied to the processing when the original sample volume and the number of distorted observations are 

unknown is considered. The probabilistic and possibilistic clustering algorithms for such data, that are based 

on the strategy of nearest prototype, partial distances and similarity measure of a special kind that weaken 

or overwhelming outliers are proposed.  

Keywords: Fuzzy clustering, Kohonen self-organizing network, learning rule, incomplete data with gaps and 

outliers. 

ACM Classification Keywords: 1.2.6 [Artificial Intelligence]: Learning – Connectionism and neural nets; 

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search – Control theory; 1.5.1 [Pattern 

Recognition]: Clustering – Algorithms. 

Introduction 

The problem of data sets clustering often occurs in many practical tasks, and for its solution has been 

successfully used mathematical apparatus of computational intelligence [Rutkowski, 2008] and first of all, 
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artificial neural networks [Marwala, 2009] and soft computing methods [Klawonn, 2006] (in the case of 

overlapping classes) is usually assumed that original array is specified a priori and processing is made in 

batch mode. Here as one of the most effective approach based on using FCM [Bezdek, 1981], that is 

modified for the situation with missing values [Hathaway, 2001] which comes as a result to minimize the 

objective function with constraints of special form. In [Bodyanskiy, 2012; Bodyanskiy, 2013] adaptive fuzzy 

clustering procedures have been proposed for processing the data sequences containing an unknown 

quantity of missing values, realizing the problem in on-line mode and characterized by numerical simplicity. 

These procedures are in fact hybrid of T. Kohonen neural network [Kohonen, 1995] with the special form of 

a neighborhood function. 

Real data often contain outliers of different nature, for example, measurement errors or distributions with 

"heavy tails". In this situation classic FCM is not effective because the objective function based on the 

Euclidean metric, only reinforces the impact of outliers. In such conditions it is advisable to use robust 

objective functions of special form [Dave, 1997], that suppress influence of outliers. For information 

processing in a sequential mode, in [Bodyanskiy, 2005; Kokshenev I., 2006] adaptive on-line fuzzy clustering 

procedures have been proposed, which are in fact on-line modifications of FCM, where instead of the 

Euclidean metric robust objective functions, weaken the influence of outliers where used. 

Situation when data set contains both missing values and outliers in the fuzzy clustering problem are not 

considered, although such a situation can arise in many practical applications. Therefore the development of 

twice robust (for missing values and outliers) fuzzy clustering algorithms has theoretical interest and 

practical sense. 

Problem statement 

Baseline information for solving the tasks of clustering in a batch mode is the sample of observations, 

formed from N n -dimensional feature vectors 
1 2

1 2{ , ,..., } , , , ,...,   n

N kX x x x R x X k N . The 

result of clustering is the partition of original data set into m  classes 1 ( )m N  with some level of 

membership ( )qU k  of k -th feature vector to the q -th cluster 1( ) q m . Incoming data previously are 

centered and standardized by all features, so that all observations belong to the hypercube 11[ , ] n . 

Therefore, the data for clustering form array 1
{ ,..., ,..., }  n

k NX x x x R , 
1

( ,..., ,..., ) T

k k ki knx x x x , 

1 1  kix , 1 m N , 1 q m , 1 i n , 1 k N . Note that traditionally adopted in Kohonen’s 

maps (SOM) data transformation to the form 1kx  in this case does not make sense, because if 
kx  

contains missing value - calculation rules of such vector is impossible, and if 
kx  contains outlier in one of 

the components - 
kx  will be practically the same as the corresponding unit vector of the feature space. 

Transformation 1 1kix    leads to the fact that the non deformed data concentrate in the vicinity of zero, 

and the data with outliers – near -1 and +1. Furthermore, we introduce additional sub arrays data 

[Hathaway, 2001]: 1
{ ,..., ,..., }  n

k NX x x x R , 
1

( ,..., ,..., ) T

k k ki knx x x x , 1 1  kix , 1 m N , 

1 q m , 1 i n , 1 k N . 

We have to develop numerically simple on-line procedure for partitioning in sequential mode to the data 

processing 
k

x  on m  perhaps overlapping classes, while it is not known in advance whether 
k

x  is 

undistorted or contains missing values and outliers. Furthermore, it is assumed that the amount of 

information under processing is not known in advance and is increased with time.  
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Adaptive fuzzy clustering data with missing values based on the nearest prototype strategy 

Nearest prototype strategy (NFS), proposed in [Hathaway, 2001], is a modification of FCM-algorithm and 

leads to the replacement of missing components of the vector observations ki Gx X  by estimates of the 

corresponding component prototypes (centroids) of the clusters computed using FCM. Thus for each 

ki Gx X  it’s possible to find the prototype 
1,..., ,...,( )Tq q qi qnw w w w  nearest to 

k
x  in the sense of the 

partial distance (PD) 

2 2

1

( , ) ( )


 
n

P k q ki qi ki

ik

n
D x w x w 


                                                  (1) 

where  

0

1

| ,

| ,


 



ki G

ki

ki F

x X

x X
  

1






n

k ki

i

   

1 2 1 2 1

1

( ) ( ) ( )argmin{ ( , ),..., ( , )}q P k P k m
q

w D x w D x w     , then instead ki Gx X  input estimate ˆ
ki qix w  

used in place of the missing components. 

In [Bodyanskiy, 2013] adaptive fuzzy clustering procedure based on the NPS was introduced: 
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( )

( )

( ) ( ) ( ) ( ) ( )
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ˆ( ( ) )

ˆ ( ),   ( ) argmin{ ( , ( )),..., ( , ( ))},

( ) ( ),

ˆ( ) ( ) ( )( ( )) (

k q

q
m

k l

l

ki qi q P k P k m
q

Q

q q

Q
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  
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




 

 

    



1( ) ( )( )) ,k qw k 













 

         (2) 

where 1   - parameter that is called fuzzyfier and defines "vagueness" of boundaries between classes, 

1( )k  - learning rate parameter, 0 1 2, , ,...  - accelerated computing time between two real-time 

instance k  and 1k   occurs Q  iteration in accelerated time. 

From the last relation (2) it follows that centroids setting made using the Kohonen self-learning rule "Winner 

Takes More» (WTM) with the neighborhood function ( )( ( ))Q

qU k   having the Cauchian form.  

The main disadvantage of FCM and other so-called probabilistic fuzzy clustering algorithms associated with 

a constraint on the levels of membership of each vector-image, which is equal to one, which gives sense of 

probability and membership, but it is not always correct in terms of the problem being solved. To remove this 

restriction in [Keller, 2005] possibilistic fuzzy clustering algorithm (PCM) was introduced, and in [Bodyanskiy, 

2012; Bodyanskiy, 2013] - its adaptive version for the case of data containing missing values, having the 

form: 



COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 37 

 

1

2
1

1

2 2

1

0

1

1

1

1

1

1 1 1 1

( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ,
ˆ ( )

( )
( )

ˆ ( ),   ( ) argmin{ ( , ( )),..., ( , ( ))},

( ) ( )

ˆ( ) ( ) ( )( ( )) ( ( )

q

k q

q

ki qi q P k P k m
q

Q

q q

Q

q q q k q

U k
x w k

k

x w k w k D x w k D x w k

w k w k

w k w k k U k x w k









    

    


















 

 

      

2
1 1 1

11

1

1

( ) ( ) ( )

( )

( )

) ,

ˆ( ( )) ( )

,

( ( ))

k

q p q

p

q k

q

p

U p x w k

U p

   



 



  



















 










                       (3) 

where the scalar parameter 0   determines the distance at which level of membership equals to 0.5, i.e. 

if 
2

( )k q qx w k  , then 0 5( ) .qw k .  

Algorithms (2), (3) have confirmed working capacity in solving a number of problems [Bodyanskiy, 2013], 

however, since they are based on the use of Euclidean distance, they do not possess stability to outliers. 

Adaptive fuzzy robust data clustering based on the similarity measure 

As already mentioned, to solve the problem of fuzzy clustering of data containing outliers the special 

objective functions of the form [Dave, 1997; Bodyanskiy, 2005; Kokshenev I., 2006] can be used, by some 

means these anomalies overwhelming, and the problem itself is associated with the minimization of these 

functions. From a practical point of view it is more convenient to use instead of the objective functions, 

based on the metrics, the so-called measures of similarity (SM) [Sepkovski, 1974], which are subject to more 

soft conditions than metrics: 

0

1

 





 

( , ) ,

( , ) ( , ),

( , ) ( , )

k p

k p p k

k k k p

S x x

S x x S x x

S x x S x x

 

(no triangle inequality), and clustering problem can be "tied" to maximize these measures. 

If the data are transformed so that 1 1kix    the measure of similarity can be structured so as to 

suppress unwanted data lying at the edges of interval 11[ , ] . Figure 1 illustrates the use of similarity 

measure based on Cauchy function with different parameters width 2 1    

 

Fig. 1 Similarity measure based on the Cauchy function 
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By choosing the width parameter 2  of functions 

2

2 2
2

2

2

2 2

1

1

( , )

( , )

k q

k q k q

k q

S x w
x w x w

D x w











  
  






,                                             (4) 

is possible to exclude the effect outliers, that in principle cannot be done using the Euclidean metric 

2
2( , )k q k qD x w x w  .                                                                   (5) 

Further, by introducing the objective function based on similarity measure (4), 

2

2
2

1 1 1 1

( )
( ( ), ) ( ) ( , )

N m N m
q

S q q q k q

k q k q
k q

U k
E U k w U k S x w

x w






   

 
 

  , 

probabilistic constraints 

1

1( )
m

q

q

U k


 , 

Lagrange function 
2

2
2

1 1 1 1

1
( )
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q

S q q q

k q k q
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 
 
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  
 

                                (6) 

(here ( )k  - indefinite Lagrange multipliers) and solving the system of Karush-Kuhn-Tucker equations, we 

get the solution 

1
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                         (7) 

The last equation (7) has no analytic solution, so to find a saddle point of the Lagrangian (6) we can use the 

procedure of Arrow-Hurwitz-Uzawa, as a result of which we obtain the algorithm 
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where 
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neighbourhood robust functions of WTM-self-learning rule. 

Assuming the fuzzifier value 2   we get a robust variant of FCM: 
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Further, using the concept of accelerated time, it’s possible to introduce robust adaptive probabilistic fuzzy 

clustering procedure in the form 
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(9) 

with the decision of each membership kx  to a specific cluster takes on the maximum value of similarity 

measure. 

Similarly, it’s possible to synthesize a robust adaptive algorithm for possibilistic [Klawonn, 1998] fuzzy 

clustering using criterion 

1 1 1 1
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Solving the problem of optimization, we obtain the solution: 



40 ITHEA 

 

 

1

1

1

2
2 2

1

1

1

1

1

1 1

1 1 1

1

1

( , ( ))
( ) ,

( )

( )
( ) ( ) ( ) ( ) ,

( ( ) )

( ) ( , ( ))

( ) ,

( )

k q

q

q

k q

q q q

k q

k

q p q

p

q k

q

p

S x w k
U k

k

x w k
w k w k k U k

x w k

U p S x w k

k

U p






























   
      

  
  




     
  






 








                             (10) 

receiving at 2   the form 
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And, finally, introducing the accelerated time we obtain the procedure  
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   (11) 

Adaptive fuzzy robust data clustering with missing values 

For solving the problem of robust data clustering with missing values let’s introduce the partial similarity 

measure (PCM), which is a hybrid of a partial distance (PD) (1) and similarity measure (SM) (4). It is easily 

to see that such PSM has the form 
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that allows to obtain the desired properties of algorithms based on procedures described above. 

So, on the basis of the procedures (2) and (9) we can introduce the robust adaptive probabilistic fuzzy 

clustering algorithm for data with missing values: 
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(13) 

based on procedures (3) and (11), also we can write the robust adaptive algorithm for possibilistic fuzzy 

clustering of data with missing values:  
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(14) 

Thus, the use of partial similarity measure based on partial distance (1), allows us to solve the problem of 

fuzzy clustering of data containing both missing values and outliers. 

Conclusion 

The problem of robust adaptive fuzzy clustering algorithms is considered, allowing in on-line mode to 

process distorted data containing both outliers and missing values is considered. The basis of the proposed 

algorithms is using of classical procedures as fuzzy с-means of J. Bezdek, T. Kohonen self-learning, as well 

as specially introduced similarity measure allowing to process distorted information. The algorithms are 

simple in numerical implementation, being essentially gradient optimization procedures for objective 

functions of special form.  



42 ITHEA 

 

 

Bibliography 

[Rutkowski, 2008] L.Rutkowski. Computational Intelligence. Methods and Techniques. Berlin-Heidelberg: 

Springer-Verlag, 2008. 

[Marwala, 2009] T Marwala. Computational Intelligence for Missing Data Imputation, Estimation, and 

Management: Knowledge Optimization Techniques. Hershey-New York: Information Science 

Reference, 2009. 

[Hathaway, 2001] R.J. Hathaway, J.C Bezdek. Fuzzy c-means clustering of incomplete data. IEEE Trans. on 

Systems, Man, and Cybernetics, 31, №5, 2001, P. 735-744. 

[Klawonn, 2006] F. Klawonn. Reducing the Number of Parameters of a Fuzzy System Using Scaling 

Functions. Soft Computing 10, 2006, P 749-756 

[Bezdek, 1981] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. – N.Y.: Plenum, 

1981. 

[Bodyanskiy, 2012] BodyanskiyYe., Shafronenko A., Volkova V. Adaptive clustering of incomplete data using 

neuro-fuzzy Kohonen network. In “Artificial Intelligence Methods and Techniques for Business and 

Engineering Applications” – Rzeszow-Sofia: ITHEA, 2012. – P. 287-296. 

[Bodyanskiy, 2013] BodyanskiyYe., Shafronenko A., Volkova V. Adaptive fuzzy probabilistic clusrering of 

incomplete data. Int.J. Information Models and Analysis. – 2013. – 2. - №2. – P. 112-117. 

[Bodyanskiy, 2013] BodyanskiyYe., Shafronenko A., Volkova V. Neuro fuzzy Kohonen network for 

incomplete data clustering using optimal completion strategy// Proc. East West Fuzzy Coll., 20th Zittau 

Fuzzy Coll. – Zittau / Goerlitz: HS, 2013. – P. 214 – 223. 

[Kohonen, 1995] T. Kohonen. Self-Organizing Maps. Berlin: Springer-Verlag, 1995. 

[Dave, 1997] Dave R.N., Krishnapuram R. Robust clustering methods: A unified view// IEEE Trans. on Fuzzy 

Systems. – 1997. – 5. - №2. – P.270-293. 

[Bodyanskiy, 2005] BodyanskiyYe., Gorshkov Ye., Kokshenev I., Kolodyazhniy V. Robust recursive fuzzy 

clustering algorithms//Proc. East West Fuzzy Coll. – Zittau/Goerlitz: HS, 2005. – P. 301-308. 

[Bodyanskiy, 2005] BodyanskiyYe. Computational intelligence techniques for data analisis. – Lectures Notes 

on Informatics Vol. P. – 72. – Bonn: GI, 2005. – P. 15-36. 

[Kokshenev I., 2006] Kokshenev I., BodyanskiyYe., Gorshkov Ye., Kolodyazhniy V. Outlier resistant 

recursive fuzzy clustering algorithm / In “Computational Intelligence: Theory and Application”. – Ed. by 

B.Reusch-Advances in Soft Computing, Vol. 38. – Berlin-Heidelberg: Springer-Verlag, 2006. – P. 647-

652. 

[Keller, 2005] L. Keller, R. Krishnapuram, N.R. Pal. Fuzzy Models and Algorithms for Pattern Recognition 

and Image Processing. – N.Y.:Springer Science + Business Media, Inc., 2005. 

[Sepkovski, 1974] Sepkovski J.J. Quantified coefficients of association and measurement of similarity // J. 

Int. Assoc. Math. – 1974. – 6. – №2. – Р. 135-152. 

[Klawonn, 1998] F. Klawonn, A. Keller. Fuzzy Clustering with Evolutionary Algorithms. Intelligent Systems 

13, 1998, P. 975-991. 



COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 43 

 

Authors' Information 

Yevgeniy Bodyanskiy – Professor, Dr. – Ing. habil., Scientific Head of Control Systems 

Research Laboratory, Kharkiv National University of Radio Electronics, 14 Lenin Ave., 

Office 511, 61166 Kharkiv, Ukraine; e-mail: bodya@kture.kharkov.ua 

Major Fields of Scientific Research: Artificial neural networks, Fuzzy systems, Hybrid 

systems of computational intelligence 

Alina Shafronenko –Ph.D. student in Artificial Intelligence dept., Kharkiv National 

University of Radio Electronics, 14 Lenin Ave., Office 517, 61166 Kharkiv, Ukraine;  

e-mail: alinashafronenko@gmail.com 

Major Fields of Scientific Research: neural networks, neural network processing of data 

with missing values, fuzzy clustering, clustering of data 




