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Abstract: The decomposition algorithms for solving specific Traveling Salesman Problems (TSPs) are 

presented. The test instances are based on the national geographic data and range in size from 9,847 cities 

in Japan to 115,475 cities in the USA. The proposed algorithms have a few stages: partitioning of the input 

set of points into small subsets, finding the partial high quality solutions, merging them into the whole initial 

solution, and optimization the final solution. Experimental results prove the efficiency of the proposed 

algorithms. Developed methods provide high quality solutions for large-scale TSP within close to the linear-

logarithmic computational complexity. 
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Introduction 

The Travelling Salesman Problem (TSP) is extensively applied in transportation systems, automated design, 

testing and manufacturing of integrated circuits and printed circuit boards, X-ray crystallography and many 

other fields. The TSP is referred to the class of NP-hard combinatorial problems due to its factorial 

computational complexity, which unables obtaining exact solutions for large-scale problems within a 

reasonable runtime. 

The TSP research began in the 50s of the previous century. In 1954 Dantzig, Fulkerson and  Johnson 

defined the TSP as a discrete optimization problem and proposed a branch-and-bound method, which 

provides finding the optimal solution [Dantzig, 1954]. They solved an instance with 49 points and proved that 

no other route could be shorter. Flood [Flood, 1956] was one of the first scientists who introduced heuristic 

method for the problem. Lin and Kernighan devised one of the most efficient heuristic methods [Lin, 1973]. 

In 1972 Karp substantiated the NP-completeness of the problem [Karp, 1972]. The problem was also studied 

by many other researchers [Papadimitriou, 1977, Christofides, 1979, Reinelt, 1994, Johnson, 2002].  

The studies by Applegate and others focused on finding the optimal solutions [Applegate, 1995, 1999, 2003, 

2006, 2009]. They developed the "Concorde" software for providing exact solution to the problem. Recently 

Helsgaun has improved the classic version of the Lin-Kernighan method (LKH), which is considered as the 

best heuristic method so far [Helsgaun, 1998, 2006]. 

The Travelling Salesman Problem is formulated as follows: given is a set of points P, described by the their 

coordinates P={p1, p2, …, pN}, pi=(xi, yi) for i  {1, 2, …, N};             

and metric dist: P x P  R on the set P, for instance: 

RE: distE(pi, pj) = 22 )()( jiji yyxx  (euclidean metrics),  

or RO:  distO(pi, pj) = |||| jiji yyxx  (orthogonal metrics), i, j  {1, 2, …, N}.          



226 ITHEA 

 

 

The problem consists in finding the closed route M (Hamiltonian cycle), which visits all points of the set P 

and has the minimum length:  len M  min, where  

len M  =  



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i

dist(mi, mi+1) + dist(mN, m1),                   (1) 

is the function of route length M = <m1, m2, …, mN >, i,j [mi, mjP, mi≠mj], |M | = N. 

Function fquality is used to measure the quality of the solution: 
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where M* is the optimal solution. 

When M* is  minimum length route: len M   len M*, and  fquality (M, M*)  0. 

Given fquality (M, M*) = 0 the route M (problem solution) is considered as an optimal, otherwise it is a 

suboptimal. The smaller function fquality (M, M*) value is, the closer to the optimal the problem solution is.  

When the optimal problem solution (route M*) is not given, the quality function f’quality  for problem solution 

(route M) is applied, which for the given set of point P instead of optimal route length uses values of Held-

Karp lower bound [Held, 1970, 1971, 1974]: 
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where HKbound is value of Held-Karp lower bound for the set of points P. The smaller the value of function 

fquality is, the better the solution M is obtained. 

When the optimal problem solution (route M*) and the value of Held-Karp lower bound are not given, a 

compare function with the best known solution Mknown found by the existing methods is used in order to 

estimate quality. If fcompare (M, Mknown) < 0, the solution M is considered as the better comparatively with 

existing known one.  

There are N! different alternative routes (solutions) via the given set of points P, and finding the optimal route 

can be either through the search of all possible options, that for the large-scale problems is impossible, 

either by branch and bound method, which also requires considerable computational cost.  

Despite the fact that the general number of possible routes is finite, even advanced or future 

supercomputers are not able to conduct such search for many thousands or larger number of points. 

Therefore, many contemporary research works are focused on finding the suboptimal solutions for 

reasonable time, which are close to the optimal. 

Decomposition and finding initial solution 

The solving process involves the following main stages:    

1) partitioning of the input set P into set U = {U1, U2, …, UK} with K subsets: P = U1 UU2 U … UUK ,  

Ui∩Uj = 0, Dmin ≤ |Ui| ≤ Dmax, where Dmin  and Dmax – respectively the minimum and maximum  

number of points in the subsets; 

2) selection of the initial subset U1 and finding its TSP solution (route M1); 

3) sequential extention of existing in i-step solution Mi  by merging it with the partial solution Mi+1 for the 

adjacent subset Ui+1 of points.  New solution Mi+1  is created; 
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4) continuation of the previous procedure until the inclusion of all points of set P into solution M0 that is 

considered as an initial solution.    

In order to extend for the (i+1)-step solutions Mi we consider the two subsets of points: Ui (all previous 

points) and additional Ui+1, that have overlapping Ui,i+1 = Ui∩Ui+1. The numbers of points in the set Ui+1 and 

points in the set Ui,i+1 are the method’s parameters which affects the quality of solution and running time. 

Boundary entry and exit points are defined for the set Ui+1. The rest part of the route Mi, which is not included 

in the set Ui+1 is replaced by the fixed edges of the zero length.  

With the help of the chosen method the TSP solution Mi+1 for the points within the set Ui+1 is found. A new 

route Mi+1 is formed by the route Mi+1 and segments of the route Mi, as a result of merging of the solutions 

in the subsets Ui and Ui+1 (Fig. 1).  

The procedure of the solutions’ merging in the subsets continues till all subsets of the set U are united. The 

resulting route, covering all points of the set P, is viewed as the initial solution M0  of the problem.  

 

Fig. 1. Solution extension process 

There are a number of algorithms of selecting the initial subset and subsequent subsets for solution 

extending. For example, from the left to the right merging of subsets, or alternatively, zigzag, spirally from 

some corner or center etc [Bazylevych, 2012].  
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Solution optimization 

The results of experiments show that applying the extension method allows finding the initial route M0  which 

on average 0,2-2% exceeds the length of the optimal one. It is required to use optimization methods to 

improve its quality. The reduction of the length of the route M0  is provided through its iterative reduction in 

the certain Local Optimization Areas (LOA).  

The method of optimization [Bazylevych, 2008, 2009] have the following features: 

• size of the optimization area – the number of its points; 

• size of the overlapping area – the number of points of the intersection area of two or more 

adjacent optimization areas; 

• strategy (sequence, or direction) of optimization; 

• basic method - the known method used for the TSP in a given LOA. 

For the solution optimization the certain LOA is selected. In case of route length reduction, this area is 

replaced with a new one. The result is the route M1, where len M1 < len M0. The process is repeated for all 

LOAs until all points of the route M0 are reviewed.  

The sequence of routes M0, M1, M2, …, Mk, is obtained, where len Mi+1 < len Mi
  for i{0, 1, …, k}, and k is 

the number of area replacements on the route M0 for shorter ones. Complete optimization process can be 

repeated several times until the length stops changing or the changes are insignificant.  

The results of experiments prove that with the LOA size increase the quality of the solution improves, but 

computation time also increases. The quality also depends on the selected basic method. We recommend 

applying efficient Lin-Kernighan or Lin-Kernighan-Helsgaun methods.  

Delaunay triangulation based optimization 

This method is aimed to decrease the length of the route M0  by sequential “scanning” the different LOAs 

along the initial route including also not only the points belonging to this route segment, but also points of 

other segments, which may be far away from this route segment, but close geometrically.  

The initial route M0 is divided into set of segments (LOAs) S = {S1, S2, …, Sr}, each of which has given 

number D of points (its size), and every two adjacent LOAs have the overlapping area which given number 

C of points (its size). The third parameter of the method is the Depth of the LOA (Fig. 2). 

The set of points P is triangulated by the Delaunay algorithm [Guibas, 1985], obtaining the set of triangles 

T={t1, t2, …, tw}, |T|=w, w ≈ 3N, every of which is described by their points  ti=(pi1, pi2, pi3); pi1, pi2, pi3 P  for  i 

 {1, 2, …, w}. At the first step we choose an arbitrary point on the existed Mi road and spread around it the 

waves in triangles until the resulting region (LOA) includes the desired D number of points (dot line in the 

Fig. 3a). At the second step (Fig. 3b) we eliminate all pieces of existing road Mi  and replace it external 

pieces (dashed line outside of  LOA in the Fig. 3a) by fictitious pieces of zero length (continuous line beyond 

the LOA). At the third step (Fig. 3c) we solve the TSP in selected LOA. Finally, at the last step (Fig. 3d), the 

external fictitious pieces are replaced by the real ones (dashed line). 

The replacement of the segments Si (i= 1,…, r) continue until the optimization of all areas of the route M0. As 

a result, the route M1 is obtained, which is considered as optimized. The computational complexity of the 

optimization method is O(N log N + KD2,2), where K is the number of LOAs of optimization. Since the value D 
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is constant, K is the linear function of N and K≪ N, the computational complexity is O(N log N + K) ≈ 

O(N log N). 

 

 

Fig. 2. Delaunay triangulation based optimization method and its features: size and depth 

 

Fig. 3. Steps of replacement of route areas for shorter ones using optimization by route scanning method 

with Delaunay triangulation 

Experimental results 

Investigated how the parameters of optimization affect on quality of the solution optimization. The problem 

ch71009 was chosen for testing [National TSPs]. Initial route, 0,53% longer than the current best solution, 

Optimization area 

Depth=1 

Depth=2 

a) b) c) d) 

Mi Mi+1 LOA 
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was obtained by solution extending method [Bazylevych, 2012]. The following parameters were investigated: 

size of the LOA and overlapping. The size of the LOA varied from 100 to 2000 points, overlapping value 

varied from 10% to 80%. Test were performed on 3,5 GHz CPU. Table 1 provides the quality and running 

time of solution optimization.  

The set of test instances, based on the national geographic data were chosen [National TSPs]. They vary in 

size from 9,847 cities in Japan to 115,475 cities in the USA (Fig. 4). The solving algorithm had a few stages: 

partitioning of the input set of points into small subsets, finding the initial solution, and optimization phase. 

Table 2 provides the results of finding solutions for test instances using the proposed decomposition and 

optimization algorithms. 

   

 

               

    

 

 

      Fig. 4. Test instances: a) China (71009 points), b) Finland (10639), c) Japan (9847),  

d) Italy (16862), e) Sweden (24978), f) the USA (115475) 

The following pictures show the comparison in some areas of the route between the initial route and the 

optimized one. In some cases, the optimized route has no “inefficient” areas with long edges (Fig. 5). Also 

there are some changes in “global” route (Fig. 6). Figure 7 also shows some changes of the route segments. 

a) b) 

c) d) 

e) f) 
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Table 1. Quality (in %) and runtime (in seconds) of the optimized solutions (ch71009) 

              Size of LOA 
 
Overlapping 100 500 1000 1500 

10% 
 

0,36% 
 3,3s 

0,27% 
4,7s 

0,24% 
6,7s 

0,17% 
8,4s 

30% 
 

0,29% 
4,5s 

0,30% 
6,2s 

0,19% 
7,6s 

0,13% 
9,9s 

40% 
 

0,27% 
4,9s 

0,26% 
6,9s 

0,14% 
10,3s 

0,13% 
11,8s 

80% 
 

0,26% 
13,8s 

0,19% 
19,8s 

0,08% 
26,4s 

0,10% 
31,5s 

 

 

      Fig. 5. Comparison of some segments of initial route and the optimized route (long edge) 

 

 

      Fig. 6. Comparison of some segments of initial route and the optimized route (optimized more “globally”) 
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      Fig. 7. Comparison of some segments of initial route and the optimized route 

 

Table 2. Experimental results 

Test problem Number of points Time, minutes Quality 

ch71009, China 71009 50,7 0,07% 

fi10639, Finland 10639 10,7 0,05% 

it16862, Italy 16862 15,9 0,02% 

ja9847, Japan 9847 9,5 0,02% 

sw24978, Sweden 24978 22,5 0,06% 

usa115475, USA 115475 85,8 0,08% 

Conclusion 

New efficient decomposition and optimization methods, based on Delaunay triangulation, have been 

investigated for solving the large-scale travelling salesman problem. The computational complexity is close 

to linear-logarithmic. The problem is solved in several stages: partitioning the input set of points into subsets 

of limited sizes (≈ 800-2000 points); receiving the initial solution by merging partial solutions and its 

improvement by the developed optimization method. Methods provide at most 0.08% deviation from the best 

known solutions of the investigated problems of national TSPs and require much less time in comparison 

with the best existing heuristic or exact methods.  

The work was performed as part of the project that has been partially funded by the State Agency for 

Science, Innovation and Informatics Implementation of Ukraine.  

Bibliography 

[Applegate, 1995] D. Applegate, R. Bixby, V. Chvátal V, W. Cook. Finding Cuts in the TSP // DIMACS 

Technical Report 95-05. – Rutgers University. – 1995. 

[Applegate, 1999] D. Applegate, R. Bixby, V. Chvátal V, W. Cook. Finding Tours in the TSP // Technical 

report 99885, Research Institute for Discrete Mathematics. – Universität Bonn. – 1999. 



COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 233 

 

[Applegate, 2003] D. Applegate, R. Bixby, V. Chvátal V, W. Cook. Implementing the Dantzig-Fulkerson-

Johnson Algorithm for Large Traveling Salesman Problems // Mathematical Programming (2003). – 

(Series B) 97. – pp. 91-153. 

[Applegate, 2006] D. Applegate, R. Bixby, V. Chvátal V, W. Cook. The Traveling Salesman Problem – 

A Computational Study // Princeton Series in Applied Mathematics. – Princeton University Press. – 

2006. 

[Applegate, 2009] D. Applegate, R. Bixby, V. Chvátal V, W. Cook, D. Espinoza, M. Goycoolea, K. Helsgaun. 

Certification of an Optimal TSP Tour Through 85,900 Cities // Operations Research Letters. – 37 

(2009). – pp. 11—15. 

 [Bazylevych, 2008] R. Bazylevych, R. Kutelmakh, B. Prasad, L. Bazylevych. Decomposition and Scanning 

Optimization Algorithms for TSP // Proceedings of the International Conference on Theoretical and 

Mathematical Foundations of Computer Science. – Orlando, USA. – 2008. – pp. 110-116. 

[Bazylevych, 2009] R. A. Bazylevych, B. Prasad, R. Kutelmakh, R. Dupas, L. Bazylevych. A Decomposition 

Algorithm for Uniform Traveling Salesman Problem / Bazylevych R., // Proceedings of the 4th Indian 

International Conference on Artificial Intelligence. – Tumkur, India. – 2009. – pp. 47-59. 

[Bazylevych, 2009] R. Bazylevych, R. Kutelmakh. Optimization of TSP solutions by sequential scanning 

method // Visnyk of Lviv Polytechnic National University. – 2009. – № 638: “Computer sciences and 

information technologies”. – pp. 254-260 (In Ukrainian). 

[Bazylevych, 2012] R.P. Bazylevych, M. Palasinski et al. “Decomposition methods for large-scale TSP”. In 

book: G. Setlak, M. Alexandrow, K. Markow. “Artificial intelligence methods and techniques for 

business and engineering application”. ITHEA, Rzeszow–Sofia, 2012, pp. 148 – 157. 

 [Christofides, 1979] N. Christofides. The Traveling Salesman Problem // Combinatorial Optimization. 

N. Christophides, A. Mingozzi, P. Toth and C. Sandi. Eds. – John Wiley and Sons, New York. – 1979. 

[Dantzig, 1954] G. Dantzig, R. Fulkerson, S. Johnson. Solution of a Large-Scale Traveling-Salesman 

Problem // Operations Research. – 1954. – Vol. 2. – pp. 393-410. 

[Flood, 1956] M. Flood. The traveling-salesman problem // Oper. Res. – 1956. – N. 4. – pp. 61-75. 

[Guibas, 1985] L. Guibas, J. Stolfi. Primitives for the manipulation of general subdivisions and the 

computation of Voronoi // ACM Transactions on Graphics (TOG) . – 1985. – Volume 4, Issue 2. – 

pp. 74-123. 

[Held, 1970] M. Held, R.M. Karp. The Traveling Salesman Problem and Minimum Spanning Trees // 

Operations Research. – 1970. – Vol. 18. – P. 1138–1162. 

[Held, 1971] M. Held, R.M. Karp. The Traveling Salesman Problem and Minimum Spanning Trees: part II // 

Mathematical Programming. – 1971. – Vol. 1. – P. 6-25. 

[Held, 1974] M. Held, P. Wolfe, H.P. Crowder. Validation of subgradient optimization // Mathematical 

Programming. – 1974. – Vol. 6. – P. 62-88. 

[Helsgaun, 1998] K. Helsgaun. An Effective Implementation of the Lin–Kernighan Traveling Salesman 

Heuristic // Datalogiske Skrifter (Writings on Computer Science). – 1998. – No. 81. – Roskilde 

University. 

[Helsgaun, 2006] K. Helsgaun. An Effective Implementation of k-Opt Moves for the Lin–Kernighan TSP 

Heuristic // Datalogiske Skrifter (Writings on Computer Science). – 2006. – No. 109. – Roskilde 

University. 

http://www2.isye.gatech.edu/~wcook/papers/proof.pdf


234 ITHEA 

 

 

[Karp, 1972] R. Karp. Reducibility among combinatorial problems // In Raymond E.Miller and James 

W.Thatcher, editors, Complexity of Computer Computations. – 1972. – Plenum Press, New York. – 

pp. 85-103. 

[Lin, 1973] S. Lin, B.W. Kernighan. An Effective Heuristic Algorithm for the Traveling-Salesman Problem // 

Operations Research. – 1973. – Vol. 21, No. 2. – pp. 498-516. 

[National TSPs] http://www.math.uwaterloo.ca/tsp/world/countries.html 

 [Papadimitriou, 1977] C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete // 

Theoret. Comput. Sci. – 1977. – No. 4. – pp. 237-244. 

[Reinelt, 1994] G. Reinelt. The Traveling Salesman Problem: Computational Solutions for TSP Applications 

// Lecture Notes in Computer Science. – 840, Springer-Verlag. – Berlin. – 1994. 

Authors' Information 

 

Roman Bazylevych – Full Professor, Ph.D., D.Sc, Mathematics and Computer Science 

Foundations, University of Information Technology and Management in Rzeszow, Poland and  

Software Engineering Department, Lviv Polytechnic National University,  Ukraine;  

e-mail:  rbaz@polynet.lviv.ua 

Major Fields of Scientific Research: Computer Science, Design Automation, Algorithms, 

Combinatorial Optimization 

 

Marek Pałasiński – Prof. nadzw. dr.hab., Mathematics and Computer Science Foundations, 

University of Information Technology and Management in Rzeszow, Poland  

e-mail:  mpalasinski@wsiz.rzeszow.pl 

Major Fields of Scientific Research: Theoretical computer science, Theory of algorithms, Graph 

theory, Data mining and Algebraic logic 

 

Roman Kutelmakh – Assistant Professor, Ph.D., Software Engineering Department, Lviv 

Polytechnic National University, Ukraine; e-mail: rkutelmakh@polynet.lviv.ua 

Major Fields of Scientific Research: Software technologies, Combinatorial Optimization, Algorithm 

design, Vehicle Routing Problems 

 

Bohdan Kuz – Assistant Professor, Software Engineering Department, Lviv Polytechnic National 

University, Ukraine; e-mail: bohdankuz@gmail.com 

Major Fields of Scientific Research: Software technologies, Combinatorial Optimization 

 

http://www.math.uwaterloo.ca/tsp/world/countries.html
mailto:rkutelmakh@ua.fm



