
Natural Language Addressing

113

5 Experiments for NL-storing of small datasets

Abstract

In this chapter we will present several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of small size datasets which contain up to one hundred

thousands of instances.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two

regularities of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

This chapter starts with introduction of the idea of knowledge representation. Further in the

chapter three experiments with small size datasets are outlined: for NL-storing of dictionaries,

thesauruses, and ontologies. Presentation of every experiment starts with introductory part aimed to

give working definition and to outline state of the art in storing concrete structures.

We start with analyzing the easiest one: NL-storing dictionaries. After that, NL-storing of

thesauruses will be analyzed. An experiment with WordNet thesaurus and program WordArM based

on NL-addressing will be discussed.

At the end, a special attention will be given to NL-storing ontologies. This part of the chapter

begins with introducing the basic ontological structures as well as the corresponded operations and

tools for operating with ontologies. Further, NL-storing models for ontologies will be discussed and

experiments with OntoArM program for storing ontologies based on NL-addressing will be outlined.

5.1 Knowledge representation

In a letter written to Philip Jourdain in 1914, Gottlob Frege had written:

“Let us suppose an explorer travelling in an unexplored country sees a high snow-

capped mountain on the northern horizon.

By making inquiries among the natives he learns that its name is 'Aphla'. By sighting

it from different points he determines its position as exactly as possible, enters it in a map, and

writes in his diary: 'Aphla is at least 5000 meters high'.

Experiments for NL-storing of small datasets

114

Another explorer sees a snow-capped mountain on the southern horizon and learns

that it is called Ateb. He enters it in his map under this name.

Later comparison shows that both explorers saw the same mountain. Now the

content of the proposition 'Ateb is Aphla' is far from being a mere consequence of the

principle of identity, but contains a valuable piece of geographical knowledge. What is stated

in the proposition 'Ateb is Aphla' is certainly not the same thing as the content of the

proposition 'Ateb is Ateb'.

Now if what corresponded to the name 'Aphla' as part of the thought was the

reference of the name and hence the mountain itself, then this would be the same in both

thoughts. The thought expressed in the proposition 'Ateb is Aphla' would have to coincide

with the one in 'Ateb is Ateb', which is far from being the case. What corresponds to the name

'Ateb' as part of the thought must therefore be different from what corresponds to the name

'Aphla' as part of the thought. This cannot therefore be the reference which is the same for

both names, but must be something which is different in the two cases, and I say accordingly

that the sense of the name 'Ateb' is different from the sense of the name 'Aphla'.

Accordingly, the sense of the proposition 'Ateb is at least 5000 meters high' is also

different from the sense of the proposition 'Aphla is at least 5000 meters high'. Someone who

takes the latter to be true need not therefore take the former to be true. An object can be

determined in different ways, and every one of these ways of determining it can give rise to a

special name, and these different names then have different senses; for it is not self-evident

that it is the same object which is being determined in different ways.

We find this in astronomy in the case of planetoids and comets. Now if the sense of

a name was something subjective, then the sense of the proposition in which the name occurs,

and hence the thought, would also be something subjective, and the thought one man connects

with this proposition would be different from the thought another man connects with it; a

common store of thoughts, a common science would be impossible.

It would be impossible for something one man said to contradict what another man

said, because the two would not express the same thought at all, but each his owns.

For these reasons I believe that the sense of a name is not something subjective

(crossed out: in one's mental life), that it does not therefore belong to psychology, and that it is

indispensable” [Frege, 1980].

What is important in this example is [Ivanova et al, 2013c]:

― The names Ateb and Aphla refer different parts of the same natural object (mountain, let

call it Pirrin);

― The position of the referred object (mountain) is fixed by any artificial system

(geographical co-ordinates, address) which is another name of the same object;

― The names and the address correspond one to another and both to the real object but

without the explorer’s map, respectively – the explorer’s diary, it is impossible to restore

the correspondence;

Natural Language Addressing

115

― At the end, the names Ateb and Aphla are connected hierarchically to the name Pirrin

and the relations are:

� Aphla is_a_South_Side_of Pirrin;

� Ateb is_a_North_Side_of Pirrin.

The last case forms a simple vocabulary (Table 23):

Table 23. A simple vocabulary

name definition

Aphla The South Side of Pirrin mountain

Ateb The North Side of Pirrin mountain

Pirrin A mountain in the unexplored country with co-ordinates (x,y)

In addition, all cases given above form a simple ontology with four concepts which may be

represented by a graph (Figure 35):

 is_an_address_of

geographical co-ordinates Pirrin

 is_a_South_Side_of is_a_North_Side_of

Aphla Ateb

Figure 35. A simple ontology

The same information may be represented by a table (Table 24):

Table 24. A simple ontology

object is_a_South_Side_of is_a_North_Side_of is_an_address_of

Pirrin Aphla Ateb co-ordinates

What vocabularies, taxonomies, thesauruses, and ontologies, all have in common are

[Pidcock & Uschold, 2012]:

― They are approaches to help structure, classify, model, and or represent the concepts and

relationships pertaining to some subject matter of interest to some community;

― They are intended to enable a community to come to agreement and to commit to use the

same terms in the same way;

Experiments for NL-storing of small datasets

116

― There is a set of terms that some community agrees to use to refer to these concepts and

relationships;

― The meaning of the terms is specified in some way and to some degree;

― They are fuzzy, ill-defined notions used in many different ways by different individuals

and communities.

The major differences that distinguish these approaches [Pidcock & Uschold, 2012]:

― How much meaning is specified for each term?

― What notation or language is used to specify the meaning?

― What is the thing for? Taxonomies, thesauruses, and ontologies have different but

overlapping uses.

At the end, some additional information may be connected to the names. For instance, it may

be the type of mountain, minerals found, some photos, textual descriptions, etc. All such information

is connected to names and has to be accessed by names as keywords or paths to it, i.e. its computer

representation has to be organized using corresponded pointers, indexes of keyword, etc.

In this case the concept “knowledge representation” is used. As we have seen above, the

ontologies are useful approach for knowledge representation, which is understandable for humans as

well as for the specialized software.

Knowledge representation is closely connected to data models, i.e. the information structures

used for organizing the information in the internal or external computer memory. In other words,

knowledge representation is depended on the storing patterns and program tools for accessing data.

Below in this chapter and in the next chapter, storing of knowledge, represented by

structured and semi-structured data sets, will be discussed from point of view of using the NL-

addressing and NL-ArM for this purpose. Results from provided experiments will be analyzed.

In this chapter we will present several experiments aimed to show the possibilities of NL-

addressing to be used for NL-storing of small size datasets which contain up to one hundred thousands

of instances.

The experiments were provided at PC SONY Vaio, with Intel® Core2 Duo CPU T9550 @

2.66GHz 2.67GHZ, RAM 4.00 GB, 64-bit operating system Windows 7 Ultimate SP1.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two regularities

of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

5.2 Experiment for NL-storing dictionaries

Our first experiment is to realize a small multi-language dictionary based on NL-addressing.

For this purpose, we have taken data from the popular in Bulgaria “SA Dictionary” [Angelov, 2012].

SA Dictionary is a computer dictionary, which translates words from Bulgarian language to English

and vice versa.

Natural Language Addressing

117

For experiments we take a list of 23 412 words in English and Bulgarian with their

definitions in Bulgarian, stored in a sequential file with size of 2 410 KB.

The experimental program “WordArM” used for the experiments is specially designed for

storing dictionaries and thesauruses based on NL-addressing. It is outlined in the Appendix A.

 Definition of dictionary

For the purposes of this research, next definition of dictionary is appropriate:

Dictionary: a reference resource, in printed or electronic form, that consists of an alphabetical list

of words with their meanings and parts of speech, and often a guide to accepted pronunciation and

syllabification, irregular inflections of words, derived words of different parts of speech, and

etymologies [Collins, 2003]:

This definition is modeled by the construction:

<name> <definition>.

 Multi-language dictionary based on NL-addressing

For storing dictionaries we use simple model: the words (concepts) are used as paths to theirs

definitions stored in corresponded terminal containers.

The speed for storing, accessing, and size of the work memory and permanent archives are

given in Table 25.

Work memory is the memory taken for storing hash tables and service information during the

work of NL-ArM. Usually it has to be part of main computer memory. To analyze its real size in our

experiments, work memory is allocated as file.

Permanent archives are static copies of work memory (zipped files), aimed for long storing

the information. They have to be of small size and converting to and from expanded work memory

structures has to be quick (usually several seconds or minutes). For compressing of work memory we

use a separate archiving program.

Table 25. Experimental data for NL-storing of a dictionary

operation
number of
instances

total time in
milliseconds

average time for
one instance

work
memory

permanent
archive

NL-writing 23 412 22 105 0.94 ms
80 898 KB 5 938 KB

NL-reading 23 412 20 826 0.89 ms

The work memory taken during the work was 80 898 KB.

After finishing the work, occupied permanent compressed archive is 5 938 KB. This means

that the NL-indexing takes 5 102 KB additional compressed disk memory (the sequential file with

initial data is 2 410 KB and compressed by WinZip it is 836 KB).

Experiments for NL-storing of small datasets

118

To analyze work of the system, work memory was chosen to be in a file but not in the main

memory. In further realizations of WordArM, it may be realized as a part of main memory of

computer as:

― Dynamically allocated memory;

― File mapped in memory.

In this case, the speed of storing and accessing will be accelerated and used hard disk space

will be reduced.

The analysis of the results in Table 25 shows that the NL-addressing in this realization

permits access practically equal for writing and reading for all data.

The speed is more than a thousand instances per second.

Reading is possible immediately after writing and no search indexes are created.

5.3 Experiment for NL-storing thesauruses

The NL-storing model for vocabularies was simple because the one-one correspondence

“word-definition”.

The storing models for thesauruses are more complicated due to existing more than one

corresponded definitions for a given word (synonyms). Because of this, below we will outline and

analyze one such model – the storing model of WordNet thesaurus [WordNet, 2012].

The idea is to use NL-addressing to realize the WordNet lexical database and this way to

avoid recompilation of its database after every update.

The program used for the experiments is “WordArM” (see Appendix A).

 Definition of thesaurus

For the purposes of this research, the next definition of thesaurus is appropriate:

Thesaurus: a book or catalog of words and their synonyms and antonyms [YourDictionary, 2013].

A thesaurus is a networked collection of controlled vocabulary terms. This means that a

thesaurus uses associative relationships in addition to parent-child relationships. The expressiveness of

the associative relationships in a thesaurus varies and can be as simple as “correlated to terms” as in

term A is related to term B. The thesaurus has two kinds of links: broader/narrower term, which is

much like the generalization/specialization link, but may include a variety of others [Pidcock &

Uschold, 2012].

 WordNet thesaurus

 WordNet® is a large lexical database of English (http://WordNet.princeton.edu).

Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets),

each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and

Natural Language Addressing

119

lexical relations. The resulting network of meaningfully related words and concepts can be navigated

with the browser.

WordNet is freely and publicly available for download. WordNet's structure makes it a

useful tool for computational linguistics and natural language processing [Fellbaum et al, 1998;

Miller, 1995].

WordNet was created and is being maintained at the Cognitive Science Laboratory of

Princeton University under the direction of psychology professor George A. Miller. Development

began in 1985.

As of November 2012 WordNet's latest Online-version is 3.1 (announced on June 2011), but

latest released version is 3.0 (released on December 2006).

The 3.0 database contains 155 287 words organized in 117 659 synsets for a total of 206 941

word-sense pairs; in compressed form, it is about 12 megabytes in size [WordNet, 2012].

 WordNet system

The mathematical model of the WordNet is a graph V = (X, R), where X is the set of graph

nodes, and R is the set of edges between them.

The set X is divided into two disjoint subsets: X = X1  X2, X1  X2 =. The nodes from X1

correspond to the words and phrases, and nodes from X2 - to their meanings (interpretations). Each of

meanings correlates to one of the parts of speech: noun, verb, adjective or adverb.

The set of edges is also divided into two subsets which are not intersecting:

R = R1  R2, R1  R2 =. Edges of R1 connect the words with theirs meanings i.e. the elements X1

with elements X2. These edges represent relationships which belong to X1 x X2. Edges of R2 connect

"words with words" and "meanings with meanings”, i.e. represent relationships that belong to X1 x X1

and X2 x X2 respectively [Bashmakov, 2005]. Other types of relationships are defined by typification

of edges from R2.

Technically, the WordNet is an electronic thesaurus which defines a wide range of meanings

of words bounded together by semantic pointers. WordNet logical structure is shown in Figure 36.

In developing WordNet lexical database, it has been convenient to divide the work into two

interdependent tasks which bear a vague similarity to the traditional tasks of writing and printing a

dictionary [Fellbaum, 1998]:

― One task is to write the source files that contain the basic lexical data — the contents of

those files are the lexical substance of WordNet;

― The second task is to create a set of computer programs that would accept the source

files and do all the work leading ultimately to the generation of a display for the user.

The WordNet system falls naturally into four parts:

― The WordNet lexicographers’ source files;

― The software utility called “Grinder” aimed to convert lexicographers’ source files into

the WordNet lexical database;

― The WordNet lexical database;

― And the suite of software tools used to access the database.

Experiments for NL-storing of small datasets

120

Figure 36. Logical structure of the WordNet

WordNet’s source files are written by lexicographers. They are the product of a detailed

relational analysis of lexical semantics: a variety of lexical and semantic relations are used to represent

the organization of lexical knowledge.

The “Grinder” utility compiles the lexicographers’ files. It verifies the syntax of the files,

resolves the relational pointers, then generates the WordNet database that is used with the retrieval

software and other research tools. To build a complete WordNet database, all of the lexicographers’

files must be processed at the same time.

The main relation among words in WordNet is synonymy, as between the words “shut” and

“close” or “car” and “automobile”. Synonyms (words that denote the same concept and are

interchangeable in many contexts) are grouped into unordered sets (synsets). Each of WordNet’s

117 000 synsets is linked to other synsets by means of a small number of “conceptual relations”.

Additionally, a synset contains a brief definition (“gloss”) and, in most cases, one or more short

sentences illustrating the use of the synset members. Word forms with several distinct meanings are

represented in as many distinct synsets. Thus, each form-meaning pair in WordNet is unique

[WordNet, 2012].

Consider a representation of a synset of the word “accession” in the WordNet lexical

database:

00047131 04 n 02 accession 0 addition 0 001 @ 09536731 n 0000 |
something added to what you have already;
"the librarian shelved the new accessions";
"he was a new addition to the staff"

The number 00047131 is a unique identifier of the synset of the noun {accession, addition}.

The part of the record between the symbols "@" and "|" indicates that this synset is subordinated to the

synset with ID 09536731 which correspond to meaning "acquisition". The last part of the record (after

Natural Language Addressing

121

the symbol "|") is interpretation of synset and some examples of using the words included in the

synset.

From a software standpoint, this record requires a number of additional indexes for service

the access, which of course needs additional resources.

As an example, consider the information about the word "accession". As an answer to the

request for "accession", the WordNet system returns the following information (Figure 37):

The noun accession has 6 senses (no senses from tagged texts)
1. {13251723} <noun.process> accession#1 -- (a process of increasing by addition (as
to a collection or group); "the art collection grew through accession")
2. {13170404} <noun.possession> accession1#2 -- ((civil law) the right to all of that
which your property produces whether by growth or improvement)
3. {13082910} <noun.possession> accession#3, addition#4 -- (something added to
what you already have; "the librarian shelved the new accessions"; "he was a new
addition to the staff")
4. {07078650} <noun.communication> accession2#4, assenting#1 -- (agreeing with
or consenting to (often unwillingly); "accession to such demands would set a dangerous
precedent"; "assenting to the Congressional determination")
5. {05115154} <noun.attribute> entree#2, access#1, accession#5, admittance#1 --
(the right to enter)
6. {00232781} <noun.act> accession3#6, rise to power#1 -- (the act of attaining or
gaining access to a new office or right or position (especially the throne); "Elizabeth's
accession in 1558")

The verb accession has 1 sense (no senses from tagged texts)
1. {00989696} <verb.communication> accession#1 -- (make a record of additions to a
collection, such as a library)

Figure 37. Answer by WordNet system to a query for the word "accession"

 WordNet storing model

The WordNet database is in an ASCII format that is human- and machine-readable, and is

easily accessible to those who wish to use it with their own applications.

There are two main types of database files:

― Data file - contains all of the lexicographic data gathered from the lexicographers’ files

for the corresponding syntactic category, with relational pointers resolved to addresses in

data files;

― Index file - an alphabetized list of all of the word forms in WordNet for the

corresponding syntactic category.

WordNet stores information about words in four main data files and four main index files

(for nouns, verbs, adjectives and adverbs).

The index and data files are interrelated.

Experiments for NL-storing of small datasets

122

The data structure is the same in each of data files – one or more synsets are stored for every

word and the access is performed by the address of the first bytes of the synsets, which is apparently

given by an eight digit number beginning namely in this byte (Figure 38 and Figure 39). This value is

the unique identifier of the synset. It is its “relative address” from the beginning (first byte) of the file.

The synset data elements are separated by spaces. We should note that links to other synsets are given

again by the relative addresses.

13251723 22 n 01 accession 0 001 @ 13323403 n 0000 | a process of
increasing by addition (as to a collection or group); "the art collection grew
through accession"

13170404 21 n 01 accession 1 002 @ 13070995 n 0000 ;c 08338303 n

0000 | (civil law) the right to all of that which your property produces
whether by growth or improvement

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

07078650 10 n 02 accession 2 assenting 0 002 @ 07076600 n 0000 +

00795631 v 0102 | agreeing with or consenting to (often unwillingly);
"accession to such demands would set a dangerous precedent"; "assenting
to the Congressional determination"

05115154 07 n 04 entree 0 access 0 accession 0 admittance 0 003 @

05113619 n 0000 + 02426186 v 0401 ~ 05119817 n 0000 | the right
to enter

00232781 04 n 02 accession 3 rise_to_power 0 003 @ 00060914 n 0000 +

01989112 v 0101 + 02358456 v 0101 | the act of attaining or gaining
access to a new office or right or position (especially the throne);
"Elizabeth's accession in 1558"

Figure 38. Synsets of the word “accession” in WordNet data file for nouns

00989696 32 v 01 accession 0 002 @ 00990286 v 0000; c 00897092 n
0000 01 + 08 00 | make a record of additions to a collection, such as a
library

Figure 39. Synsets of the word “accession” in WordNet data file for verbs

What is important for us now is the algorithm of reaching the synsets.

There are four index files of WordNet (for nouns, verbs, adjectives and adverbs). They are

sorted in alphabetical order of words and for each word a special record is stored at separated line. Its

structure is clear: at the first place the word is given and, after some coded information, the relative

addresses of the corresponded synsets in corresponded data files age given (Figure 40 and Figure 41).

Natural Language Addressing

123

accession n 6 4 @ ~ + ; 6 0 13251723 13170404 13082910 07078650
05115154 00232781

Figure 40. Record for the word "accession" in the index of nouns

accession v 1 2 @ ; 1 0 00989696

Figure 41. Record for the word "accession" in the index of verbs

To reach all synsets of a word, firstly a binary search is made in all index files, the

corresponded relative addresses are collected and then system reads the synsets directly from the data

files.

Algorithmic complexity in this case is O(log(nn)+log(nv)+log(na)+log(nr)), where nn, nv, na

and nr are the quantities of nouns, verbs, adjectives and adverbs, respectively.

There is a second way to reach synsets. It is served by so called "sense index". This index is

also sorted, but for every word there exist as much records as number of synsets exists for given word

in all data files. For example, the word accession has seven records: six for its meanings as a noun and

one for its meaning as a verb. Each record contains only one relative address of a synset (Figure 42).

In this case, to reach all synsets of a word, firstly a binary search is made in the sense index

and the corresponded relative addresses are collected from all records for the word. Then, the system

reads the synsets directly from the data files.

Algorithmic complexity in this case is greater than O(log(n)), n= nn+nv+na+nr is the total

number of words in the database (nouns + verbs + adjectives + adverbs), because the words may be

repeated many times, and further work is needed to retrieve all occurrences of the word.

accession%1:04:03:: 00232781 6 0
accession%1:07:00:: 05115154 5 0
accession%1:10:02:: 07078650 4 0
accession%1:21:00:: 13082910 3 0
accession%1:21:01:: 13170404 2 0
accession%1:22:00:: 13251723 1 0
accession%2:32:00:: 00989696 1 0

Figure 42. Records for the word "accession" in the sense index

 Disadvantages of WordNet storing model

The WordNet storing model permits quick response of the system during its everyday using.

The (binary) search in four types sorted index files and one general sense index, using corresponded

hash tables, allows high speed of the search and, based on it, extracting the needed information via

direct access based on the relative addresses in the data files.

Many disadvantages of the WordNet organization are discussed in [Poprat et al, 2008]. Due

to importance of them, below we will include larger citations.

Experiments for NL-storing of small datasets

124

When the WordNet project started more than two decades ago, markup languages such as

SGML or XML were unknown. Because of this reason, a rather idiosyncratic, fully text-based data

structure for these lexicographic files was defined in a way to be readable and editable by humans —

and survived until today. This can really be considered as an outdated legacy given the fact that the

WordNet community has been so active in the last years in terms of data collection, but has refrained

from adapting its data formats in a comparable way to today’s specification standards.

There are two types of problems founded for the data format underlying the WordNet

lexicon and the software that helps building a WordNet file and creating an index for this file:

― First, WordNet’s data structure puts several restrictions on what can be expressed in a

WordNet lexicon. For example, it constrains lexical information to a fixed number of

homonyms and a fixed set of relations;

― Second, the data structure imposes a number of restrictions on the string format level.

If these restrictions are violated the WordNet processing software throws error messages

which differ considerably in terms of informativeness for error tracing and detection or even do not

surface at all at the lexicon builder’s administration level.

In addition, it seems that the length of a word is restricted to 425 characters and synsets are

only allowed to group up to 988 direct hyponymous synsets.

According to our experiences the existing WordNet software is hardly (re)usable due to

insufficient error messages that the software throws and limited documentation [Poprat et al, 2008].

In terms of the actual representation format of WordNet we found that using the current

format is not only cumbersome and error-prone, but also limits what can be expressed in a WordNet

resource [Poprat et al, 2008].

From our perspective this indicates the need for a major redesign of WordNet’s data

structure foundations to keep up with the standards of today’s meta data specification languages (e.g.,

based on RDF [Graves & Gutierrez, 2006], XML or OWL [Lungen et al, 2007]). We encourage the

reimplementation of WordNet resources based on such a state-of-the-art markup language (for OWL

in particular a representation of WordNet is already available [van Assem et al, 2006].

Of course, if a new representation format is used for a WordNet resource also the software

accessing the resource has to be adapted to the new format. This may require substantial

implementation efforts that we think are worth to be spent, if the new format overcomes the major

problems that are due to the original WordNet format [Poprat et al, 2008].

Finally, one more shortcoming of the WordNet database’s structure is that although all the

files are in ASCII, and are therefore editable, and in theory extensible, in practice this is almost

impossible.

The end user has access only to the static ("compiled") version of the database, which

couldn’t be extended and further developed. In addition, due to relative addresses that are used as

pointers, any change which cause alteration of the number of bytes in any data file makes it unusable

and it must be recompiled as well as the corresponded index files.

One of the Grinder’s primary functions is the calculation of addresses for the synsets in the

data files. Editing any of the database files would (most likely) create incorrect byte offsets, and would

thus derail many searching strategies. At the present time, building a WordNet database requires the

Natural Language Addressing

125

use of the Grinder and the processing of all lexicographers’ source files at the same time

[Fellbaum, 1998].

Let see a small example shown on Figure 43 - two variants of the synset of the word

“accession” from different compilations of the data file for nouns:

(a) Version of WordNet from August, 2012;

(b) An older version of WordNet from 2011 year, published in [Palagin et al, 2011].

The difference between relative addresses is visible on Figure 43.

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

а) version from the 2012 year

00047131 04 n 02 accession 0 addition 0 001 @ 09536731 n 0000 |

something added to what you have already; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

b) version from the 2011year

Figure 43. Synset the word "accession" from the data file for nouns

In the main, the WordNet database organization has the following important disadvantages:

1. Relative addressing is convenient for the computer processing, but it is difficult to be

used by the customer;

2. Manual creating of numerical addresses is impossible, and their use can be done only by

the special program;

3. The end user has access only to the static ("compiled") version of the database, which

couldn’t be extended and further developed;

4. Building the WordNet database requires the use of the Grinder and the processing of all

lexicographers’ source files at the same time;

5. Using the current format is not only cumbersome and error-prone, but also limits what

can be expressed in a WordNet resource.

We are going to experiment to realize WordNet lexical database without using relative

addresses as pointers and this way to avoid the pointed above limitations and recompilation of the

database after every update.

 Experiment to store WordNet by NL-addressing

The main source information of WordNet is published as lexicographer files.

The names of the WordNet lexicographer files and their corresponding file numbers are

listed in Table 26, along with a brief description of each file's content and corresponded number of

included instances (synsets).

The total number of instances (file records) is 117 871.

Experiments for NL-storing of small datasets

126

206 instances contain service information but not concepts’ definitions, so we have 117 665

instances for experiments, distributed in 45 thematically organized lexicographer files.

It is important to note that there is equal synsets in several lexicographer files. This has

matter when we integrate the 45 files in one source file for representing a thesaurus.

Table 26. WordNet lexicographer files

No.: Name Content
number of
instances

01 adj.all all adjective clusters 14435

02 adj.pert relational adjectives (pertainyms) 3661

03 adj.ppl participial adjectives 60

04 adv.all all adverbs 3621

05 noun.Tops unique beginner for nouns 51

06 noun.act nouns denoting acts or actions 6650

07 noun.animal nouns denoting animals 7514

08 noun.artifact nouns denoting man-made objects 11587

09 noun.attribute nouns denoting attributes of people and objects 3039

10 noun.body nouns denoting body parts 2016

11 noun.cognition nouns denoting cognitive processes and contents 2964

12 noun.communication nouns denoting communicative processes and contents 5607

13 noun.event nouns denoting natural events 1074

14 noun.feeling nouns denoting feelings and emotions 428

15 noun.food nouns denoting foods and drinks 2574

16 noun.group nouns denoting groupings of people or objects 2624

17 noun.location nouns denoting spatial position 3209

18 noun.motive nouns denoting goals 42

19 noun.object nouns denoting natural objects (not man-made) 1545

20 noun.person nouns denoting people 11088

21 noun.phenomenon nouns denoting natural phenomena 641

Natural Language Addressing

127

No.: Name Content
number of
instances

22 noun.plant nouns denoting plants 8159

23 noun.possession nouns denoting possession and transfer of possession 1061

24 noun.process nouns denoting natural processes 770

25 noun.quantity nouns denoting quantities and units of measure 1350

26 noun.relation nouns denoting relations between people or things or ideas 437

27 noun.shape nouns denoting two and three dimensional shapes 342

28 noun.state nouns denoting stable states of affairs 3544

29 noun.substance nouns denoting substances 2983

30 noun.time nouns denoting time and temporal relations 1028

31 verb.body verbs of grooming, dressing and bodily care 547

32 verb.change verbs of size, temperature change, intensifying, etc. 2383

33 verb.cognition verbs of thinking, judging, analyzing, doubting 695

34 verb.communication verbs of telling, asking, ordering, singing 1548

35 verb.competition verbs of fighting, athletic activities 459

36 verb.consumption verbs of eating and drinking 243

37 verb.contact verbs of touching, hitting, tying, digging 2196

38 verb.creation verbs of sewing, baking, painting, performing 694

39 verb.emotion verbs of feeling 343

40 verb.motion verbs of walking, flying, swimming 1408

41 verb.perception verbs of seeing, hearing, feeling 461

42 verb.possession verbs of buying, selling, owning 847

43 verb.social verbs of political and social activities and events 1106

44 verb.stative verbs of being, having, spatial relations 756

45 verb.weather verbs of raining, snowing, thawing, thundering 81

 TOTAL: 117871

Experiments for NL-storing of small datasets

128

Let see an example of two variants of the synset of the word "accession" (Figure 44):

(a) WordNet version and (b) NL-version.

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

a) WordNet version

accession 21 n 02 ; 0 addition 0 001 @ acquisition n 0000 | something added
to what you already have; "the librarian shelved the new accessions"; "he
was a new addition to the staff"

b) NL-version

Figure 44. WordNet and NL-versions of the synset of the word "accession"

This example gives idea to experiment using NL-addressing to realize the WordNet lexical

database without using relative addresses and this way to avoid the limitations and recompilation of

the database after every update.

For experiments we have used files from Table 26 as source in two variants:

1. All 45 files concatenated in one big file as thesaurus with more than one hundred

thousands of concepts.

2. Every file was assumed as different layer of WordNet ontology.

The fist case will be discussed below, and the second case will be outlined in the next

section. The program used for experiments in the first case is “WordArM” (see Appendix A). A

screenshot from the WordArM for the case of WordNet as thesaurus is shown at Figure 45. The results

are given in Table 27.

Figure 45. WordArM results for the case of WordNet as thesaurus

Natural Language Addressing

129

Table 27. Experimental data for storing WordNet as thesaurus

operation number of instances total time in milliseconds average time for one instance

writing 125 062 107 157 0.86 ms

reading 117 641 91 339 0.78 ms

work memory: 385 538 KB; permanent archive: 15 603 KB; source text: 1 333 KB

We receive practically the same results as for storing dictionaries.

The analysis of the results in Table 27 shows that the NL-addressing permits access

practically equal for writing and reading for all data. The speed is more than a thousand instances per

second. Reading is possible immediately after writing and no search indexes are created.

The work memory for hash tables and their containers taken during the work of WordArM

was 385 538 KB. To analyze work of the system, work memory was chosen to be in a file in the

external memory. In further realizations, to accelerate the speed and reduce of used disk space, the

work memory may be realized as part of main memory (as dynamically allocated memory or as file

mapped in memory).

After finishing the work, occupied permanent archive for compressed archive is 15 603 KB,

i.e. in this case the NL-indexing takes 14 270 KB additional compressed memory (the sequential file

with initial data is 1 333 KB).

 What we gain and loss using NL-Addressing for storing thesauruses?

The loss is additional memory for storing structures which serve NL-addressing. But the

same if no great losses we will have if we will build balanced search trees or other kind in external

indexing. It is difficult to compare with other systems because such information practically is not

published.

The benefit is in two main achievements:

1. High speed for storing and accessing the information.

2. The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

5.4 Experiment for NL-storing ontologies

Storing graphs and ontologies has one important aspect – the layers which correspond to

types of relations between nodes of graph or ontology [Ivanova et al, 2013e]. The example with

sample graph in previous chapter indicates that it is important to ensure possibility for multi-layer

representation. To make experiment with real data, we will use the WordNet as ontology and its 45

types of relations (given by its files of different types) we store as 45 layers. To provide experiments

in this case, we have realized program “OntoArM”. It is outlined in the Appendix A.

Experiments for NL-storing of small datasets

130

 Definition of ontology

For the purposes of this research, the next definition of ontology is appropriate:

Ontology: a rigorous and exhaustive organization of some knowledge domain that is usually

hierarchical and contains all the relevant entities and their relations [WordNet, 2012].

People use the word ontology to mean different things, e.g. glossaries & data dictionaries,

thesauruses & taxonomies, schemas & data models, and formal ontologies & inference. A formal

ontology is a controlled vocabulary expressed in an ontology representation language. This language

has a grammar for using vocabulary terms to express something meaningful within a specified domain

of interest. The grammar contains formal constraints (e.g. specifies what it means to be a well-formed

statement, assertion, query, etc.) on how a term in the ontology’s controlled vocabulary can be used

together.

People make commitments to use a specific controlled vocabulary or ontology for a domain

of interest. Enforcement of ontology’s grammar may be rigorous or lax. Frequently, the grammar for

"light-weight" ontology is not completely specified, i.e. it has implicit rules that are not explicitly

documented [Pidcock & Uschold, 2012].

The word “ontology” has been used to refer to all of the above things. When used in the

AI/Knowledge_Representation community, it tends to refer to things that have a rich and formal logic-

based language for specifying meaning of the terms. Both a thesaurus and taxonomy can be seen as

having a simple language that could be given a grammar, although this is not normally done. Usually

they are not formal, in the sense that there is no formal semantics given for the language. However,

one can create a model in UML and a model in some formal ontology language and they can have

identical meaning. It is thus not useful to say one is ontology and the other is not because one lacks a

formal semantics. The truth is: there is a fuzzy line connecting these things [Pidcock &

Uschold, 2012].

In 1992, Tom Gruber offers a formal description of concepts and relationships between

them, called "ontology", which is a basis for communication between agents.

Ontology is an explicit specification of a conceptualization. The term is borrowed from

philosophy, where Ontology is a systematic account of Existence [Gruber, 1993a].

People, organizations and software systems must communicate between and among

themselves. However, due to different needs and background contexts, there can be widely varying

viewpoints and assumptions regarding what is essentially the same subject matter. Each uses different

jargon; each may have differing, overlapping and/or mismatched concepts, structures and methods

[Uschold & Gruninger, 1996] stressed that "ontology is a unifying framework for the

different viewpoints and serves as the basis for:

― Communication between people with different needs and viewpoints arising from their

differing contexts;

― Inter-Operability among systems achieved by translating between different modeling

methods, paradigms, languages and software tools;

Natural Language Addressing

131

― System Engineering Benefits: In particular:

 Re-Usability: the shared understanding is the basis for a formal encoding of the

important entities, attributes, processes and their inter-relationships in the domain of

interest. This formal representation may be (or become so by automatic translation)

a re-usable and/or shared component in a software system;

 Reliability: A formal representation also makes possible the automation of consistency

checking resulting in more reliable software;

 Specification: the shared understanding can assist the process of identifying

requirements and defining a specification for an IT system. This is especially true

when the requirements involve different groups using different terminology in the

same domain, or multiple domains”.

John Sowa notes that "the art of ranking things in general and species is of no small

importance and very much assists our judgment as well as our memory. (...) This helps one not merely

to retain things, but also to find them. And those who have laid out all sorts of notions under certain

headings or categories have done something very useful" [Sowa, 2000].

The word “ontology” comes from the Greek “ontos” for being and “logos” for word. It is a

relatively new term in the long history of philosophy, introduced by the 19th century German

philosophers to distinguish the study of being as such from the study of various kinds of beings in the

natural sciences. The more traditional term is Aristotle’s word “category” (kathgoria), which he used

for classifying anything that can be said or predicated about anything [Sowa, 2000a].

In the literature on artificial intelligence, the "ontology" is a term used to describe formally

represented knowledge based on a conceptualization. It requires a description of a set of objects by

corresponded concepts and relationships between these concepts (knowledge).

The word ontology can be used and has been used with very different meanings attached to

it. Ironically, the ontology field suffered a lot from ambiguity. The Knowledge Engineering

Community borrowed the term “Ontology” from the name of a branch of philosophy some 15 years

ago and converted into an object: “ontology”. In the mid-90s philosophers “took it back” and began to

clean the definitions that had been adopted [Gandon, 2002].

Formally, the ontology consists of:

 Terms organized in taxonomy;

 Definitions of terms and attributes;

 Axioms and rules for inference.

The ontology formally can be described by the ordered triple [Palagin & Yakovlev, 2005;

Gavrilova, 2001; Palagin, 2006; Guarino, 1998]:

O = <X,R,F>,

where X, R, F are a finite sets accordingly:

― X is a set of concepts (terms) from the subject area;

― R is a set of relationships between the elements of X;

― F is a set of functions to interpret the X and/or R.

Classifications of ontologies from different points of view and based on different principles

are given in many publications [Bashmakov, 2005; Dobrov et al, 2009].

Experiments for NL-storing of small datasets

132

A formal classification scheme is given in [Guarino, 1998]. From its viewpoint: "ontology is

a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its ontological

commitment to a particular conceptualization of the world. The intended models of a logical language

using such a vocabulary are constrained by its ontological commitment. Ontology indirectly reflects

this commitment (and the underlying conceptualization) by approximating these intended models”

[Guarino, 1998].

To illustrate the usefulness of ontologies let consider an example given by Prof. Assunción

Gómez-Pérez from the Universidad Politechnika de Madrid, during a lecture on ECAI 98, presented in

[Gandon, 2002].

The general problem is to formulate a query over a mass of information and get an answer as

precise and relevant as possible. In her tutorial at ECAI 98, Prof. Pérez asked: "What is a pipe?"

Extending her example we can imagine three answers to this very same question (Table 28).

Table 28. Three notions behind the word "pipe"

A short narrow tube with a small

container at one end, used for

smoking e.g. tobacco.

A long tube made of metal or

plastic that is used to carry water

or oil or gas.

A temporary section of

computer memory that can link

two different computer

processes.

We have one term and three concepts; it is a case of ambiguity. The contrary is one concept

behind several terms, and it is a case of synonyms e.g. car, auto, automobile, motorcar, etc. These

trivial cases poses a serious problem to computerize systems that are not able the see these difference

or equivalence unless they have been made explicit to it.

Communication between people is based on an implicit consensus about concepts that are

used. For example, when discussing a document, people involved in the discussion implicitly implied

that they have a common conceptual consensus about the nature of the document. On a question about

"text", the answer "knows" that "text" means the “document”.

This basic knowledge is lacking in information systems based only on usual terms and text

search (by coincidence).

One possible approach is knowledge to be clearly formulated and presented in a logical

structure that can be used by automated systems. This is exactly the purpose of ontology: to capture

semantics and relationships of concepts we use, making it clear (explicit) and possibly encoded in

Natural Language Addressing

133

symbolic systems so as to retrieve and exchange between different agents, which in particular can be

computer systems.

In conclusion, we recall some of the generally accepted terms and their definitions that are

used with ontologies [Gruber, 1993; Guarino & Giaretta, 1995; Bachimont, 2000; Gandon, 2002]

(Table 29).

Table 29. Some commonly accepted concepts and definitions

Concepts Definitions

Notion - Something formed in the mind, a constituent of thought;
- It is used to structure knowledge and perceptions of the world;
- Principle, idea semantically evaluable and redeploy able.

A Concept - Notion usually expressed by a term (or more generally by a sign);
- The concept represents a group of objects or beings having shared
characteristics “t” that enable us to recognize them a forming and belonging
to this group.

A Relation - Notion of an association or a link between concepts usually expressed by a
term or a graphical convention (or more generally by a sign).

Ontology - “That branch of philosophy which deals with the nature and the
organization of reality”;
- A branch of metaphysics which investigates the nature and essential
properties and relations of all beings as such.

Formal Ontology - The systematic, formal, axiomatic development of the logic of all forms and
modes of being.

Conceptualization - An intentional semantic structure which encodes the implicit rules
constraining the structure of a piece of reality;
- It also denotes the action of building such a structure.

An Ontology - A logical theory which gives an explicit, partial account of a
conceptualization;
- The aim of ontologies is to define which primitives, provided with their
associated semantics, are necessary for knowledge representation in a given
context.

Ontological theory - A set of formulas intended to be always true according to a certain
conceptualization.

A Taxonomy - A classification based on similarities.

A Partonomy - A classification based on “part-of” relation.

 Representing and operations with ontologies

Traditionally, ontologies are built by highly trained knowledge engineers with the assistance

of domain specialists. It’s time-consuming and laborious task. Ontology tools also require users to be

trained knowledge representation and predicate logic.

Experiments for NL-storing of small datasets

134

There are several approaches for representing ontologies. An example of such approach is

using of XML. It is a popular markup language of metadata. With the development of the XML,

different definitions of metadata have been proposed such as Dublin Core [Weibel et al, 1998] and

ebXML [ebxml, 2012].

However, from the viewpoint of ontology, XML is not suited to describe the

interrelationships of resources [Gunther, 1998]. Therefore, W3C has suggested the “Resource

Description Framework” (RDF). There are several ontology languages like XML, RDF schema

RDF(S), DAML+OIL and OWL. Many ontology tools have been developed for implementing

metadata of ontology using these languages [Hertel et al, 2009].

Operations with ontologies are functions of the so called “middleware”. What is called

middleware is the layer implementing the access to the physical ontology data store.

Besides an inference mechanism, the access layer should provide functions for creating,

querying and deleting data in the store.

While adding data requires parsing and ideally a validation of the incoming ontology

sentences, querying the ontology store needs the implementation of some kind of query language as

well as an interpretation and a translation of this query language into calls to the physical storage.

Another important feature of this layer is the possibility to export ontology data to a file for

exchange with other systems [Hertel et al, 2009].

The operations with several ontologies are needed when one application uses multiple

ontologies, especially when using modular design of ontologies or when we need to integrate with

systems that use other ontologies.

We will summarize some of these operations. The terminology in this area is still not stable

and different authors may use these terms in a bit shifted meaning, and so the terms may overlap,

however, all of these operations are important for maintenance and integration of ontologies

[Obitko, 2007].

― Merging of ontologies means creation of a new ontology by linking up the existing ones.

Conventional requirement is that the new ontology contains all the knowledge from the

original ontologies, however, this requirement does not have to be fully satisfied, since

the original ontologies may not be together totally consistent. In that case the new

ontology imports selected knowledge from the original ontologies so that the result is

consistent. The merged ontology may introduce new concepts and relations that serve as

a bridge between terms from the original ontologies;

― Mapping from ontology to another one is expressing of the way how to translate

statements from ontology to the other one. Often it means translation between concepts

and relations. In the simplest case it is mapping from one concept of the first ontology to

one concept of the second ontology. It is not always possible to do such “one to one”

mapping. Some information can be lost in the mapping. This is permissible; however

mapping may not introduce any inconsistencies;

― Alignment is a process of mapping between ontologies in both directions whereas it is

possible to modify original ontologies so that suitable translation exists (i.e. without

losing information during mapping). Thus it is possible to add new concepts and

Natural Language Addressing

135

relations to ontologies that would form suitable equivalents for mapping. The

specification of alignment is called articulation. Alignment, as well as mapping, may be

partial only;

― Refinement is mapping from ontology A to another ontology B so that every concept of

ontology A has equivalent in ontology B, however primitive concepts from ontology A

may correspond to non-primitive (defined) concepts of ontology B. Refinement defines

partial ordering of ontologies;

― Unification is aligning all of the concepts and relations in ontologies so that inference in

ontology can be mapped to inference in other ontology and vice versa. Unification is

usually made as refinement of ontologies in both directions;

― Integration is a process of looking for the same parts of two different ontologies A and B

while developing new ontology C that allows to translate between ontologies A and B

and so allows interoperability between two systems where one uses ontology A and the

other uses ontology B. The new ontology C can replace ontologies A and B or can be

used as an inter-lingua for translation between these two ontologies. Depending on the

differences between A and B, new ontology C may not be needed and only translation

between A and B is the result of integration. In other words, depending on the number of

changes between ontologies A and B during development of ontology C the level of

integration can range from alignment to unification;

― Inheritance means that ontology A inherits everything from ontology B. It inherits all

concepts, relations and restrictions or axioms and there is no inconsistency introduced by

additional knowledge contained in ontology A. This term is important for modular

design of ontologies where an upper ontology describes general knowledge and lower

application ontology adds knowledge needed only for the particular application.

Inheritance defines partial ordering between ontologies.

Not all of these operations can be made for all ontologies [Obitko, 2007]. In general, these

are very difficult tasks that are in general not solvable automatically, for example, because of:

― Undecidability when using very expressive logical languages;

― Insufficient specification of an ontology that is not enough to find similarities with

another one.

Because of these reasons these tasks are usually made manually or semi-automatically,

where a machine helps to find possible relations between elements from different ontologies, but the

final confirmation of the relation is left on human. Human then decides based on:

― The natural language description of the ontology elements;

― The natural language names of the ontology elements and common sense.

 Tools for developing ontologies

The tools for developing ontologies allow users to define new concepts, relationships and

instances, i.e. to create and/or expand existing ontologies. The ontology tools may contain some

additional features such as graphical representation, information search and additional tuning [Noy &

Musen, 2002]. Such tools are, for instance, SWOOP [Kalyanpur et al, 2005], Top Braid composer

Experiments for NL-storing of small datasets

136

[TBC, 2012], Internet Business Logic [IBL, 2012], OntoTrack [Liebig & Noppens, 2003] and IHMC

Cmap Ontology Editor [Hayes et al, 2005].

“Chimaera” helps with merging ontologies. It provides suggestions for subsumption,

disjointness or instance relationship. These suggestions are generated heuristically and are provided

for an operator, so that he may choose which one will be actually used [Chimaera, 2012]. “PROMT”

(or “SMART”) system is a similar system that provides suggestions based on linguistic similarity,

ontology structure and user actions. It points the user to possible effects of these changes

[Promt, 2012].

In [OntoTools, 2012] more than 150 tools (ontology editors) are outlined. At the first glance,

these tools may be classified on two groups – non commercial and commercial.

For instance, the first group include tools like Protégé [protégé, 2012], OilEd [Bechhofer et

al, 2001], Apollo [Apollo, 2012], RDFedt [rdfedit, 2012] OntoLingua [Farquhar et al, 1996], OntoEdit

[ontoprise, 2012; Sure et al, 2002; Sure et al, 2003], WebODE [Arpírez et al, 2001], KAON [Kaon,

2012], ICOM [ICOM, 2012], DOE [Bachimont, 2000; Bachimon et al, 2002; Troncy & Isaac, 2002;

DOE, 2012], WebOnto [Webonto, 2012], and OntoIntegrator [Nevzorova et al, 2007; Nevzorova &

Nevzorov, 2009; Nevzorova & Nevzorov, 2011].

Example of the commercial tools are Medius Visual Ontology Modeller [Polikoff, 2003;

sandsoft, 2012], LinKFactory Workbench [Deray & Verheyden, 2003] and K-Infinity [Macris, 2004;

OntoLex, 2012].

Many of the tools are closed systems. Therefore, it is not possible to evaluate the full

functional capabilities. Thus, the choice of editor of ontologies for practical purposes depends of:

 Free distribution;

 Local use of the web interface;

 Extensibility of functional possibilities of the applications;

 Ability to include modules designed by the user.

The basic features, capabilities, advantages, disadvantages, and comparative analysis of

available onto-editors are given in a number of meaningful overviews [Ovdei & Proskudina, 2004;

Calvanese et al, 2007; Filatov et al, 2007]. Analysis of literary sources about ontoeditors shows that

ontoeditor Protégé is closest to the listed requirements.

The instrumental systems for ontological engineering can be divided into three main groups

[Ovdei & Proskudina, 2004]:

The first group includes tools for creating ontologies that provide:

― Maintenance of collaborative development and review;

― Creation of ontologies according to any methodology;

― Maintenance of reasoning.

The second group includes tools for [Noy & Musen, 1999]:

― Unification of ontologies;

― Discovering semantic relations between different ontologies;

― Alignment the ontologies by establishing links between them and allowing the aligned

ontologies to reuse information from one another.

The third group includes tools for annotation of Web-based ontology resources.

Natural Language Addressing

137

Adding some new systems to survey of [Youn & McLeod, 2006], in Table 30 and Table 31

the basic and advanced features of several well-known ontological systems are outlined.

Table 30. Basic functions of the well-known ontological systems [Youn &

McLeod, 2006]

Import

format

Export

format

Graph

view

Consistency

check
Multi-user

Web

support
Merging

Protégé

[protégé, 2012]

XML,

RDF(S),

XML

Schema

XML,

RDF(S),

XML

Schema,

FLogic,

CLIPS, Java

html

Via plug-

ins like

GraphViz

and

Jambalaya

Via pluggins

like PAL and

FaCT

Limited

(Multi-user

capability added

to it in 2.0

version)

Via Protégé-

OWL plug-

in

Via

Anchor-

PROMPT

plug-in

OilEd

[Bechhofer et al, 2001]

RDF(S),

OIL,

DAML+O

IL

RDF(S), OIL,

DAML+OIL,

SHIQ, dotty,

html

No Via FaCT No
Very limited

namespaces
No

Apollo

[Apollo, 2012]

OCML,

CLOS

OCML,

CLOS
No Yes No No No

RDFedt

[rdfedit, 2012]

RDF(S),

OIL,

DAML,

SHOE

RDF(S), OIL,

DAML,

SHOE

No

Only checks

writing

mistakes

No

Via RSS

(RDF Site

Summary)

?

OntoLingua

[Farquhar et al, 1996]
IDL, KIF

KIF, CLIPS,

IDL, OKBC

syntax,

Prolog syntax

No Via Chimaera

Via write-only

locking, user

access levels

Yes ?

OntoEdit

(Free version)

[ontoprise, 2012;

Sure et al, 2002;

Sure et al, 2003]

XML,

RDF(S),

FLogic

and

DAML+O

IL

XML,

RDF(S),

FLogic and

DAML+OIL

Yes Yes No Yes ?

WebODE

[Arpírez et al, 2001]

RDF(S),

UML,

DAML+O

IL and

OWL

RDF(S),

UML,

DAML+OIL,

OWL,

PROLOG, X-

CARIN,

Java/Jess

Form based

graphical

user

interface

Yes

By

synchronization,

authentication and

access restriction

Yes
Via

ODEmerge

Experiments for NL-storing of small datasets

138

Import

format

Export

format

Graph

view

Consistency

check
Multi-user

Web

support
Merging

KAON

[Kaon, 2012]
RDF(S) RDF(S) No Yes

By concurrent

access control

Via KAON

portal
No

ICOM

[ICOM, 2012]

XML ,

UML
XML, UML Yes Via FaCT No No

With inter-

ontology

mapping

DOE

[Bachimont, 2000;

Bachimon et al, 2002;

Troncy & Isaac, 2002;

DOE, 2012]

XSLT,

RDF(S),

OIL,

DAML+O

IL, OWL

and

CGXML

XSLT,

RDF(S), OIL,

DAML+OIL,

OWL and

CGXML

No

Via type

inheritance and

detection of

cycles in

hierarchies

No

Load

ontology via

URL

No

WebOnto

[Webonto, 2012]
OCML

OCML, GXL,

RDF(S) and

OIL

Yes Yes
With global write-

only locking
Web based ?

ОntoIntegrator

[Nevzorova &

Nevzorov, 2011]

own

format
own format Yes ? No No ?

Medius VOM

[Polikoff, 2003;

sandsoft, 2012]

XML

Schema,

RDF and

DAML+O

IL

XML

Schema, RDF

and

DAML+OIL

UML

diagrams

via Rose

With a set of

ontology

authoring

wizards

Network based

Via read-

only browser

from Rose

Limited

(only

native

Rose

model)

LinKFactory

[Deray & Verheyden,

2003]

XML,

RDF(S),

DAML+O

IL and

OWL

XML,

RDF(S),

DAML+OIL,

OWL and

html

No Yes Yes Yes Yes

K-Infinity

[Macris, 2004;

OntoLex, 2012]

RDF RDF
With Graph

editor
Yes Network based No ?

Natural Language Addressing

139

Table 31. Additional functions of the well-known ontological systems [Youn &

McLeod, 2006]

Collaborative

working

Ontology

library

Inference

engine

Exception

handling

Ontology

storage
Extensibility Availability

Protégé

[protégé, 2012]
No Yes With PAL No

File & DBMS

(JDBC)
Via plug-ins Free

OilEd

[Bechhofer et al,

2001]

No Yes
With

FaCT
No File No Free

Apollo

[Apollo, 2012]
No Yes No No Files Via plug-ins Free

RDFedt

[rdfedit, 2012]
No No No Yes Files No Free

OntoLingua

[Farquhar et al,

1996]

Yes Yes No No Files No Free

OntoEdit

(Free version)

[ontoprise, 2012;

Sure et al, 2002;

Sure et al, 2003]

No No No No File Via plug-ins Free

WebODE

[Arpírez et al, 2001]
Yes No Prolog No

DBMS

(JDBC)
Via plug-ins Free

KAON

[Kaon, 2012]
? Yes Yes No ? No Free

ICOM

[ICOM, 2012]
No ? Yes No DBMS Yes Free

DOE

[Bachimont, 2000;

Bachimon et al,

2002;

Troncy & Isaac,

2002;

DOE, 2012]

No No Yes No File No Free

WebOnto

[Webonto, 2012]
Yes Yes Yes No File No

Free web

access

ОntoIntegrator

[Nevzorova &

Nevzorov, 2011]

No Yes No ?
relational

database
No Free

Experiments for NL-storing of small datasets

140

Collaborative

working

Ontology

library

Inference

engine

Exception

handling

Ontology

storage
Extensibility Availability

Medius VOM

[Polikoff, 2003;

sandsoft, 2012]

Yes

Yes

(IEEE

SUO)

Yes ? ? Yes Commercial

LinKFactory

[Deray &

Verheyden, 2003]

Yes Yes Yes No DBMS Yes Commercial

K-Infinity

[Macris, 2004;

OntoLex, 2012]

Yes Yes Yes ? DBMS No Commercial

General disadvantages of the outlined instrumental systems are:

 Lack of automatic (or automated) procedures for forming components of ontologies;

 User interface based only on English, which does not permit using of other languages,

such as Bulgarian, Russian, Greek, etc.;

 The structure of concepts may be built by only one type of relationships;

 For most commonly available ontological systems it is impossible to work with

ontologies of large volume (e.g. OntoEdit free – up to 50 concepts);

 Many tools store the ontologies in text files, which limits the speed of access to

ontologies;

 Some functions are not available in the free versions of the tools;

 User documentation is not good enough.

The above shortcomings of popular English language ontological tools exist in similar

instruments from Russian segment, in particular, "Multi-layer ontology editor" [Artemieva &

Reshtanenko, 2008], "OntoEditor+" [Nevzorova et al, 2004] and others.

 Experiment to store ontology by NL-addressing

Comparative analysis of the tools shows that all systems use finished products for data

storing, which are limited to text files or relational databases. Both approaches for storing do not meet

specific structures of the ontologies. This necessitates the development of new tools for storing

ontologies.

Storing graphs and ontologies has one important aspect – the layers which correspond to

types of relations between nodes of graph or ontology. The example with sample graph in previous

chapter indicates that it is important to ensure possibility for multi-layer representation.

To make experiment with real data, we use the WordNet as ontology and its 45 types of

relations (given by its files of different types, see Table 26) we store as 45 layers. For experiments in

this case, we have realized a program called “OntoArM”. It is outlined in the Appendix A.

A screenshot from the OntoArM with results for the case with 45 layers is given in Figure 46.

Natural Language Addressing

141

Figure 46. OntoArM results for the case of WordNet with 45 layers

The NL-addressing is case sensitive. The words “cut” and “CUT” are absolutely different as

NL-addresses. Because of this, for words “cut” and “CUT” we have to use separate queries (Figure

47). Of course, it is easy to program the system automatically to use both capital and small letters.

This is a problem to be solved at the middleware level.

In Figure 48 the OntoArM report for the query “cut; *” is shown.

The information on Figure 48 is shown with “no word wrap” option of WordPad program. In

Table 32, the same report is given in whole for both queries (cut; *) and (CUT; *). The definitions are

shown “as_is” in the lexicographer files, i.e. the access method does not convert the information to

any other style and stores and extracts the information “as_is”.

a) small letters b) capital letters

Figure 47. OntoArM panel for manual querying words cut and CUT

Experiments for NL-storing of small datasets

142

Figure 48. OntoArM report to query from Figure 47 a)

Table 32. Report of the queries from Figure 47 a) and b) for all 45 layers of WordNet

and for both queries (cut;*) and (CUT;*)

No. layer definition

1

cut ; adj_all ; { cut, shortened, (with parts removed; "the drastically cut film") }

{ cut, thinned, weakened, (mixed with water; "sold cut whiskey"; "a

cup of thinned soup") }

{ cut, slashed, ((used of rates or prices) reduced usually sharply; "the

slashed prices attracted buyers") }

{ cut, emasculated, gelded, ((of a male animal) having the testicles

removed; "a cut horse") }

CUT ; adj_all ; { [CUT1, UNCUT1,!] (separated into parts or laid open or

penetrated with a sharp edge or instrument; "the cut surface was

mottled"; "cut tobacco"; "blood from his cut forehead"; "bandages

on her cut wrists") }

{ [CUT2, UNCUT2,!] ((of pages of a book) having the folds of the

leaves trimmed or slit; "the cut pages of the book") }

{ [CUT3, UNCUT3,!] (fashioned or shaped by cutting; "a well-cut

suit"; "cut diamonds"; "cut velvet") }

2 cut ; adj_pert ; empty definition

3 cut ; adj_ppl ; empty definition

4 cut ; adv_all ; empty definition

5 cut ; noun_Tops ; empty definition

Natural Language Addressing

143

No. layer definition

6

cut ; noun_act ; { cut6, absence,@ (an unexcused absence from class; "he was

punished for taking too many cuts in his math class") }

{ cut5, reduction,@ (the act of reducing the amount or number; "the

mayor proposed extensive cuts in the city budget") }

{ cut, [cutting, verb.creation:cut11,+] cutting_off1, shortening,@

(the act of shortening something by chopping off the ends; "the

barber gave him a good cut") }

{ cut1, [cutting1, verb.contact:cut10,+ verb.contact:cut,+]

division,@ (the act of cutting something into parts; "his cuts were

skillful"; "his cutting of the cake made a terrible mess") }

{ cut2, [cutting2, verb.contact:cut10,+] opening2,@ (the act of

penetrating or opening open with a sharp edge; "his cut in the lining

revealed the hidden jewels") }

{ cut9, [cutting9, verb.contact:cut5,+] division,@ card_game,#p

(the division of a deck of cards before dealing; "he insisted that we

give him the last cut before every deal"; "the cutting of the cards

soon became a ritual") }

{ cut8, [undercut, verb.contact:undercut,+] stroke,@ tennis,;c

badminton,;c squash,;c ((sports) a stroke that puts reverse spin on the

ball; "cuts do not bother a good tennis player") }

7 cut ; noun_animal ; empty definition

8

cut ; noun_artifact ; { cut, gash, furrow,@ (a trench resembling a furrow that was made

by erosion or excavation) }

{ cut1, canal,@ (a canal made by erosion or excavation) }

9 cut ; noun_attribute ; empty definition

10 cut ; noun_body ; empty definition

11
cut ; noun_cognition ; { cut, fashion,@ (the style in which a garment is cut; "a dress of

traditional cut") }

12

cut ; noun_communication ; { cut4, track, excerpt,@ (a distinct selection of music from a

recording or a compact disc; "he played the first cut on the cd"; "the

title track of the album") }

{ cut, transition,@ ((film) an immediate transition from one shot to

the next; "the cut from the accident scene to the hospital seemed too

abrupt") }

13 cut ; noun_event ; empty definition

14 cut ; noun_feeling ; empty definition

15
cut ; noun_food ; { cut, cut_of_meat, meat1,@ (a piece of meat that has been cut from

an animal carcass) }

16 cut ; noun_group ; empty definition

Experiments for NL-storing of small datasets

144

No. layer definition

17 cut ; noun_location ; empty definition

18 cut ; noun_motive ; empty definition

19 cut ; noun_object ; empty definition

20 cut ; noun_person ; empty definition

21 cut ; noun_phenomenon ; empty definition

22 cut ; noun_plant ; empty definition

23
cut ; noun_possession ; { cut, share,@ loot,#p (a share of the profits; "everyone got a cut of

the earnings") }

24 cut ; noun_process ; empty definition

25 cut ; noun_quantity ; empty definition

26 cut ; noun_relation ; empty definition

27 cut ; noun_shape ; empty definition

28

cut ; noun_state ; { cut, [gash, verb.contact:gash,+] [slash, verb.contact:slash,+

verb.contact:slash1,+] [slice, verb.contact:slice1,+] wound,@ (a

wound made by cutting; "he put a bandage over the cut") }

{ cut1, gradation,@ (a step on some scale; "he is a cut above the

rest") }

29 cut ; noun_substance ; empty definition

30 cut ; noun_time ; empty definition

31

cut ; verb_body ; { cut14, cut4,$ verb.change:grow2,@ frames: 1 (grow through the

gums; "The new tooth is cutting") }{ cut4, grow,@ frames: 8 (have

grow through the gums; "The baby cut a tooth") }

32

cut ; verb_change ; { [cut, verb.communication:cut_off,^] cut_off,

verb.communication:interrupt,@ frames: 8,11 (cease, stop; "cut the

noise"; "We had to cut short the conversation") }

{ cut12, cut6,$ decrease1,@ frames: 4 (have a reducing effect; "This

cuts into my earnings")}

{ cut15, dissolve1,@ frames: 11 (dissolve by breaking down the fat

of; "soap cuts grease") }

{ [cut2, cut_back,^ cut_back1,^ cut_out,^] prune, rationalize,

rationalise, eliminate1,@ frames: 8 (weed out unwanted or

unnecessary things; "We had to lose weight, so we cut the sugar

from our diet") }

{ cut14, shorten9,@ frames: 8 (shorten as if by severing the edges or

ends of; "cut my hair") }

33 cut ; verb_cognition ; empty definition

34 cut ; verb_communication ; empty definition

35 cut ; verb_competition ; empty definition

36 cut ; verb_consumption ; empty definition

Natural Language Addressing

145

No. layer definition

37

cut ; verb_contact ; { cut14, penetrate,@ frames: 4 (penetrate injuriously; "The glass

from the shattered windshield cut into her forehead") }

{ cut13, fell,@ frames: 8 (fell by sawing; hew; "The Vietnamese cut

a lot of timber while they occupied Cambodia") }

{ cut15, reap,@ frames: 8 (reap or harvest; "cut grain") }

{ cut7, hit,@ noun.act:sport,;c frames: 8 (hit (a ball) with a spin so

that it turns in the opposite direction; "cut a Ping-Pong ball") }

{ [cut, noun.person:cutter,+ noun.artifact:cutter,+

noun.act:cutting1,+ cut_away,^ cut_out2,^ cut_up,^ cut_into1,^

cut_off2,^ cut_out1,^] separate1,@ frames: 8,11 (separate with or as

if with an instrument; "Cut the rope")}

{ [cut5, noun.act:cutting9,+] shuffle,@ frames: 2,8 (divide a deck

of cards at random into two parts to make selection difficult;

"Wayne cut"; "She cut the deck for a long time") }

{ [cut10, noun.act:cutting2,+ noun.act:cutting1,+] frames: 22

(make an incision or separation; "cut along the dotted line") }

{ cut11, cut10,$ verb.stative:be3,@ frames: 1 (allow incision or

separation; "This bread cuts easily") }

{ cut12, function,@ frames: 1 (function as a cutting instrument;

"This knife cuts well") }

38

cut ; verb_creation ; { cut, [tailor1, noun.person:tailor,+] design1,@

noun.cognition:fashion,;c frames: 8 (style and tailor in a certain

fashion; "cut a dress") }

{ cut15, perform,@ frames: 8 (perform or carry out; "cut a caper") }

{ [cut11, noun.act:cutting5,+ noun.act:cutting,+] create,@ frames:

8,11 (form or shape by cutting or incising; "cut paper dolls") }

{ cut1, cut11,$ create,@ frames: 8,11 (form by probing, penetrating,

or digging; "cut a hole"; "cut trenches"; "The sweat cut little rivulets

into her face") }

{ cut6, burn5, create3,@ frames: 8 (create by duplicating data; "cut a

disk"; "burn a CD")}

{ cut4, cut6,$ verb.communication:record1,@ frames: 8 (record a

performance on (a medium); "cut a record") }

{ cut5, cut4,$ verb.communication:record1,@ frames: 8 (make a

recording of; "cut the songs"; "She cut all of her major titles again")

}

39 cut ; verb_emotion ; empty definition

40

cut ; verb_motion ; { cut, stop1,@ frames: 8 (stop filming; "cut a movie scene")}

{ [cut1, noun.act:cutting3,+ cut_to,^] cut,$ verb.change:switch2,@

frames: 22,4 (make an abrupt change of image or sound; "cut from

Experiments for NL-storing of small datasets

146

No. layer definition

one scene to another") }

{ cut12, pass_through,@ frames: 8,9 (pass through or across; "The

boat cut the water") }

{ cut13, cut12,$ pass,@ frames: 22 (pass directly and often in haste;

"We cut through the neighbor's yard to get home sooner") }

{ cut15, move,@ noun.act:boxing,;c frames: 22 (move (one's fist);

"his opponent cut upward toward his chin") }

41
cut ; verb_perception ; { cut3, look1,@ frames: 8 (give the appearance or impression of;

"cut a nice figure") }

42 cut ; verb_possession ; empty definition

43
cut ; verb_social ; { cut13, free2,@ frames: 9 (discharge from a group; "The coach cut

two players from the team") }

44
cut ; verb_stative ; { cut, [skip, noun.act:skip,+ noun.person:skipper2,+] miss1,@

frames: 8 (intentionally fail to attend; "cut class") }

45 cut ; verb_weather ; empty definition

To update the content of a definition one may use form for manual work (Figure 49) and to

follow the next steps:

― To enter the concept and layer;

― To activate reading current definition pressing the RDF-Read button;

― To update content of definition on screen;

― To press RDF-Write button to store new variant of definition in the correspond archive.

Figure 49. OntoArM panel for manual updating definitions

Natural Language Addressing

147

The results from experiments for storing WordNet as ontology with 45 layers are given in

Table 33.

Table 33. Experimental data for storing WordNet as ontology

number of

layers
operation

number of

instances

total time in

milliseconds

average time (ms) for one

instance

45 writing 117 709 96 643 0.82

45 reading 112 945 91 618 0.81

45 work memory: 538 408 KB; permanent archive: 17 013 KB

source text in 45 files - not compressed: 16 338 KB; compressed by WinZip: 4937 KB

The work memory for storing hash tables and theirs containers was 538 408 KB. To analyze

work of system, the work memory was chosen to be in a file in the external memory. In further

realizations of OntoArM, to accelerate the speed and to reduce used disk space, work memory may be

realized as part of main memory (as dynamically allocated memory or as file mapped in memory).

After finishing the work, occupied disk memory for compressed permanent archives is

17 013 KB, i.e. in this case the NL-indexing takes 12 076 KB additional compressed memory (the 45

sequential files with initial data occupy 16 338 KB, and compressed by WinZip they take 4 937 KB).

The difference in the numbers of instances in Table 27 and Table 33 is due to removing the

equal instances and service information from input files when we use WordNet as thesaurus, stored as

one layer archive. For instance, the word “cut” has many instances and when we work with one layer

it must be written at least two NL-addresses – using small and capital letters: “cut” and “CUT”.

After updating, no recompiling of the data base is needed. For less than one millisecond after

entering new data, the information is ready for using.

 Comparing OntoArM and WordArM programs

To compare WordArM and OntoArM programs, we made experiment with both programs to

store WordNet data as one layer ontology. The results are given in the Table 34.

Table 34. Results for speed of WordArM and OntoArM programs

 WordNet as one layer ontology
WordNet as 45 layers

ontology

operation
WordArM average time

(ms) for one instance

OntoArM average time

(ms) for one instance

OntoArM average time

(ms) for one instance

writing 0.86 1.00 0.82

reading 0.78 0.95 0.81

Experiments for NL-storing of small datasets

148

From results in Table 34 we may conclude that OntoArM, working in parallel with 45 layers

ensures more high speed than working with one layer. This is due to available separate buffering for

each layer and small size of each of 45 archives (in the case of one layer all information is written in

one big file).

In addition, OntoArM is slower than WordArM in the case of one layer because of existing

operations for control of layers in OntoArM, which is not needed and not realized in WordArM.

 What gain and loss using NL-Addressing for storing ontologies?

The conclusions are the same as for the dictionaries and thesauruses.

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search threes or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to access information immediately after storing without recompilation the

database and rebuilding indexes.

 Conclusion of chapter 5

In this chapter we have presented several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of structured datasets.

Firstly we introduced the idea of knowledge representation. Further in the chapter we

discussed three main experiments - for NL-storing of dictionaries, thesauruses, and ontologies.

Presentations of every experiment started with introductory part aimed to give working

definition and to outline state of the art in storing concrete structures.

The explanation of the experiments begins with the easiest case – storing dictionaries.

Analyzing results from the experiment with a real dictionary data we may conclude that it is possible

to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using NL-

Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for storing

hash structures which serve NL-addressing. But the same if no great losses we will have if we will

build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

(1) High speed for storing and accessing the information.

(2) The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

Natural Language Addressing

149

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are files and relational databases.

Our experiment confirmed the conclusion about losses and benefits from using

NL-addressing given above for thesauruses. The same is valid for more complex structures.

Here we have to note that for static structured datasets it is more convenient to use standard

utilities and complicated indexes. NL-addressing is suitable for dynamic processes of creating and

further development of structured datasets due to avoiding recompilation of the database index

structures and high speed access to every data element.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, was to discover regularities in the NL-addressing realization. Analyzing Table 25, Table 27,

and Table 33 we may see the main two regularities of storing time using NL-addressing:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

