
Natural Language Addressing

191

7 Analysis of experiments

Abstract

In this research we have provided series of experiments to identify any trends, relationships

and patterns in connection to NL-addressing and its implementations. We have realized three types of

experiments:

― Basic experiments to compare our access method with two main types of organization

and access to information – sequential and relational;

― Experiments aimed to show the possibilities of NL-addressing to be used for NL-storing

of structured datasets;

― Experiments to examine the applicability of NL-addressing for middle-size and very

large RDF-datasets.

Below we will analyze these experiments. Special attention will be paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

7.1 Analysis of basic experiments

We started our experiments in Chapter 4 with two main types of basic experiments:

NL-ArM has been compared with:

― Sequential text file of records;

― Relational data base management system Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing information. To

investigate the size of files and speed of their generation we compared writing in a sequential text file

and in a NL-ArM archive.

The experiments have sown:

― NL-ArM is constantly about two and half times slower than writing in sequential text file

because of building the hash tables in the NL-ArM archive. This means that including

new records in NL-ArM archive take the same time (about 0.013 ms) per record

irrespective of the number of already stored records;

― The comparison of file sizes showed that, for great number of elements, text file became

longer than NL-ArM archive. This leads to the following conclusion - bulky text files

whose records are attached to long “keywords” would be saved more compactly in

Analysis of experiments

192

NL-ArM archives instead as records in text files with explicitly given keywords in each

record.

Important consideration in this case was that reading sequential text file to find concrete

keyword is very slow operation. Every indexed approach is quicker. Indexed text files are typical for

databases and this case was analyzed in experiments with a database.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

Firebird is not access method but system for managing databases. It is important that all

queries in Firebird are in SQL and interpreted by the system, which requires appropriate time. The

primary goal for new Version 2.5 of Firebird is to establish the basics for a new threading architecture

which will speed up the Firebird on multi-processors’ computer systems [Firebird, 2013].

It is important to underline that the experiments were provided for data with fixed length. If

keywords’ length is variable, we will have problems to work with any RDBMS. NL-ArM supports

variable length of the keywords.

Calculating the hash function is faster than searching keywords in the index. But searching

operations in hash structures is slow operation; in this case search in index structures is more

convenient.

Another disadvantage of NL-ArM is connected to its special type of realization of the

internal index structure. In relational model all keys have same influence on the writing time – they are

written in the plain file by the same manner (as parts of records) and extend the balanced index in one

or other its section which takes logarithmic time. In NL-ArM the different values of co-ordinates cause

various archive structures which take corresponded time. Practically, NL-ArM creates hyper-matrix

and large empty zones need additional resources – time and disk space, which are not so great due to

smart internal index organization but really exists.

Experiments have shown that regarding NL-ArM:

― In writing, Firebird is on average 90.1 times slower. This is due to two reasons:

1. Balanced indexes of Firebird need reconstruction for including of every new keyword.

This is time consuming process;

2. The speed of updating NL-ArM hash tables which do not need recompilation after

including new information.

Due to specific of realization, for small values of co-ordinates NL-ArM is not effective

as for the great ones. Nevertheless, NL-ArM is always many times faster than Firebird.

― In reading, Firebird is on average 29.8 times slower due to avoiding search operations in

NL-ArM hash tables which speeds the access.

Finally, for large dynamic data sets more convenient are hash based tools like NL-ArM

because of random direct access to all stored records immediately after writing it without any

additional indexing. For storing big semi-structured datasets like large ontologies and RDF-graphs this

advantage is crucial.

Natural Language Addressing

193

7.2 Analysis of experiments with structured datasets

In Chapter 5 we have presented several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of structured datasets.

We have provided three main experiments - for NL-storing of dictionaries, thesauruses, and

ontologies.

Analyzing results from the experiment with a real dictionary data we may conclude that it is

possible to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using

NL-Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for

storing hash structures which serve NL-addressing. But the same if no great losses we will have if we

will build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

― High speed for storing and accessing the information;

― The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are sequential files and relational databases (i.e. sets of interconnected indexed sequential files with

fixed records’ structure).

Our experiment confirmed the conclusion about losses and benefits from using

NL-addressing given above for thesauruses. The same is valid for more complex structures.

For static structured datasets it is more convenient to use standard utilities and complicated

indexes. NL-addressing is suitable for dynamic processes of creating and further development of

structured datasets due to avoiding recompilation of the database index structures and high speed

access to every data element.

7.3 Analysis of experiments with semi-structured datasets

In Chapter 6 the applicability of NL-addressing for middle-size and large semi-structured

RDF-datasets was concerned.

We have provided twelve experiments with middle-size and large RDF-datasets, based on

selected datasets from DBpedia's homepages and Berlin SPARQL Bench Mark (BSBM) to make

comparison with published benchmarks of known RDF triple stores.

 Rank-based multiple comparison

We will use the Friedman test to detect statistically significant differences between the

systems [Friedman, 1940]. The Friedman test is a non-parametric test, based on the ranking of the

Analysis of experiments

194

systems on each dataset. It is equivalent of the repeated-measures ANOVA [Fisher, 1973]. We will

use Average Ranks ranking method, which is a simple ranking method, inspired by Friedman's statistic

[Neave & Worthington, 1992]. For each dataset the systems are ordered according to the time

measures and are assigned ranks accordingly. The best system receives rank 1, the second – 2, etc. If

two or more systems have equal value, they receive equal rank which is mean of the virtual positions

that had to receive such number of systems if they were ordered consecutively each by other.

Let n is the number of observed datasets; k is the number of systems.

Let irj be the rank of system j on dataset i. The average rank for each system is calculated as
k

i
j j

i 1

1R r
n

 .

The null-hypothesis states that if all the systems are equivalent than their ranks Rj should be

equal. When null-hypothesis is rejected, we can proceed with the Nemenyi test [Nemenyi, 1963]

which is used when all systems are compared to each other. The performance of two systems is

significantly different if the corresponding average ranks differ by at least the critical difference

 k(k 1)CD q

6N
where critical values q are based on the Studentized range statistic divided by 2 . Some of the

values of q are given in Table 59 [Demsar, 2006].

Table 59. Critical values for the two-tailed Nemenyi test

systems 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164

q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

The results of the Nemenyi test are shown by means of critical difference diagrams.

Experiments which we will take in account were presented in corresponded tables of Chapter

6 as follow (Table 60):

Table 60. Information about tests and results

test No: results

1 Table 40

2 Table 42

3 Table 44

4 Table 46

 5a Table 48 (a)

 5b Table 48 (b)

6 Table 50

7 Table 52

8 Table 54

9 Table 56

 10a Table 57 (a)

 10b Table 57 (b)

Natural Language Addressing

195

Benchmark values from our 12 experiments and corresponded published experimental data

from BSBM team are given in Table 61. Published results do not cover all table, i.e. we have no

values for some cells. To solve this problem we will take in account only the best result for given

system on concrete datasets (Table 62). Sesame had no average values for tests 10a and 10b. Because

of this we will not use these test in our comparison. They were useful to see the need of further

refinement of RDFArM for big data.

The ranks of the systems for the ten tests are presented below in Table 63.

Table 61. Benchmark values for middle size datasets

system
TEST

1 2 3 4 5a 5b 6 7 8 9 10a 10b

RDFArM 3 2272 14.79 3469 60 60 301 136412 1453 5901 15742 31484

Sesame

Native (spoc,

posc)

3 2404 19 2341 179 213 1988 21896 44225 282455

Virtuoso

(ogps, pogs,

psog, sopg)

2 1327 1235 609 7017 6566 14378

Virtuoso TS 05 23 25 2364 28607

Virtuoso RDF

views

 09

Virtuoso SQL 09 34 33 1035 3833

Virtuoso RV 34 33 1035 3833

Jena SDB 5 13 129 1053 14678 139988

Jena TDB 49 41 1013 5654 4488 9913

Jena SDB

MySQL

Layout 2

Index

 5245 6290 70851

Jena SDB

Postgre SQL

Layout 2 Hash

 3557 3305 73199

Jena SDB

Postgre SQL

Layout 2

Index

 9681 9640 734285

Analysis of experiments

196

Table 62. Chosen benchmark values for middle size datasets

system
TEST

1 2 3 4 5a 5b 6 7 8 9 10a 10b

RDFArM 3 2272 14.79 3469 60 60 301 136412 1453 5901 15742 31484

Sesame 3 2404 19 2341 179 213 1988 21896 44225 282455

Virtuoso 2 1327 05 1235 23 25 609 7017 1035 3833 6566 14378

Jena 5 3557 13 3305 49 41 1053 70851 1013 5654 4488 9913

Table 63. Ranking of tested systems

system
ranks for the tests

average rank
1 2 3 4 5a 5b 6 7 8 9

RDFArM 2.5 2 3 4 3 3 1 4 3 3 2.85

Sesame 2.5 3 4 2 4 4 4 2 4 4 3.35

Virtuoso 1 1 1 1 1 1 2 1 2 1 1.2

Jena 4 4 2 3 2 2 3 3 1 2 2.6

All average ranks are different. The null-hypothesis is rejected and we can proceed with the

Nemenyi test. Following [Demsar, 2006], we may compute the critical difference by formula:

 k(k 1)CD q

6N

where q we take as q0.10 = 2.291 (from Table 59 [Demsar, 2006; Table 5a]);

k will be the number of systems compared, i.e. k=4; N will be the number of datasets used in

benchmarks, i.e. N=10. This way we have:

0.10
4 *5 20CD 2.291* 2.291* 2.291*0.577 1.322
6 *10 60

We will use for critical difference CD0.10 the value 1.322.

Natural Language Addressing

197

At the end, average ranks of the systems and distance to average rank of the first one are

shown in Table 64.

Table 64. Average ranks of systems and distance to average rank of the first one

place system average

rank

Distance between average rank of
the system and average rank of the

first one

1 Virtuoso 1.2 0

2 Jena 2.6 1.4

3 RDFArM 2.85 1.65

4 Sesame 3.35 2.15

The visualization of Nemenyi test results for tested systems is shown on Figure 71.

Figure 71. Visualization of Nemenyi test results

Analyzing these experiments we may conclude that RDFArM is at critical distances to Jena

and Sesame. RDFArM is nearer to Jena than to Sesame. RDFArM, Jena, and Sesame are significantly

different from Virtuoso.

Some recommendations to RDFArM may be given. RDF triple datasets has different

characteristics depending of their origination. This causes the need to adapt NL-ArM storage engine to

specifics of concrete datasets. For instance, important parameters are length of strings and quantity of

repeating values of subject, relation, and object.

Analysis of experiments

198

7.4 Storing time and multi-processing

The NL-ArM characteristic, which we will analyze now, is NL-access time dependence on

growing of dataset size and possibility for multi-processing. Below we will outline data for NL-storing

instances with one-, two- and three-elements. Graphical illustrations will be given for loading selected

datasets. For two datasets will be given graphical comparison between times consumed by different

processors.

 NL-storing two-element instances

Two-element instances we use in experiments for NL-storing dictionaries (Table 25) and

thesauruses (Table 27). Two-element instance is couple: (name, value), where “name” is “one-

dimension” co-ordinate of NL-location where “value” (a string) has to be stored.

Measured times are gathered in Table 65.

Table 65. Access times for two-element instances

dataset
number of

instances

time for all instances in

ms

time for one instance in

ms

NL-writing of one-element instances

SA dictionary 23412 22105 0.94

WordNet as

thesaurus
125062 107157 0.86

Total: 148474 129262 0.87

NL-reading of one-element instances

SA dictionary 23412 20826 0.89

WordNet thesaurus 117641 91339 0.78

Total: 141053 112165 0.79

The average times are 0.87 ms for writing and 0.79 ms for reading.

 NL-storing instances with three elements (RDF-triple datasets)

Three-element instances we use in experiments for NL-storing RDF-triple datasets. Three-

element instance is triple: (subject, relation, object), where “subject” and “relation” are NL-locations,

and “object” is a string to be stored at NL-location given by two-dimensional co-ordinates (subject,

relation) where we store only one value (object) which is a string.

Natural Language Addressing

199

Measured times are gathered in Table 66.

Table 66. Loading times for three-element instances

dataset
number

of triples

loading time in ms

for all triples for one triple

BSBM 50K 50116 112851 2.3

homepages-fixed.nt 200036 727339 3.6

BSBM 250K 250030 575069 2.3

geocoordinates-fixed.nt 447517 1110415 2.5

BSBM 1M 1000313 2349328 2.3

BSBM 5M 5000453 11704116 2.3

infoboxes-fixed.nt 15472624 43652528 2.8

BSBM 25M 25000244 56488509 2.3

BSBM 100M 100000112 229343807 2.3

total: 147421445 346063962 2.34745

The average loading time is 2.35 ms.

 NL-storing four-element instances (RDF-quadruple datasets)

We done series of experiments based on real data from the BTC datasets [BTC, 2012]. Here

we will outline only results for dataset http://km.aifb.kit.edu/projects/btc-2012/datahub/data-0.nq.gz.

Dataset “data-0.nq” contains 45595 quadruples. Information about its structure and results

from the experiments with it are shown in Table 67. A screenshot from the RDFArM program is

shown at Figure 72.

The average loading time is 3.6 ms.

Table 67. Results for storing datahub/data-0.nq

number of storing time for all instances

in ms

storing time for one

instance

in ms instances subjects relations contexts

45595 7325 894 101 162023 3.6

Analysis of experiments

200

Figure 72. A screenshot from the RDFArM program

The time for NL-storing on Configuration K is about:

― 0.7 ms for two-element instances;

― 2.35 ms for three-element instances;

― 3.6 ms for four-element instances.

The conclusion is that every new element of the instance takes about one millisecond

additional time. This means that NL-storing time is depended on the number of elements in the

instances.

 Graphical illustrations

Graphical illustrations of loading selected datasets are given below.

Firstly (Figure 73), we show the graphic of time used for storing of one instance from BSBM

250K dataset. At the beginning RDFArM takes more time due to initialization of the hash structures.

The next graphic (Figure 74) illustrates the variation of storing time due to specifics of the

dataset, i.e. the size of elements to be used as NL-addresses – as long are the strings of subject and

relation, so long time it takes the string of object to be stored in the archive.

Nevertheless, storing time varies between 2.2 and 2.5 milliseconds.

The next two graphics are aimed to illustrate independence from size of the datasets. On

Figure 75 the storing times of BSBM 25M dataset is shown, and on Figure 76 storing times of BSBM

100M dataset are illustrated. On both graphics we see the same regularity – constant time for storing

of one triple independently of the number of already stored ones.

Simulating multi-processors work we are interested of regularity of used times from different

processors. It is expectable to have similar times because of constant complexity of NL-addressing.

This is seen of Figure 77 and Figure 78 where graphical comparison between times consumed by

different processors is given.

Natural Language Addressing

201

Figure 73. Storing time for one instance of BSBM 250K

Figure 74. Storing time for one instance of BSBM 1M

Figure 75. Storing time for one instance of BSBM 25M

Analysis of experiments

202

Figure 76. Storing time for one instance of BSBM 100M

Figure 77. Comparison of time used by processors for BSBM 25M

Figure 78. Comparison of time used by processors for BSBM 100M

Natural Language Addressing

203

From experimental data and visualizations we may conclude that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

This time does not depend on the size of data sets, i.e. of the number of instances. Detailed

information for storing 100 millions triples is given in the Appendix A.5 (Table 71). Table 71 contains

results from an experiment for storing 100 millions triples from BSBM 100M [BSBMv3, 2009]. The

check points were on every 100 000 triples. For every check point in Table 71, the average time in ms

for writing one triple is shown. For comparison, the corresponded value of log n is given in third

column. Data from Table 71 are visualized in Figure 79.

Figure 79. Comparison of log n and average time in ms for storing one triple from

BSBM 100M

 Conclusion of chapter 7

In this chapter we have analyzed experiments presented in previous chapters 4, 5, and 6,

which contain respectively results from (1) basic experiments; (2) experiments with structured

datasets; (3) experiments with semi-structured datasets. Special attention was paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

From experimental data and visualizations we concluded that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

Analysis of experiments

204

In Appendix B we outlined some systems which we have analyzed in accordance of further

development and implementing of NL-addressing. Two main groups of systems we have selected are:

― DBMS based approaches (non-native RDF data storage):

Oracle [Oracle, 2013], 3Store [AKT Project, 2013], Jena [Jena, 2013], RDF Suite

[RDF Suite, 2013], Sesame [Sesame, 2012], 4store [4store, 2013];

― Multiple indexing frameworks (native RDF data storage):

YARS [YARS, 2013], Kowari [Kowari, 2004], Virtuoso [Virtuoso, 2013], RDF-3X

[Neumann & Weikum, 2008], Hexastore [Weiss et al, 2008], RDFCube [Matono et al,

2007], BitMat [Atre et al, 2009], Parliament [Kolas et al, 2009].

Taking in account our experiments with relational data base we may conclude that for group

of DBMS based approaches we will have similar proportions if we realize NL-addressing for more

qualitative hardware platforms, for instance cluster machines.

Our approach is analogous to multiple indexing frameworks. The main difference is in

reducing the information via NL-addressing and avoiding its duplicating in indexes. Again, if we

realize NL-addressing for more qualitative hardware platforms, we will receive results which will

outperform the analyzed systems.

What gain and loss using NL-Addressing for RDF storing?

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search trees or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to update and access the information immediately after storing without

recompilation the database and rebuilding the indexes. This is very important because

half or analyzed systems do not support updates (see Table 77).

The main conclusion is optimistic. The future realization of NL-addressing for cluster

machines and corresponded operation systems is well-founded.

