

Krassimir Markov, Krassimira Ivanova, Vitalii Velychko,

Koen Vanhoof, Juan Castellanos

Natural Language Addressing

ITHEA®

Sofia – Hasselt – Kyiv – Madrid

2015

Krassimir Markov, Krassimira Ivanova, Vitalii Velychko, Koen Vanhoof, Juan Castellanos

Natural Language Addressing

ITHEA® Sofia, Hasselt, Kyiv, Madrid

2015

ISBN: 978-954-16-0070-2 (printed)
ISBN: 978-954-16-0071-9 (online)
ITHEA IBS ISC No.: 33

First edition

Recommended for publication by The Scientific Council of the V.M.Glushkov Institute of Cybernetics of NAS,

Ukraine (protocol No.: 7/28.04.2015), and The Scientific Council ITHEA Institute of Information Theories and

Applications.

Reviewers:

Acad. Prof. DSci Alexander Palagin (V.M.Glushkov Institute of Cybernetics of NAS, Ukraine)
Prof. DSci Leonid Hulyanitskiy (V.M.Glushkov Institute of Cybernetics of NAS, Ukraine)
Prof. Assoc. Dr. Luis Fernando de Mingo Lopez (Universidad Politécnica de Madrid, Spain)
Prof. Assist. Dr. Benoit Depaire (Hasselt University, Belgium)

In this monograph, a new idea is proposed. It is called “Natural Language Addressing” (NLA). It is a possibility
to access information using natural language words as paths to the information. For this purpose the internal
encoding of the letters is used to generate corresponded path. This way it is possible to solve the problem of
searching in big index structures by proposing a special kind of hashing, so-called “multi-layer hashing”, i.e. by
implementing recursively the same specialized hash function to build and resolve the collisions in hash tables.
Results presented in this work were implemented in practice for storing dictionaries, thesauruses, ontologies, and
RDF-graphs.
It is represented that book articles will be interesting for experts in the field of information technologies as well
as for practical users.

© All rights reserved.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Copyright © 2015

© 2015 ITHEA® – Publisher; Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org; e-mail: office@ithea.org

© 2015 Krassimir Markov, Krassimira Ivanova, Vitalii Velychko, Koen Vanhoof, Juan Castellanos – Authors

® ITHEA is a registered trade mark.

ISBN: 978-954-16-0070-2 (printed)
ISBN: 978-954-16-0071-9 (online)
C\o Jusautor, Sofia, 2015

Natural Language Addressing

3

Table of Contents

Table of Contents ... 3
List of Figures .. 5
List of Tables .. 9
List of Acronyms .. 12
Introduction .. 17

The idea of Natural Language Addressing (NLA) ... 19
Brief overview of the content ... 28

1 Theoretical surroundings .. 32
1.1 Basic mathematical concepts .. 32
1.2 Hashing ... 35
1.3 Tries .. 38

2 Storing models .. 43
2.1 Storage model and Data model .. 44
2.2 Memory management and access methods .. 46
2.3 Interconnections between raised access methods ... 48
2.4 Structured data models ... 53
2.5 Semi-structured data models .. 53
2.6 Graph models and databases .. 54
2.7 RDF databases .. 62
2.8 Multi-layer representation of graphs .. 73
2.9 Multi-domain information model (MDIM) .. 78
2.10 Multi-domain access method “ArM32” ... 82

3 Access method based on NL-addressing .. 87
3.1 Example of NL-addressing via burst tries .. 87
3.2 NL-ArM access method ... 90
3.3 Example of NL-storing the Sample graph .. 92

4 Basic experiments ... 96
4.1 Comparison with a text file .. 96
4.2 Comparison with a relational database ... 103

5 Experiments for NL-storing of small datasets .. 114
5.1 Knowledge representation .. 114
5.2 Experiment for NL-storing dictionaries ... 117
5.3 Experiment for NL-storing thesauruses .. 119
5.4 Experiment for NL-storing ontologies ... 130

Table of Contents

4

6 Experiments for NL-storing of middle-size and large RDF-datasets ... 151
6.1 Experimental storing model ... 151
6.2 Experimental storing algorithm .. 154
6.3 Estimation of experimental systems ... 157
6.4 Experiments with middle-size datasets .. 168
6.5 Experiments with large datasets ... 183

7 Analysis of experiments ... 192
7.1 Analysis of basic experiments .. 192
7.2 Analysis of experiments with structured datasets .. 194
7.3 Analysis of experiments with semi-structured datasets .. 194
7.4 Storing time and multi-processing ... 199

8 Practical aspects .. 206
8.1 The transition to non-relational data models .. 206
8.2 Building and using of ontologies .. 209
8.3 Building RDF-stores using NL-addressing .. 213
8.4 ICON - Instrumental Complex for Ontology designatioN ... 215

Conclusion .. 223
Big Data .. 223
BigArM ... 224
Collect/Report Paradigm .. 225
Main results presented in the monograph ... 229

Appendix A: Program Realizations .. 235
A1. WordArM .. 236
A2. OntoArM .. 242
A3. RDFArM .. 247
A4. Results from experiment with simulating parallel processing ... 251
A5. Results from experiment with 100 millions triples .. 256
A6. Instruments for the programmers ... 263
A7. ICON Ontological editor ... 268
A8. Sample layers in ICON .. 271

Appendix B: Brief descriptions of the main mentioned tools .. 273
B1. Protégé 4.2 ... 273
B2. SPARQL .. 282
B3. Storage characteristics of analyzed RDF triple stores .. 284

References .. 293
Authors’ Informtion ... 316

Natural Language Addressing

5

List of Figures

Figure 1. Addressing by indexing [Brookshear, 2012] .. 22

Figure 2. Addressing by natural language order [Auge, 1909] .. 23

Figure 3. B-tree .. 24

Figure 4. Natural Language Addressing in a spreadsheet .. 25

Figure 5. Example of multi-way trie [Pfenning, 2012] .. 38

Figure 6. The 31 most common English words [Liang, 1983] ... 39

Figure 7. Linked trie for the 31 most common English words [Liang, 1983]. 39

Figure 8. Trie for the elements of Table 1 [Sahni, 2005] ... 40

Figure 9. Burst trie with BSTs used in containers [Heinz et al, 2002] ... 42

Figure 10. Evolutionary scheme of DB-models [Angles & Gutierrez, 2008] .. 45

Figure 11. Genesis of the Access Methods and their modifications extended variant of

[Gaede & Günther, 1998; Mokbel et al, 2003] presented in [Markov et al, 2008] 49

Figure 12. Running example: the toy genealogy .. 55

Figure 13. RDF triple ... 63

Figure 14. Normalized triple store ... 68

Figure 15. RDF Hybrid schema (the table-per-property approach) ... 70

Figure 16. Illustration of Königsberg bridge problem [Euler, 1736] ... 73

Figure 17. Labeled graphs .. 74

Figure 18. A sample graph ... 75

Figure 19. Example of location A=(66,101,101,114) .. 88

Figure 20. Example of natural language path A=(Beer) .. 89

Figure 21. Example of content located by path “Beer” .. 89

Figure 22. Final variant of the sample graph .. 93

Figure 23. Word Length for English (extracted from [Sigurd et al, 2004]) ... 97

List of Figures

6

Figure 24. Time in milliseconds for writing in text file and NL-ArM archive 98

Figure 25. Time correlation between text file and NL-ArM for writing .. 99

Figure 26. Size in bytes of the text file and the NL-ArM archive .. 101

Figure 27. Relation between text file and NL-ArM for writing ... 102

Figure 28. Time in miliseconds for writing by Firebird and NL-ArM ... 106

Figure 29. Time relation for writing by Firebird and NL-ArM .. 106

Figure 30. Logarithmic time relation for writing ... 107

Figure 31. Ratios for NL-ArM row and column oriented writing .. 109

Figure 32. Ratios for the offset from 1 to 1000000 .. 110

Figure 33. Time in milliseconds (ms) for reading by Firebird and NL-ArM 112

Figure 34. Time relation for reading by Firebird and NL-ArM ... 112

Figure 35. A simple ontology ... 116

Figure 36. Logical structure of the WordNet ... 121

Figure 37. Answer by WordNet system to a query for the word "accession" 122

Figure 38. Synsets of the word “accession” in WordNet data file for nouns 123

Figure 39. Synsets of the word “accession” in WordNet data file for verbs .. 123

Figure 40. Record for the word "accession" in the index of nouns .. 124

Figure 41. Record for the word "accession" in the index of verbs ... 124

Figure 42. Records for the word "accession" in the sense index .. 124

Figure 43. Synset the word "accession" from the data file for nouns... 126

Figure 44. WordNet and NL-versions of the synset of the word "accession" 129

Figure 45. WordArM results for the case of WordNet as thesaurus .. 129

Figure 46. OntoArM results for the case of WordNet with 45 layers .. 142

Figure 47. OntoArM panel for manual querying words cut and CUT ... 142

Figure 48. OntoArM report to query from Figure 47 a) ... 143

Figure 49. OntoArM panel for manual updating definitions .. 147

Figure 50. Illustration of the experimental storing algorithm .. 155

Figure 51. Interrelations between computer configurations ... 161

Figure 52. Screenshot of the report of RDFArM for BSBM 50K .. 170

Figure 53. Benchmark results for BSBM 50K ... 170

Natural Language Addressing

7

Figure 54. Screenshot of the report of RDFArM for homepages-fixed.nt ... 171

Figure 55. Benchmark results for homepages-fixed.nt .. 172

Figure 56. Screenshot of the report of RDFArM for BSBM 250K .. 173

Figure 57. Benchmark results for BSBM 250K ... 174

Figure 58. Screenshot of the report of RDFArM for geocoordinates-fixed.nt 175

Figure 59. Benchmark results for geocoordinates-fixed.nt .. 176

Figure 60. Screenshot of the report of RDFArM for BSBM 1M ... 177

Figure 61. Benchmark results for BSBM 1M .. 179

Figure 62. Screenshot of the report of RDFArM for BSBM 5M ... 179

Figure 63. Benchmark results for BSBM 5M .. 182

Figure 64. Screenshot of the report of RDFArM for infoboxes-fixed.nt ... 184

Figure 65. Benchmark results for infoboxes-fixed.nt ... 185

Figure 66. Screenshot of the report of RDFArM for BSBM 25M ... 186

Figure 67. Benchmark results for BSBM 25M .. 187

Figure 68. Screenshot of the report of RDFArM for BSBM 100M ... 188

Figure 69. Benchmark results for BSBM 100M .. 189

Figure 70. Benchmark results for BSBM 100M and 200M on Configuration C 190

Figure 71. Visualization of Nemenyi test results ... 198

Figure 72. A screenshot from the RDFArM program .. 201

Figure 73. Storing time for one instance of BSBM 250K .. 202

Figure 74. Storing time for one instance of BSBM 1M ... 202

Figure 75. Storing time for one instance of BSBM 25M ... 202

Figure 76. Storing time for one instance of BSBM 100M ... 203

Figure 77. Comparison of time used by processors for BSBM 25M ... 203

Figure 78. Comparison of time used by processors for BSBM 100M ... 203

Figure 79. Comparison of log n and average time in ms for storing one triple from

BSBM 100M .. 204

Figure 80. The OntoPop’s platform [Amardeilh, 2006] ... 212

Figure 81. Information model of ICON ... 215

Figure 82. Taxonomy of ICON internal information resources ... 218

List of Figures

8

Figure 83. Using OntoArM for storing ontologies of text documents (following [Witte et al,

2010]) ... 220

Figure 84. Illustration of Collect/Report Paradigm via example of Bingo game 225

Figure 85. Cloud Collect/Report Scheme for Storing and Accessing Big Data 228

Figure 86. The front panel of system INFOS ... 235

Figure 87. The WordArM panel for working in automated mode ... 237

Figure 88. Content of WordArM input file with two informative lines ... 237

Figure 89. Content of WordArM output file with two informative lines ... 238

Figure 90. The WordArM panel for working in manual mode .. 239

Figure 91. Manual input of the concept and its definition.. 240

Figure 92. Manual output of the concept and its definition .. 240

Figure 93. Simultaneous work with concepts defined in different languages. 241

Figure 94. Content of OntoArM Onto-Write panel with informative lines .. 243

Figure 95. Content of OntoArM Onto-Read panel with informative lines .. 244

Figure 96. Manual input of the RDF-triple .. 245

Figure 97. Manual reading the RDF-triple ... 246

Figure 98. A part from reading from all layers .. 246

Figure 99. Content of RDFArM RDF-Write panel with informative lines ... 250

Figure 100. Content of RDFArM RDF-Read panel with informative lines .. 250

Figure 101. A sample function for converting the natural language text in path 263

Figure 102. A sample code of procedure for storing information using NL-addressing 264

Figure 103. A sample code of procedure for reading information using NL-addressing 265

Figure 104. A sample function for executing a program .. 266

Figure 105. A sample JAVA interface for NLAWrite program) ... 266

Figure 106. A sample JAVA interface for NLARead program .. 267

Figure 107. A sample JAVA interface for executing a program .. 267

Figure 108. A visualization of a Growing pyramidal network ... 268

Figure 109. Screenshot from the ICON Ontological Editor ... 269

Figure 110. Protégé graphical representation of the sample graph .. 275

Figure 111. Main features of Oracle Berkeley DB ... 287

Natural Language Addressing

9

List of Tables

Table 1. Five students’ records [Sahni, 2005] ... 40

Table 2. Examples of the graph models with explicit schema ... 55

Table 3. Examples of the graph models with implicit schema .. 60

Table 4. Methods for storing data in nine ontologies .. 72

Table 5. Description of nodes of the sample graph and index ... 76

Table 6. Description of edges of the sample graph and index ... 76

Table 7. Multi-layer representation of the sample graph with nodes as locations. 77

Table 8. Multi-layer representation of the sample graph with edges as locations. 77

Table 9. Realizations of MDAM: .. 82

Table 10. Final multi-layer representation of sample graph .. 92

Table 11. Representation of the sample graph by RDF-triples .. 94

Table 12. Time (ms) for writing in text file and NL-ArM archive .. 98

Table 13. Time correlation for writing in text file and NL-ArM archive .. 99

Table 14. Size in bytes of the text file and the NL-ArM archive ... 101

Table 15. Relation between sizes of the text file and NL-ArM archive .. 102

Table 16. Writing time comparison of Firebird and NL-ArM ... 105

Table 17. Average in milliseconds of writing time data .. 106

Table 18. Comparison of Firebird and NL-ArM for the case of large empty zones in the

matrix ... 108

Table 19. Influence of storing types .. 108

Table 20. Influence of the offset from 1 to 1000000 ... 109

Table 21. Reading time comparison of Firebird and NL-ArM .. 111

Table 22. Average in milliseconds (ms) of reading time data ... 111

Table 23. A simple vocabulary .. 116

List of Tables

10

Table 24. A simple ontology .. 116

Table 25. Experimental data for NL-storing of a dictionary .. 118

Table 26. WordNet lexicographer files .. 127

Table 27. Experimental data for storing WordNet as thesaurus .. 130

Table 28. Three notions behind the word "pipe" ... 133

Table 29. Some commonly accepted concepts and definitions ... 134

Table 30. Basic functions of the well-known ontological systems [Youn &

McLeod, 2006] .. 138

Table 31. Additional functions of the well-known ontological systems [Youn & McLeod,

2006] .. 140

Table 32. Report of the queries from Figure 47 a) and b) for all 45 layers of WordNet and

for both queries (cut;*) and (CUT;*) ... 143

Table 33. Experimental data for storing WordNet as ontology ... 148

Table 34. Results for speed of WordArM and OntoArM programs .. 148

Table 35. Benchmark results for dataset S1 (homepages-fixed.nt) ... 164

Table 36. Benchmark results for dataset S2 (BSBM 250K) .. 165

Table 37. Benchmark results for dataset S1 (infoboxes-fixed.nt) .. 166

Table 38. Benchmark results for dataset S2 (BSBM 100M) ... 166

Table 39. Details about used artificial middle-size RDF-datasets ... 169

Table 40. Benchmark results for BSBM 50K .. 170

Table 41. RDFArM results for homepages-fixed.nt .. 171

Table 42. Benchmark results for homepages-fixed.nt ... 172

Table 43. RDFArM results for BSBM 250K ... 173

Table 44. Benchmark results for BSBM 250K .. 174

Table 45. RDFArM results for geocoordinates-fixed.nt .. 175

Table 46. Benchmark results for geocoordinates-fixed.nt ... 176

Table 47. RDFArM results for BSBM 1M .. 177

Table 48. Benchmark results for BSBM 1M ... 178

Table 49. RDFArM results for BSBM 5M .. 180

Table 50. Benchmark results for BSBM 5M ... 182

Table 51. Details about artificial large RDF-datasets .. 183

Natural Language Addressing

11

Table 52. Benchmark results for infoboxes-fixed.nt .. 184

Table 53. Benchmark results for multiprocessor loading of infoboxes-fixed.nt 185

Table 54. Benchmark results for BSBM 25M ... 186

Table 55. Benchmark results for multiprocessors’ loading of BSBM 25M 187

Table 56. Benchmark results for BSBM 100M ... 188

Table 57. Benchmark results for BSBM 100M and 200M on Configuration C 189

Table 58. Benchmark results for multiprocessors’ loading of BSBM 100M 190

Table 59. Critical values for the two-tailed Nemenyi test ... 195

Table 60. Information about tests and results .. 195

Table 61. Benchmark values for middle size datasets ... 196

Table 62. Chosen benchmark values for middle size datasets ... 197

Table 63. Ranking of tested systems .. 197

Table 64. Average ranks of systems and distance to average rank of the first one.......................... 198

Table 65. Access times for two-element instances .. 199

Table 66. Loading times for three-element instances .. 200

Table 67. Results for storing datahub/data-0.nq .. 200

Table 68. Multi-layer representation of the family tree ... 218

Table 69. A part from Table 32 ... 226

Table 70. RDFArM loading results for infoboxes-fixed.nt ... 251

Table 71. Comparison of NLArM storing time and log n for 100 millions triples 256

Table 72. XML description of the sample graph by ICON Ontological Editor 269

Table 73. List of sample layers in ICON ... 271

Table 74. Protégé database format ... 274

Table 75. The Protégé QWL description of the sample graph ... 276

Table 76. The Protégé RDF description of the sample graph .. 277

Table 77. Storage characteristics of outlined RDF triple stores .. 292

Natural Language Addressing

12

List of Acronyms

 Concepts

ADT Abstract data type

AIDA Amdocs Intelligent Decision Automation

AKT Advanced Knowledge Technologies

AM Access Methods

ANSI SQL American National Standards Institute standardized Structured Query

Language

API Application Programming Interface

ArM Archive Manager based on MDIM

ArM32 32-bit realization of Archive Manager based on MDIM

ASCII American Standard Code for Information Interchange

BSBM Berlin SPARQL Benchmark

BSBM Berlin SPARQL Bench Mark

BST Binary Search Trees

BTC Billion Triple Challenge

CI-BER Cyber-infrastructure for a Billion Electronic Records

DAML+OIL DARPA Agent Markup Language + Ontology Inference Layer

DB DataBase

DB-models Models for organization of the data in the DataBases

DBMS Data Base Management System

DOD Department of Defense

DVD Dissociated Vertical Deviation

ebXML Electronic Business using eXtensible Markup Language

EC Electronic Collections

ER-model Entity – Relationship model

GIS Geographic Information Systems

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID IDentificator

IS Information space

KIF Knowledge Interchange Format

LDIF Linked Data Integration Framework

MDAM Multi-Dimensional Access Method

Natural Language Addressing 13

MDIM Multi-Dimensional Information Model

MPGN Multi-layer Pyramidal Growing Networks of information spaces

NARA National Archives & Records Administration

NDM Network Data Model

NLA Natural Language Addressing

NL-access Data Access using Natural Language Addressing

NL-Addressing Natural Language Addressing

NL-archives Data Base based on Natural Language Addressing

NLARead Function of the module WordArM for accessing the information by Natural

Language Addressing

NL-ArM NL-addressing Archive Manager

NLAWrite Function of the module WordArM for storing the information by Natural

Language Addressing

NL-index Index of Natural Language Addresses

NL-path A path defined by natural language word or phrase

NL-storing Storing based on Natural Language Addressing

NL-version Realization based on Natural Language Addressing

NL-words Natural Language Words

N-Quads RDF quadruples

NSF National Science Foundation

N-triples RDF triples

ODBMS Object DataBase Management Systems

OKBC Open Knowledge Base Connectivity

OLAP OnLine Analytical Processing

ORDBMS Object-Relational DataBase Management Systems

OWL Web Ontology Language

PC Personal Computer

PHT Perfect Hash Tables

RAM Random Access Memory (main memory of the computer)

RDBMS Relational DataBase Management Systems

RDF Resource Description Framework

rdfDB RDF Database

RDF-Read Function of the module RDFArM for accessing the information by Natural

Language Addressing

RDFS RDF schema

RDF-Write Function of the module RDFArM for accessing the information by Natural

Language Addressing

RSO model Relation-Subject-Object model

SD cards Secure Digital cards

SGML Standard Generalized Markup Language

SPARQL SPARQL Protocol and RDF Query Language

SRO model Subject-Relation-Object model

UML Unified Modeling Language

UNICODE Universal encoding standard

UNL model Universal information model

URI Uniform Resource Identifier

List of Acronyms

14

URLs Uniform Resource Locators

USB Universal Serial Bus

W3C World Wide Web Consortium

XML Extensible Markup Language

 Program tools

AllegroGraph High-performance persistent graph database

Apollo Class system is modeled according to the OKBC

ArMSpeed Specialized tool for NL-addressing of a document data base

Berkeley DB A tool for storing RDF information

Chimaera Software system that supports users in creating and maintaining distributed

ontologies on the web

DOE Differential Ontology Editor; simple ontology editor which allows the user

to build ontologies according to the methodology

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering; the first

module of the WonderWeb Foundational Ontologies Library (WFOL)

Firebird A relational database that runs on Windows, Linux, and a variety of UNIX

platforms

FrameNet Lexical resource for English, based on frame semantics

GDM Graph Data Model

GGL Graph Database System for Genomics

GMOD Graph-oriented Object Manipulation

GOAL Graph-based Object and Association Language

GOOD Graph Object Oriented Data Model

Gram Graph Data Model and Query Language

Grinder WordNet compiler for converting lexicographic format in to internal DB

format

GROOVY Graphically Represented Object-Oriented data model with Values

HyM Hypernode Model

ICOM Intelligent Conceptual Modeling

ICON Instrumental Complex for Ontology designatioN

INFOS INtelligence FOrmation System

KAON Karlsruhe ontology - open-source ontology management system targeted

for business applications

K-Infinity Knowledge editor broad support for object-oriented knowledge modeling

LDM Logical Data Model

LinKFactory Workbench Originally designed for very large medical ontologies

Medius Visual Ontology Modeller UML-based ontology modeling tool

Mikrokosmos Part of the Mikrokosmos knowledge-based machine translation system

currently under development at the Computer Research Laboratory, New

Mexico State University

OEM Object Exchange Model

OilEd Simple editor that allows the user to create and edit OIL ontologies

Omega Terminological ontology constructed at USC ISI as the reorganization and

Natural Language Addressing 15

synthesis of WordNet

OntoArM Experimental module for storing ontologies (small RDF triple sets) using

NL-addressing

OntoEdit Built on top of a powerful internal ontology model

OntoIntegrator Onto-linguistic research integrated environment for NLP using complicated

structured ontological models

OntoLingua Oriented toward the authoring of ontologies by assembling and extending

ontologies obtained from the library

OSTP Office of Science and Technology Policy

PaMaL Object Oriented Pattern Matching Language

PROMT Based on an extremely general knowledge model and therefore can be

applied across various platforms

PropBank Proposition Bank - focuses on the argument structure of verbs, and provides

a complete corpus annotated with semantic roles, including roles

traditionally viewed as arguments and as adjuncts

Protégé Free, open source ontology editor and knowledge-base framework

RDFArM Experimental module for storing large RDF triple or quadruple datasets

RDFArM-MP Multi processor simulation of RDFArM work

RDFedt Freeware module for creating complex Resource Description Framework

(RDF) files

Sensus Terminology taxonomy, as a framework into which additional knowledge

can be placed

Sesame An open-source framework for querying and analyzing RDF data

SMART Self-Monitoring, Analysis and Reporting Technology; Based on an

extremely general knowledge model and, therefore, can be applied across

various platforms

SUMO Suggested Upper Merged Ontology

WebODE Extensible ontology-engineering suite based on an application server,

whose development started in 1999 and whose support was discontinued in

2006

WebOnto Java applet coupled with a customized web server which allows users to

browse and edit knowledge models over the web

WordArM Experimental module for storing thesauruses using NL-addressing

WordNet Large lexical database of English

YARS Yet Another RDF Store

Natural Language Addressing

16

This Page Intentionally Left Blank

Natural Language Addressing

17

Introduction

Large unstructured or semi-structured datasets require a high level of computational

sophistication because operations that are easy at a small scale — such as moving data between

machines or in and out of storage, visualizing the data, or displaying results —can all require

substantial algorithmic ingenuity. As a data set becomes increasingly massive, it may be infeasible to

gather it in one place and analyze it as a whole. Thus, there may be a need for algorithms that operate

in a distributed fashion, analyzing subsets of the data and aggregating those results to understand the

complete set. One aspect of this is the challenge of data assimilation, in which we wish to use new

data to update model parameters without reanalyzing the entire data set. This is essential when new

waves of data continue to arrive, or subsets are analyzed in isolation of one another, and one aims to

improve the model and inferences in an adaptive fashion — for example, with streaming algorithms

[NRC, 2013].

The White House Office of Science and Technology Policy (OSTP) — in concert with

several Federal departments and agencies — created the “Big Data Research and Development

Initiative” to:

― Advance state-of-the-art core technologies needed to collect, store, preserve, manage,

analyze, and share huge quantities of data;

― Harness these technologies to accelerate the pace of discovery in science and

engineering, strengthen national security, and transform teaching and learning;

― Expand the workforce needed to develop and use Big Data technologies.

By improving the ability to extract knowledge and insights from large and complex

collections of digital data, the initiative promises to help solve some the Nation’s most pressing

challenges [BIG DATA INITIATIVE, 2012].

For instance, as it is introduced in [Big data, 2012], the USA Department of Defense (DOD)

is “placing a big bet on big data” investing $250 million annually (with $60 million available for new

research projects) across the Military Departments in a series of programs that will:

― Harness and utilize massive data in new ways and bring together sensing, perception and

decision support to make truly autonomous systems that can maneuver and make

decisions on their own;

― Improve situational awareness to help war fighters and analysts and provide increased

support to operations. The Department is seeking a 100-fold increase in the ability of

analysts to extract information from texts in any language, and a similar increase in the

number of objects, activities, and events that an analyst can observe.

Introduction

18

The XDATA program seeks to develop computational techniques and software tools for

analyzing large volumes of data, both semi-structured (e.g., tabular, relational, categorical, meta-data)

and unstructured (e.g., text documents, message traffic). Central challenges to be addressed include:

― Developing scalable algorithms for processing imperfect data in distributed data stores;

― Creating effective human-computer interaction tools for facilitating rapidly customizable

visual reasoning for diverse missions.

The program envisions open source software toolkits for flexible software development that

enable processing of large volumes of data for use in targeted defense applications.

The Cyber-infrastructure for a Billion Electronic Records (CI-BER) of the USA National

Archives & Records Administration (NARA) is a joint agency sponsored testbed notable for its

application of a multi-agency sponsored cyber infrastructure and the National Archives' diverse 87+

million file collection of digital records and information now active at the Renaissance Computing

Institute. This testbed will evaluate technologies and approaches to support sustainable access to ultra-

large data collections.

At the end, in the USA National Science Foundation (NSF), the Information Integration and

Informatics addresses the challenges and scalability problems involved in moving from traditional

scientific research data to very large, heterogeneous data, such as the integration of new data types

models and representations, as well as issues related to data path, information life cycle management,

and new platforms [Big data, 2012].

Worldwide Big Data technology and services are expected to grow. The challenge is to

strengthen Europe’s position as provider of innovative multilingual products and services based on

digital content and data, addressing well identified industry and consumer market needs. Research and

Innovation activities in this challenge will provide professionals and citizens with new tools to model,

analyze, and visualize vast amounts of data from which to extract more value, to make an intelligent

use of data coming from different sources and to create, access, exploit, and re-use all forms of digital

content in any language and with any device [HORIZON 2020, 2013].

In accordance with the actuality of these problems, this work is aimed to solve the problem

of searching in big data structures by proposing a special kind of hashing, so-called “multi-layer

hashing”, i.e. by implementing recursively the same specialized hash function to build and resolve the

collisions in hash tables. In other words, the main idea consists in using the specialized hashing

function in depth till it is needed.

This approach is called “Natural Language Addressing” (NLA) [Ivanova et al, 2012a;

Ivanova et al, 2013a; Ivanova et al, 2013d]. In this work we will concern:

― structured data (dictionaries, thesauruses, ontologies);

― semi-structured data (big RDF triple or quadruple datasets),

and will provide corresponded experiments and experimental practical implementation.

Natural Language Addressing

19

The idea of Natural Language Addressing (NLA)

 Variety and orderliness

The world around us can be described in one word as "Variety". It is difficult to agree that

the world has not so needed orderliness, created over millennia, developed and maintained constantly

as oasises of order in the core of the chaos... It is strange for our perception of the world as a

four-dimensional existence. It is strange, because our mind builds a completely different picture of

ordered spatiality and extensity.

The concept “order” has many meanings but here it is used in the sense of a condition of

logical or comprehensible arrangement among the separate elements of a group [AHD, 2009]; a state

in which all components or elements are arranged logically, comprehensibly, or naturally; sequence

(alphabetical order) [Collins, 2003]; arrangement of thoughts, ideas, temporal events

[WordNet, 2012].

One very important aspect of the order is that every entity of the ordered set has its own

location in it. The names of these locations are called addresses.

The common sense meaning of the concept “address” is such as a description of the location

of a person or organization, as written or printed on mail as directions for delivery [AHD, 2009]; the

conventional form by which the location of a building is described [Collins, 2003]; a sign in front of a

house or business carrying the conventional form by which its location is described; [WordNet, 2012].

We will use the concept “address” in the sense accepted in the Computer Science: the code

that identifies where a piece of information is stored [WordNet, 2012]; a name or number used in

information storage or retrieval that is assigned to a specific memory location; the memory location

identified by this name or number; a name or a sequence of characters that designates an e-mail

account or a specific site on the Internet or other network [AHD, 2009].

It is important to take in account that the memory address may be of two kinds

[Stably, 1970]:

― Physical location in any device (hard disk, main memory, flash memory);

― Logical (relative) location in a file given as an offset from the beginning of the file, i.e.

the position of a byte in the file. In other words, it is the sequential number of the pointed

byte in the file, starting from zero.

In this research we will use concept “memory address” only in the second sense, i.e. as

offset in a file stored somewhere in the computer accessible local or global network environment.

 Name – Address - Route

In January 1978, John F. Shoch from “Xerox Palo Alto Research Center” had written a very

interesting note [Shoch, 1978a]. Later in the same year he had published this note in the paper

[Shoch, 1978b]. This classical paper became as a mile stone in the further research concerning the

naming, addressing and routing at the first place with its “extremely general definition”

[Shoch, 1978a]:

Introduction

20

The “name” of a resource indicates “what” we seek,

an “address” indicates “where” it is, and

a “route” tell us “how to get there”.

This definition gives us a quick and intuitive understanding of the fundamental concepts of

naming. Informally, a name is a string of symbols that identifies an object, thus both a human readable

text-string and a binary number can be a name. Ideally, all objects would be named and handled in a

uniform manner [Jording & Andreasen, 1994].

Shoch gave “some further detail to flesh this out” [Shoch, 1978a]:

I. A “name” is a symbol - usually a human-readable string - identifying some resource, or set

of resources. The name (what we seek) needs to be bound to the address (where it is).

II. An “address”, however, is the data structure whose format can be recognized by all

elements in the domain, and which defines the fundamental addressable object. The address (where

something is) needs to be bound to the route (how to get there).

III. A “route” is the specific information needed to forward a piece of information to its

specified address.

Thus, a “name” may be used to derive an “address”, which may then be used to derive a

“route”.

There is an interesting similarity between this structure and mechanisms used in

programming languages (where one must bind a value to a variable), or in operating systems (where

one must link a particular piece of code into a module) [Shoch, 1978a].

Establishing and supporting the correspondence between logical and physical addresses is

duty of the operating systems or, in general, of all service functions of the local or global networks.

This correspondence is transparent for the end user programs which request the logical address and

operating environment is responsible to locate and access concrete physical location.

Special kind of files are so called “main memory mapped files” which are accessible as files

but during their processing are stored in the main computer memory and only updated their blocks are

written on the external memory devices. Such kind of processing of files is useful for speeding the

work of programs.

The concept “(logical) address” is closely connected with the term “information model”

[Ivanova, 2013].

 Information models

We continuously build information models of the world and of ourselves in this world. The

need of coordinating our actions with others humans or intelligent devices requires constant

information exchange (interaction), the basis of which are the information models.

In the Computer Science, the term “information model” is popular.

Natural Language Addressing

21

“An information model is a representation of concepts, relationships, constraints, rules, and

operations to specify data semantics for a chosen domain of discourse. The advantage of using an

information model is that it can provide sharable, stable, and organized structure of information

requirements for the domain context. An information modeling language is a formal syntax that allows

users to capture data semantics and constraints” [Lee, 1999].

In other words, the modeled objects are information structures and the relations between

them. The “computer information models” concern logical organization of storing the information

and operations with it.

It is wrong to believe that the information models are a phenomenon only of humans. But

only for humans there exist letters and accordingly textual information models (see for instance

[Čech, 2012]).

 Addressing in the textual information models

The simplest textual information model is a linear structure of text elements – letters, words,

sentences or more complicated structures like tags in XML.

Some models have continuous internal structure which may be divided on substructures, etc.

For instance, the Brookshear’s “Overview of the Computer Science” is such model. It is represented

by a book with chapters [Brookshear, 2012]. It is a complex information model because contains non-

textual elements: graphics and pictures.

The nonlinear information models may be represented by graphs of interconnected textual

elements. An example of such model is graphical representation of any ontology. Other examples are

relational structures usually represented by sets of tables.

When the definitions are placed randomly in a book, for the sake of convenience at the end

of book is located an index with main concepts and numbers of the pages where the concepts are

defined. One needs to follow simple algorithm to find a definition. This is illustrated at Figure 1 for

the concept “address, of memory cell”.

The important elements of the textual models may be defined by corresponded definitions

located in different places of the text. If the concepts together with theirs definitions are ordered

alphabetically, like in a dictionary (Figure 2), going through the text one may found the needed

concept and its definition.

In other words, irrespective of the type of the textual information model, every text element

has its own location in the text and, respectively, its own relative address in the text document (page,

paragraph, number of word, etc.) or file (relative offset from the first position in the file). Some of the

elements may be so important to be pointed by their relative positions in an index.

Index is a sequential arrangement of material, especially in alphabetical or numerical order,

which serves to guide, point out or otherwise facilitate reference, especially: a more or less detailed

alphabetized list of names, places, subjects, etc, treated in the text of a printed work. It usually appears

at the end of the book and identifies page numbers on which information about each subject appears

[AHD, 2009; Collins, 2003].

Introduction

22

Figure 1. Addressing by indexing [Brookshear, 2012]

Sets of concepts and their definitions, organized in dictionaries, are ordered alphabetically

and this way location of every concept may be found easily.

Natural Language Addressing

23

Figure 2. Addressing by natural language order [Auge, 1909]

 Computer indexes

The text information models may be stored as files in the (internal or external) computer

memory. Locating the concepts and definitions may be done by:

 Direct scanning the files;

 Indexing and based on it search of the pointer to the address (number of the first byte) of

the text element (record in the file).

Scanning the files is convenient only for small volumes of concepts and definitions. Some

rationalization is possible using some algorithms like binary search.

Indexing is creating tables (indexes) that point to the location of folders, files and records.

Depending on the purpose, indexing identifies the location of resources based on file names, key data

fields in a database record, text within a file or unique attributes in a graphics or video file

[PC mag, 2013].

In database design, an index is a list or a reference table of keys (or keywords), each of

which identifies a unique record or document and is used to locate a particular element within a data

array or table. Indices make it faster to find specific records and to sort records by the index field - that

is, the field used to identify each record [Webopedia, 2013; AHD, 2009; Collins, 2003].

For large volumes of concepts, the indexes became too large and additional, secondary

indexing is needed. Such multi-level index structures are well-known B-trees of Rudolf Bayer

[Bayer, 1971] as well as B+ trees [Knuth, 1997] (Figure 3).

Introduction

24

6 128 15 3218 35 5040 51 5852 60 7062 71 8072 83 8985 91 9492 96 9998

12 32 58

50 82

70 89 94

set of records

Figure 3. B-tree

Let repeat, the main idea of indexing is to facilitate the search by search in the (multi-level)

index and after that to ensure the direct access to the address given by the pointer. The address is

relative offset of the first byte of the record from the beginning (first byte) of the file. The value of the

offset is just what the pointer consists.

In other words, the goal of data indexing is to ease the search of and access to data at any

given time. This is done by creating a data structure called index and providing faster access to the

data. Accessing data is determined by the physical storage device being used. Indexing could

potentially provide large increases in performance for large-scale analysis of unstructured data.

Additionally the implementation of the chosen index must be suitable in terms of index construction

time and storage utilization [Faye et al, 2012].

Indexing needs resources: memory for storing additional information and time for

processing, which may be quite a long, especially for updating of the indexes when new elements are

added or some old ones are removed.

 Naming the addresses

Basic element of an index is couple: (name, address).

For instance such couples on Figure 1 are:

(“Address, of memory cell”, 27) (“Address polynomial”, 350)

In different sources the “name” is called “key”, “concept”, etc. The address usually is given

by any “number”, “pointer”, “offset”, “location”, etc.

There are two interpretations of the couple (concept, address):

1) The address is a connection of the concept with its definition in the text, i.e. practically we

have triple: (name, address, definition).

2) The concept is a name of a computer main memory address and may be used for user

friendly style of programming and the third part (value) may be variable, i.e. practically we have

triple: (name, address, value).

In the very beginning, replacing the address by name was used in the programming

languages for pointing the addresses by names of identificators, like in Algol 60 [Naur, 1963]. (In this

case, the address is real memory location but not offset in a file in the memory. We will not discuss all

kinds of addressing in the computer memory used in processor’s registers. In this text, the address is

Natural Language Addressing

25

relative offset from the first byte of a file, sometimes given together with information for file location

(path to the) file.)

Later, the same idea was used in the Web navigation systems. Web navigation is mostly

based on Uniform Resource Locators (URLs). URLs can be hard to remember and change constantly.

For instance, in the International Human-Friendly Web Navigation System, the RealNames' Internet

Keywords offer an alternative Web addressing scheme using natural language, replacing unfriendly

URLs like http://www.fordvehicles.com/vehiclehome.asp?vid=12 with common names such as "Ford

Mustang". Building a fully international system that provides a human-friendly naming infrastructure

for the whole Web is a challenging task. By leveraging Unicode to represent names it is possible to

build a global naming engine that, coupled with knowledge of local customs simplifies Web

navigation through the use of natural language keywords [Arrouse, 1999].

Some of the electronic spreadsheets have possibility to point a group of cells and/or rows

with any name and further to use this name in functions and other operations assuming all cells and/or

rows named by this name [Zoho sheet, 2012] (Figure 4).

Figure 4. Natural Language Addressing in a spreadsheet

For instance, Zoho Sheet can recognize and correlate names used in formulas with cells/cell

ranges automatically. You have to just give the row/column header of a table as arguments to

functions and Zoho Sheet will auto-recognize the cell range associated with the name. It is very

convenient to quickly type in the formulas with these names instead of worrying about keying in the

proper cell range.

Consider the sheet on Figure 4, available at http://zohosheet.com/public.do?fid=25835.

Look at the formulas in the cells F5:F7 and C9:E9. The formula =SUM (USA) will

automatically add the cell values in the row with the header ‘USA’. Earlier you had to use =SUM

(C5:E5). Now the row header can directly be used. You do not even need to name/label the cell

ranges. You can even copy and paste these formulas to adjacent rows or columns and they will

automatically be adjusted relatively. In this case, copying the F5 cell and pasting it to F6, will result in

the formula =SUM (EMEA) in F6. (Here the concept “address” is used as cell co-ordinates in the table

Introduction

26

(C5, C9, E5, F6, etc.) but not as offset in a file.)

The approach of replacing cell addresses with names in Zoho Sheet was called “Natural

Language Addressing”.

 Using encoding of the name both as address and as route

In this research we follow a proposition of Krassimir Markov to use the computer encoding

of name (concept) letters as logical address of connected to it information. This way no indexes are

needed and high speed direct access to the text elements is available. It is similar to the natural order

addressing in a dictionary shown at Figure 2 where no explicit index is used but the concept by itself

locates the definition. Our approach is similar to one in the Zoho Sheet, too.

Because of this we will use the same term: “Natural Language Addressing”.

Shoch's definition [Shoch, 1978a] failed to capture that addresses are names too and names

must eventually be mapped to routes [Jording & Andreasen, 1994]. In this sense, the idea of Natural

Language Addressing (NLA) is to use encoding of the name both as relative address and as route in a

multi-dimensional information space and this way to speed the access to stored information.

For instance, let have the next definition:

“London: The capital city of England and the United Kingdom, and the largest city, urban

zone and metropolitan area in the United Kingdom, and the European Union by most measures”.

In the computer memory, for example, it may be stored in a file at relative address

“00084920” and the index couple is: (“London”, “00084920”)

At the memory address “00084920” the main text, “The capital … measures.” will be stored.

To read/write the main text, firstly we need to find name “London” in the index and after that

to access memory address “00084920” to read/write the definition.

If we assume that name “London” in the computer memory is encoded by six numbers (letter

codes), for instance by using ASCII encoding system London is encoded as (76, 111, 110, 100, 111,

110), than we may use these codes for direct address to memory, i.e.

(“London”, “76, 111, 110, 100, 111, 110”)

Above we have written two times the same name and this is truth. Because of this we may

omit this couple and index, and read/write directly to the address “76, 111, 110, 100, 111, 110”.

For human this address will be shown as “London”, but for the computer it will be “76, 111,

110, 100, 111, 110”.

Now, what we need is a tool for storing and accessing information using Natural Language

Addressing. At first glance, such tool may be the hash tables.

 Hashing and natural language addressing

The array “76, 111, 110, 100, 111, 110” may be assumed as an offset, i.e. as number

“076111110100111110”. This causes two main problems:

- We need a hypothetic file with unlimited length;

- The offset points to only one byte but the definition is 170 bytes long and will occupy the

next addresses.

Natural Language Addressing

27

A possible solution is using hash tables.

Hash tables are used in a wide variety of applications. In networking systems, they are used

for a number of purposes, including: load balancing, intrusion detection, TCP/IP state management,

and IP address lookups. Hash tables are often attractive since sparse tables result in constant-time,

O(1), query, insert and delete operations. However, as the table occupancy, or load, increases,

collisions will occur which in turn places greater pressure on the collision resolution policy and often

dramatically increases the cost of the primitive operations. In fact, as the load increases, the average

query time increases steadily and very large worst case query times become more likely [Kumar &

Crowley, 2005].

This means that we could not use encoding of names as keys for hash tables or direct offsets.

We need a special organization of file internal structure and function that will transform the name in a

unique location in the file where the definition will be stored without collisions with other texts.

This problem is already solved at the level of file system – every file has its own name and

file system converts it (using file allocation table – FAT) in an address of the file’s first block on the

hard disk. This is convenient for information which is relatively long – whole documents, images,

music files, etc. because every file occupies at least one cluster (2KB, 4KB or more hard disk space).

We have to extend this idea to be used into the file. For this purpose we have to establish special kind

of file internal organization with additional specialized indexing.

The idea presented in this work differs from the hashing by two characteristics:

 The function which juxtapose the letters to integer numbers is one-one mapping and this

way no collisions exist;

 This mapping (hash function) may be used recursively for every symbol of a string to

build hierarchical multi-layer set of hash tables and this way to speed the access to

information.

For instance, the array “76, 111, 110, 100, 111, 110” may be assumed as a route to (co-

ordinates of) a point in a multi-dimensional (in this case: six-dimensional) information space and the

definition may be stored in this point.

In other words, our function may be used recursively for every symbol and this way we will

create hierarchical multi-layer set of tables. For the case of word “London” we will have six layers.

The natural language does not contain words only of six letters long. The length of the words

is variable and in addition there exist names as phrases like “Address polynomial” above. The set of

all natural words and phrases defines a multi-dimensional logical address space with variable

dimensions and unlimited size.

What we need are:

 A special algorithm which converts such multi-dimensional addresses in concrete routes

to linear (relative) locations in the files (on the hard disk, for example);

 A program tool which will realize this algorithm.

A solution of this problem is presented in this monograph.

Introduction

28

Brief overview of the content

Chapter 1. Firstly in this chapter, we will remember the needed basic mathematical

concepts. Special attention will be paid to the Names Sets – mathematical structure which is used

further for building models needed for our research. We will use strong hierarchies of named sets to

create a specialized mathematical model for new kind of organization of information bases called

“Multi-Domain Information Model” (MDIM). The “information spaces” defined in the model are

kind of strong hierarchies of enumerations (named sets).

At the end, we will remember the main features of hashing and types of hash tables as well

as the idea of “Dynamic perfect hashing” and “Trie”, especially – the “Burst trie”. Hash tables and

tries give very good starting point. The main problem is that they are designed as structures in the

main memory which has limited size, especially in small desktop and laptop computers.

Chapter 2 presents state of the art in the storing models.

This chapter is aimed to introduce the main data structures and storing technologies which

we will use to compare our results. Mainly they are graph data models as well as Resource

Description Framework (RDF) storage and retrieval technologies.

Firstly we shortly define concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics will be outlined.

During the eighties of the last century, the total growing of the research and developments in

the computers’ field, especially in image processing, data mining and mobile support cause impetuous

progress of establishing convenient "spatial information structures" and "spatial-temporal

information structures" and corresponding access methods. Important cases of spatial representation

of information are Graph models. Because of this, Graph models and databases will be discussed

more deeply and examples of different graph database models will be presented. The need to manage

information with graph-like nature especially in RDF-databases has reestablished the relevance of

this area.

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures will be in the center of our attention. Storing models for

several popular ontologies and summary of main types of storing models for ontologies and, in

particular, RDF data, will be discussed.

Our attention will be paid to addressing and naming (labeling) in graphs with regards to

introducing the Natural Language Addressing (NL-addressing) in graphs. A sample graph will be

analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we will see that a

“multi-layer” representation is possible and the identifiers of nodes and edges can be avoided. As

result of the analysis of the example, the advantages and disadvantages of the multi-layer

representation of graphs will be outlined.

Natural Language Addressing

29

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. To achieve such possibilities, we will use “Multi-Domain Information

Model” (MDIM) and corresponded to it software tools to realize dynamic perfect hashing and burst

tries as external memory structures.

Chapter 3 introduces an Access method based on NL-addressing.

This chapter is aimed to introduce a new access method based on the idea of NL-addressing.

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. Hash tables and tries give very good starting point. The main problem

is that they are designed as structures in the main memory which has limited size, especially in small

desktop and laptop computers. Because of this we need analogous disk oriented database

organization.

To achieve such possibilities, we decided to use “Multi-Domain Information Model”

(MDIM) and corresponded to it software tools. MDIM and its realizations are not ready to support

NL-addressing. We will upgrade them for ensuring the features of NL-addressing via new access

method called NL-ArM.

The program realization of NL-ArM, based on specialized hash functions and two main

functions for supporting the NL-addressing, access will be outlined. In addition, several operations

aimed to serve the work with thesauruses and ontologies as well as work with graphs, will be

presented.

Chapter 4 is aimed to outline two basic experiments.

In this chapter we will present two types “clear” experiments: with a text file and a

relational database. The reason is that they are wide used for storing of semi-structured data.

Chapter 5 contains description of experiments for NL-storing of small datasets.

In this chapter we will present several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of small size datasets which contain up to one hundred

thousands of instances.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two

regularities of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

This chapter starts with introduction of the idea of knowledge representation. Further in the

chapter three experiments with small size datasets are outlined: for NL-storing of dictionaries,

thesauruses, and ontologies. Presentation of every experiment starts with introductory part aimed to

give working definition and to outline state of the art in storing concrete structures.

Introduction

30

We start with analyzing the easiest one: NL-storing dictionaries. After that, NL-storing of

thesauruses will be analyzed. An experiment with WordNet thesaurus and program WordArM based

on NL-addressing will be discussed.

At the end, a special attention will be given to NL-storing ontologies. This part of the chapter

begins with introducing the basic ontological structures as well as the corresponded operations and

tools for operating with ontologies. Further, NL-storing models for ontologies will be discussed and

experiments with OntoArM program for storing ontologies based on NL-addressing will be outlined.

Chapter 6 grounds on analyzing experiments for NL-storing middle-size and large

RDF-datasets.

In this chapter we will present results from series of experiments which are needed to

estimate the storing time of NL-addressing for middle-size and large RDF-datasets.

The experiments for NL-storing of middle-size and large RDF-datasets are aimed to estimate

possible further development of NL-ArM. We assume that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. We will analyze what will be

the place of NL-ArM in this environment. Our hypothesis is that NL-addressing will have good

performance.

Chapter will start with describing the experimental storing models and algorithm used in

this research. Further an estimation of experimental systems will be provided to make different

configurations comparable. Special proportionality constants for hardware and software will be

proposed. Using proportionality constants, experiments with middle-size and large datasets became

comparable.

Experiments will be provided with both real and artificial datasets. Experimental results will

be systematized in corresponded tables. For easy reading visualization by histograms will be given.

Chapter 7 contains analysis of experiments.

In this chapter we will analyze experiments presented in previous chapters 4, 5, and 6, which

contain respectively results from (1) basic experiments; (2) experiments with structured datasets; (3)

experiments with semi-structured datasets. Special attention will be paid to analyzing of storing times

of NL-ArM access method and its possibilities for multi-processing.

In Chapter 8 practical aspects will be discussed.

Some practical aspects of implementation and using of NL-addressing will be discussed in

this chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models will be outlined.

The implementation has to be done following corresponded methodologies for building and

using of ontologies. Such known methodology will be discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Natural Language Addressing

31

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we will illustrate

following the OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of NAS of

Ukraine.

In this chapter we briefly will present ICON and its structure. Attention will be paid to the

storing of internal information resources of ICON realized on the base of NL-addressing and

experimental programs WordArM and OntoArM.

Conclusion contains a short presentation of the next steps. Special attention is done on the

area of so called “Big Data” and possible implementation of NLA for processing of large

semi-structured data sets. A brief outline of the main achievements of this work is given.

Appendix A outlines the program realizations of tools for storing information using

NL-addressing: WordArM, OntoArM, and RDFArM for storing thesauruses, small ontologies, and

large RDF triple datasets. Some illustrative tables and figures from experiments as well as other

supporting information are given.

Appendix B contains short information about tools analyzed in the monograph. Main

attention will be paid to Protégé 4.2 and SPARQL. Storage characteristics of analyzed RDF triple

stores will be presented shortly in two groups: (1) DBMS based approaches, (2) Multiple indexing

frameworks.

The monograph was written by:

- Krassimir Markov: Introduction, Ch. 2, 4. 7, Coclusion, and Appendix B2-B3 (125 pp.);

- Krassimira Ivanova: Ch. 1, 3, 5, 6, 8.1-8.3, and Appendix A1-A5 (153 pp.);

- Vitalii Velychko: Chapter 8.4, Appendix A6 - A8, and Appendix B1 (27 pp.)

- Koen Vanhoof and Juan Castellanos: consulting and editing.

Natural Language Addressing

32

1 Theoretical surroundings

Abstract

Firstly in this chapter, we will remember the needed basic mathematical concepts. Special

attention will be paid to the Names Sets – mathematical structure which is used further for building

models needed for our research. We will use strong hierarchies of named sets to create a specialized

mathematical model for new kind of organization of information bases called “Multi-Domain

Information Model” (MDIM). The “information spaces” defined in the model are kind of strong

hierarchies of enumerations (named sets).

At the end, we will remember the main features of hashing and types of hash tables as well

as the idea of “Dynamic perfect hashing” and “Trie”, especially – the “Burst trie”. Hash tables and

tries give very good starting point. The main problem is that they are designed as structures in the

main memory which has limited size, especially in small desktop and laptop computers. For practical

implementation of NLA we need a proper model for database organization and corresponded

specialized tools. To achieve such possibilities, we will use “Multi-Domain Information Model”

(MDIM) and corresponded to it software tools to realize dynamic perfect hashing and burst tries as

external memory structures.

1.1 Basic mathematical concepts

Let remember the basic mathematical concepts needed for this research [Bourbaki, 1960,

Burgin, 2010].

 is the empty set.

If X is a set, then r X means that r belongs to X or r is a member of X.

If X and Y are sets, then Y X means that Y is a subset of X, i.e., Y is a set such that all

elements of Y belong to X.

The union Y X of two sets Y and X is the set that consists of all elements from Y and

from X.

The intersection Y X of two sets Y and X is the set that consists of all elements that belong

both to Y and to X.

The union iI Xi of sets Xi is the set that consists of all elements from all sets Xi, iI.

Natural Language Addressing

33

The intersection iI Xi of sets Xi is the set that consists of all elements that belong to each

set Xi, iI.

The difference Y\X of two sets Y and X is the set that consists of all elements that belong to Y

but does not belong to X.

If X is a set, then 2X is the power set of X, which consists of all subsets of X. The power set of

X is also denoted by P(X).

If X and Y are sets, then X × Y = {(x, y); x X, y Y} is the direct or Cartesian product of X

and Y, in other words, X × Y is the set of all pairs (x, y), in which x belongs to X and y belongs to Y.

Elements of the set Xn have the form (x1, x2, …, xn) with all xi X and are called n-tuples, or

simply, tuples.

A fundamental structure of mathematics is function. However, functions are special kinds of

binary relations between two sets.

A binary relation T between sets X and Y is a subset of the direct product X × Y. The set X is

called the domain of T (X = Dom(T)) and Y is called the codomain of T (Y = CD(T)). The range of the

relation T is Rg(T) = {y; x X ((x, y) T)}. The domain of definition of the relation T is DDom(T) =

{x; y Y ((x, y) T)}. If (x, y) T, then one says that the elements x and y are in relation T, and one

also writes T(x, y).

Binary relations are also called multi valued functions (mappings or maps).

YX is the set of all mappings from X into Y.

Xn = X × X × … X × X .

 n

A preorder (also called quasiorder) on a set X is a binary relation Q on X that satisfies the

following axioms:

1. Q is reflexive, i.e. xQx for all x from X.

2. Q is transitive, i.e., xQy and yQz imply xQz for all x, y, z X.

A partial order is a preorder that satisfies the following additional axiom:

3. Q is antisymmetric, i.e., xQy and yQx imply x = y for all x, y X.

A strict partial order is a preorder that is not reflexive, is transitive and satisfies the

following additional axiom:

4. Q is asymmetric, i.e., only one relation xQy or yQx is true for all x, y X.

Equivalence on a set X is a binary relation Q on X that is reflexive, transitive and satisfies the

following additional axiom:

5. Q is symmetric, i.e., xQy implies yQx for all x and y from X.

A function (also called a mapping or map or total function or total mapping) f from X to Y is

a binary relation between sets X and Y in which:

― There are no elements from X which are corresponded to more than one element from Y;

― To any element from X, some element from Y is corresponded.

Often total functions are also called everywhere defined functions. Traditionally, the element

f(a) is called the image of the element a and denotes the value of f on the element a from X. At the

Theoretical surroundings

34

same time, the function f is also denoted by f: X Y or by f(x). In the latter formula, x is a variable

and not a concrete element from X.

A partial function (or partial mapping) f from X to Y is a binary relation between sets X and

Y in which there are no elements from X which are corresponded to more than one element from Y.

Thus, any function is also a partial function. Sometimes, when the domain of a partial

function is not specified, we call it simply a function because any partial function is a total function on

its domain.

A multi valued function (or mapping) f from X to Y is any binary relation between sets

X and Y.

f(x) a means that the function f(x) is equal to a at all points where f(x) is defined.

Two important concepts of mathematics are the domain and range of a function. However,

there is some ambiguity for the first of them. Namely, there are two distinct meanings in current

mathematical usage for this concept. In the majority of mathematical areas, including the calculus and

analysis, the term “domain of f” is used for the set of all values x such that f(x) is defined. However,

some mathematicians (in particular, category theorists), consider the domain of a function f: X→Y to

be X, irrespective of whether f(x) is defined for all x in X. To eliminate this ambiguity, we suggest the

following terminology consistent with the current practice in mathematics.

If f is a function from X into Y, then the set X is called the domain of f (it is denoted by

Domf) and Y is called the codomain of T (it is denoted by Codomf). The range Rgf of the function f is

the set of all elements from Y assigned by f to, at least, one element from X, or formally, Rgf = {y; x

 X (f(x) = y)}. The domain of definition DDomf of the function f is the set of all elements from X that

related by f to, at least, one element from Y is or formally, DDomf ={x; y Y (f(x) = y)}. Thus, for a

partial function f(x), its domain of definition DDomf is the set of all elements for which f(x) is defined.

Taking two mappings (functions) f: X Y and g: Y Z, it is possible to build a new

mapping (function) gf: X Z that is called composition or superposition of mappings (functions) f

and g and defined by the rule gf(x) = g(f(x)) for all x from X.

An n-ary relation R in a set X is a subset of the nth power of X, i.e., R Xn. If (a1, a2, …, an)

 R, then one says that the elements a1, a2 ,…, an from X are in relation R.

 Named sets

Named set X is a triple X = (X, μ, I) where:

― X is the support of X and is denoted by S(X);

― I is the component of names (also called set of names or reflector) of X and is denoted by

N(X);

― μ: X I is the naming map or naming correspondence (also called reflection) of the

named set X and is denoted by n(X).

The most popular type of named sets is a named set X = (X, μ, I) in which X and I are sets

and μ consists of connections between their elements. When these connections are set theoretical, i.e.,

each connection is represented by a pair (x, a) where x is an element from X and a is its name from I,

we have a set theoretical named set, which is binary relation.

Natural Language Addressing

35

A name a I is called empty if μ-1(a) = .

A named set X is called:

― Normalized if in X there are no empty names;

― Conormalized if in X there no elements without names;

Named sets as special cases include:

― Usual sets;

― Fuzzy sets;

― Multisets;

― Enumerations;

― Sequences (countable as well as uncountable);

etc.

A lot of examples of named sets we may find in linguistics studying semantical aspects that

are connected with applying different elements of language (words, phrases, texts) to their meaning

[Burgin & Gladun, 1989; Burgin, 2010].

A named set Y = (Y, , J) is called named subset of named set X if YX, J I, and = μ |(Y,J)

(μ(Y J)). In this case Y and X are connected by the relation of the inclusion.

An ordered tuple of named sets = [X1, X2, ..., Xk] where for all i=1, ..., k-1 the condition

N(Xi)S(Xi+1) is fulfilled is called chain of named sets.

The number k is called a length of the chain .

A tuple of named sets 1 = [X, Y1, Y2, ..., Yn] where for all i=1,...,n the condition

N(Yi)S(X) is fulfilled is called one level hierarchy of named sets.

If N(Yi) N(Yj) and N(Yi)S(X) for all i=1,...,n, j=1,...,n than is a strong one level

hierarchy of named sets.

A tuple of named sets 2 = [X, 1,1, 1,2, ..., 1,m] where sub-hierarchies 1j = [Yj, Z1, Z2, ...,

Zk] , j=1,...,m are one level hierarchy of named sets is called second level hierarchy of named sets.

If 1j, j=1,...,m, are strong one level hierarchies of named sets than 2 is a strong second

level hierarchy of named sets.

A tuple of named sets n = [X, n-1,1, n-1,2, ..., n-1,l] where n-1,i , i=1,...,l are n-1 level

hierarchies of named sets than n is a n-th level hierarchy of named sets..

If all sub-hierarchies of n are strong hierarchies of named sets than n is a strong n-th level

hierarchy of named sets.

1.2 Hashing

A set abstract data type (set ADT) is an abstract data type that maintains a set S under the

following three operations:

1. Insert(x): Add the key x to the set.

2. Delete(x): Remove the key x from the set.

3. Search(x): Determine if x is contained in the set, and if so, return a pointer to x.

Theoretical surroundings

36

One of the most practical and widely used methods of implementing the set ADT is with

hash tables [Morin, 2005].

The simplest implementation of such data structure is an ordinary array, where k-th element

corresponds to key k. Thus, we can execute all operations in O(1). It is impossible to use this

implementation, if the total number of keys is large [Kolosovskiy, 2009].

The main idea behind all hash table implementations is to store a set of

n = |S| elements in an array (the hash table) A of length m. In doing this, we require a function that

maps any element x to an array location. This function is called a hash function h and the value h(x) is

called the hash value of x. That is, the element x gets stored at the array location A[h(x)].

The occupancy of a hash table is the ratio = n/m of stored elements to the length of A

[Morin, 2005].

We have two cases: (1) m n and (2) m n:

― In the first case (m n) we may expect so called perfect hashing where every element

may be stored in separate cell of the array. In other words, if we have a collection of

n elements whose keys are unique integers in (1, m), where m n, then we can store the

items in a direct address table, T[m], where Ti is either empty or contains one of the

elements of our collection.

― In the second case (m n) we may expect so called “collisions” when two or more

elements have to be stored in the same cell f the array.

If we work with two or more keys, which have the same hash value, these keys map to the

same cell in the array. Such situations are called collisions. There are two basic ways to implement

hash tables to resolve collisions:

― Chained hash table;

― Open-address hash table.

In chained hash table each cell of the array contains the linked list of elements, which have

corresponding hash value. To add (delete, search) element in the set we add (delete, search) to

corresponding linked list. Thus, time of execution depends on length of the linked lists.

In open-address hash table we store all elements in one array and resolve collisions by using

other cells in this array. To perform insertion we examine some slots in the table, until we find an

empty slot or understand that the key is contained in the table. To perform search we execute similar

routine [Kolosovskiy, 2009].

The study of hash tables follows two very different lines: (1) integer universe assumption;

(2) random probing assumption.

Integer universe assumption: All elements stored in the hash table come from the universe

U = {0,...,u−1}. In this case, the goal is to design a hash function h : U → {0,...,m−1} so that for each

i ∈ {0,...,m−1}, the number of elements x ∈ S such that h(x) = i is as small as possible. Ideally, the

hash function h would be such that each element of S is mapped to a unique value in {0,...,m−1}.

Historically, the integer universe assumption seems to have been justified by the fact that

any data item in a computer is represented as a sequence of bits that can be interpreted as a binary

number.

Natural Language Addressing

37

However, many complicated data items require a large (or variable) number of bits to

represent and this make the size of the universe very large. In many applications u is much larger than

the largest integer that can fit into a single word of computer memory. In this case, the computations

performed in number-theoretic hash functions become inefficient. This motivates the second major

line of research into hash tables, based on Random probing assumption.

Random probing assumption: Each element x that is inserted into a hash table is a black

box that comes with an infinite random probe sequence x0, x1, x2, ... where each of the xi is

independently and uniformly distributed in {0, ...,m−1}.

Both the integer universe assumption and the random probing assumption have their place in

practice.

When there is an easily computing mapping of data elements onto machine word sized

integers then hash tables for integer universes are the method of choice.

When such a mapping is not so easy to compute (variable length strings are an example) it

might be better to use the bits of the input items to build a good pseudorandom sequence and use this

sequence as the probe sequence for some random probing data structure [Morin, 2005].

 Perfect hash function

We consider hash tables under the integer universe assumption, in which the key values x

come from the universe U = {0, ..., u−1}. A hash function h is a function whose domain is U and

whose level is the set {0, ..., m−1}, m ≤ u.

A hash function h is said to be a perfect hash function for a set S ⊆ U if, for every x ∈ S,

h(x) is unique.

A perfect hash function h for S is minimal if m = |S|, i.e., h is a bisection between S and

{0, ..., m − 1}. Obviously a minimal perfect hash function for S is desirable since it allows us to store

all the elements of S in a single array of length n. Unfortunately, perfect hash functions are rare, even

for m much larger than n [Morin, 2005].

The set of elements, S, may be:

 Static (no updates);

 Dynamic where fast queries, insertions, and deletions must be made on a large set.

“Dynamic perfect hashing” is useful for the second type of situations. In this method, the

entries that hash to the same slot of the table are organized as separate second-level hash table. If there

are k entries in this set S, the second-level table is allocated with k2 slots, and its hash function is

selected at random from a universal hash function set so that it is collision-free (i.e. a perfect hash

function). Therefore, the look-up cost is guaranteed to be O(1) in the worst-case

[Dietzfelbinger et al, 1994].

Perfect hashing can be used in many applications in which we want to assign a unique

identifier to each key without storing any information on the key. One of the most obvious

applications of perfect hashing (or k-perfect hashing) is when we have a small fast memory in which

we can store the perfect hash function while the keys and associated satellite data are stored in slower

but larger memory. The size of a block or a transfer unit may be chosen so that k data items can be

retrieved in one read access. In this case we can ensure that data associated with a key can be retrieved

Theoretical surroundings

38

in a single probe to slower memory. This has been used for example in hardware routers. Perfect

hashing has also been found to be competitive with traditional hashing in internal memory on standard

computers. Recently perfect hashing has been used to accelerate algorithms on graphs when the

graph representation does not fit in main memory [Belazzougui et al, 2009].

For the purposes of Natural Language Addressing (NLA) we need possibility to use perfect

hashing with dynamic and very large (practically – unlimited) set, S, of elements with variable length

of strings. In this case, the computing mapping of data elements onto machine word sized integers is

not so easy to compute (we have long strings with variable length). In the same time, we could not use

the bits of the input items to build a good pseudorandom sequence and use this sequence as the probe

sequence for some random probing data structure, because of very large, unlimited, set, S, of elements.

1.3 Tries

“As defined by me, nearly 50 years ago, it is properly pronounced "tree" as in the word

"retrieval". At least that was my intent when I gave it the name "Trie". The idea behind the

name was to combine reference to both the structure (a tree structure) and a major purpose

(data storage and retrieval)”.

Edward Fredkin, July 31, 2008

Trie is a tree for storing strings in which there is one node for every common prefix. The

strings are stored in extra leaf nodes.

A trie can be thought of as an m-ary tree, where m is the number of characters in the

alphabet. A search is performed by examining the key one character at a time and using an m-way

branch to follow the appropriate path in the trie, starting at the root. In other words, in the multi-way

trie (Figure 5), each node has a potential child for each letter in the alphabet. Below is an example of a

multi-way trie indexing the three words BE, BED, and BACCALAUREATE [Pfenning, 2012].

Figure 5. Example of multi-way trie [Pfenning, 2012]

Tries are distinct from the other data structures because they explicitly assume that the keys

are a sequence of values over some (finite) alphabet, rather than a single indivisible entity. Thus tries

Natural Language Addressing

39

are particularly well-suited for handling variable-length keys. Also, when appropriately implemented,

tries can provide compression of the set represented, because common prefixes of words are combined

together; words with the same prefix follow the same search path in the trie [Sahni, 2005].

To illustrate trie [Liang, 1983] had used the set of 31 most common English words

(Figure 6):

A
AND
ARE
AS
AT
BE
BUT
BY

FOR
FROM
HAD
HAVE
HE
HER
HIS
I

IN
IS
IT
NOT
OF
ON
OR
THAT

THE
THIS
TO
WAS
WHICH
WITH
YOU

Figure 6. The 31 most common English words [Liang, 1983]

Figure 7 shows a linked trie representing this set of words. In a linked trie, the m-way branch

is performed using a sequential series of comparisons.

Figure 7. Linked trie for the 31 most common English words

[Liang, 1983].

Suppose that the elements in our dictionary are student records that contain fields such as

student name and social security number (SS#) [Sahni, 2005]. The key field is the social security

Theoretical surroundings

40

number, which is a nine digit decimal number. To keep the example manageable, assume we have

only five elements.

Table 1 shows the name and SS# fields for each of the five elements in our dictionary.

Table 1. Five students’ records [Sahni, 2005]

Name Social Security Number (SS#)
Jack 951-94-1654
Jill 562-44-2169
Bill 271-16-3624

Kathy 278-49-1515
April 951-23-7625

To obtain a trie representation for these five elements, we first select a radix that will be used

to decompose each key into digits. If we use the radix 10, the decomposed digits are just the decimal

digits shown in Table 1. We shall examine the digits of the key field (i.e., SS#) from left to right.

Using the first digit of the SS#, we partition the elements into three groups–elements whose SS#

begins with 2 (i.e., Bill and Kathy), those that begin with 5 (i.e., Jill), and those that begin with 9 (i.e.,

April and Jack). Groups with more than one element are partitioned using the next digit in the key.

This partitioning process is continued until every group has exactly one element in it (Figure 8)

[Sahni, 2005].

Figure 8. Trie for the elements of Table 1 [Sahni, 2005]

The partitioning process described above naturally results in a tree structure that has 10-way

branching as is shown in Figure 8. The tree employs two types of nodes:

 Branch nodes;

 Element nodes.

Each branch node has 10 children (or pointer/reference) fields. These fields, child[0 : 9],

have been labeled 0, 1, ..., 9 for the root node of Figure 8 root.child[i] points to the root of a sub-trie

that contains all elements whose first digit is i.

In Figure 8, nodes A, B, D, E, F, and I are branch nodes.

Natural Language Addressing

41

The remaining nodes, nodes C, G, H, J, and K are element nodes. Each element node

contains exactly one element. In Figure 8, only the key field of each element is shown in the element

nodes.

 Burst Tries

The tree data structures compared to hashing have three sources of inefficiency

[Heinz et al, 2002]:

― First, the average search lengths is surprisingly high, typically exceeding ten pointer

traversals and string comparisons even on moderate-sized data sets with highly skew

distributions. In contrast, a search under hashing rarely requires more than a string

traversal to compute a hash value and a single successful comparison;

― Second, for structures based on Binary Search Trees (BSTs), the string comparisons

involved redundant character inspections, and were thus unnecessarily expensive. For

example, given the query string “middle” and given that, during search, “Michael” and

“midfield” have been encountered, it is clear that all subsequent strings inspected must

begin with the prefix “mi”;

― Third, in tries the set of strings in a sub-trie tends to have a highly skew distribution:

typically the vast majority of accesses to a sub-trie are to find one particular string. Thus

use of a highly time-efficient, space-intensive structure for the remaining strings is not a

good use of resources [Heinz et al, 2002].

These considerations led to the burst trie. A burst trie is an in-memory data structure,

designed for sets of records that each has a unique string that identifies the record and acts as a key.

Formally, a string s with length n consists of a series of symbols or characters ci for i=0;...;n, chosen

from an alphabet A of size |A|. It is assumed that |A| is small, typically no greater than 256

[Heinz et al, 2002].

A burst trie consists of three distinct components (Figure 9): a set of records, a set of

containers, and an access trie:

― Records. A record contains a string; information as required by the application using the

burst trie (that is, for information such as statistics or word locations); and pointers as

required to maintain the container holding the record. Each string is unique;

― Containers. A container is a small set of records, maintained as a simple data structure

such as a list or a binary search tree (BST). For a container at depth k in a burst trie, all

strings have length at least k and the first k characters of all strings are identical. It is not

necessary to store these first k characters. Each container also has a header, for storing

the statistics used by heuristics for bursting. Thus a particular container at depth 3

containing “author” and “automated” could also contain “autopsy” but not “auger”;

― Access trie. An access trie is a trie whose leaves are containers. Each node consists of an

array p, of length |A|, of pointers, each of which may point to either a trie node or a

container, and a single empty-string pointer to a record. The |A| array locations are

indexed by the characters cA. The remaining pointer is indexed by the empty string.

The depth of the root is defined to be 1. Leaves are at varying depths.

Theoretical surroundings

42

A burst trie can be viewed as a generalization of other proposed variants of trie.

Figure 9 shows an example of a burst trie storing ten records whose keys are “came”, “car”,

“cat”, “cave”, “cy”, “cyan”, “we”, “went”, “were”, and “west” respectively. In this example, the

alphabet A is the set of letters from A to Z, and in addition an empty string symbol is shown; the

container structure used is a BST. In this figure, the access trie has four nodes, the deepest at depth 3.

The leftmost container has four records, corresponding to the strings “came”, “car”, “cat”, and “cave”.

One of the strings in the rightmost container is “”, corresponding to the string “we”. The string “cy”

is stored wholly within the access trie, as shown by the empty-string pointer to a record, indexed by

the empty string [Heinz et al, 2002].

Figure 9. Burst trie with BSTs used in containers [Heinz et al, 2002]

Conclusion of Chapter 1

This chapter was aimed to introduce the theoretical surroundings of our work.

Firstly in this chapter, we remembered the needed basic mathematical concepts. Special

attention was paid to the Names Sets – mathematical structure which we implemented in our research.

We used strong hierarchies of named sets to create a specialized mathematical model for new kind of

organization of information bases called “Multi-Dmain Information Model” (MDIM). The

“information spaces” defined in the model are kind of strong hierarchies of enumerations (named

sets).

We will realize MDIM via special kind of hashing. Because of this, we remembered the main

features of hashing and types of hash tables as well as the idea of “Dynamic perfect hashing” and

“Trie”, especially – the “Burst trie”. A burst trie is an in-memory data structure, designed for sets of

records that each has a unique string that identifies the record and acts as a key. Burst trie consists of

three distinct components: a set of records, a set of containers, and an access trie.

Natural Language Addressing

43

2 Storing models

Abstract

This chapter is aimed to introduce the main data structures and storing technologies which

we will use to compare our results. Mainly they are graph data models as well as Resource

Description Framework (RDF) storage and retrieval technologies.

Firstly we shortly define concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics will be outlined.

During the eighties of the last century, the total growing of the research and developments in

the computers’ field, especially in image processing, data mining and mobile support cause impetuous

progress of establishing convenient "spatial information structures" and "spatial-temporal

information structures" and corresponding access methods. Important cases of spatial representation

of information are Graph models. Because of this, Graph models and databases will be discussed

more deeply and examples of different graph database models will be presented. The need to manage

information with graph-like nature especially in RDF-databases has reestablished the relevance of

this area.

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures will be in the center of our attention. Storing models for

several popular ontologies and summary of main types of storing models for ontologies and, in

particular, RDF data, will be discussed.

At the end of this chapter, our attention will be paid to addressing and naming (labeling) in

graphs with regards to introducing the Natural Language Addressing (NL-addressing) in graphs. A

sample graph will be analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we will see that a

“multi-layer” representation is possible and the identifiers of nodes and edges can be avoided. As

result of the analysis of the example, the advantages and disadvantages of the multi-layer

representation of graphs will be outlined.

The specialized mathematical model for new kind of organization of information bases

called “Multi-Dmain Information Model” (MDIM) and its realizations will be presented.

Storing models

44

2.1 Storage model and Data model

Let remember that the “data storage” is a part of a computer that stores information for

subsequent use or retrieval [AHD, 2009]. It is a device consisting of electronic, electrostatic, electrical,

hardware, or other elements into which data may be entered, and from which data may be obtained as

desired. For instance it may be magnetic tapes, hard drive storage, network storage, removable media

(USB devices, flash drives, SD cards, DVDs), and online storage (Cloud storage [Mell & Grance,

2011]) [Greenwood, 2012].

The “storage model” is a model that captures key physical aspects of data structure in a data

store. The storage schema (internal schema) is a specification of how the data relationships and rules

specified in the logical schema of a database will be mapped to the physical storage level in terms of

the available constructs, such as aggregation into records, clustering on pages, indexing, and page

sizing and caching for transfer between secondary and primary storage. Storage schema facilities vary

widely between different DataBase Management Systems (DBMS) [Daintith, 2004].

On the other hand, a data model is a model that captures key logical aspects of data

structure in a database, i.e. underlying the structure of a database is a data model. A data model is a

collection of conceptual tools for describing the real-world entities to be modeled in the database and

the relationships among these entities. Data models differ in the primitives available for describing

data and in the amount of semantic detail that can be expressed. The various data models that have

been proposed fall into three different groups: object-based logical models, record-based logical

models, and physical data models. Physical data models are used to describe data at the lowest level.

[Silberschatz et al, 1996].

There is multitude of reviews and taxonomies of data models [Silberschatz et al, 1996;

Navathe, 1992; Beeri, 1988; Kerschberg et al, 1976]. An evolutionary scheme of the most important

and widely accepted DataBase (DB) models is outlined in Figure 10. Rectangles denote database

models (db-models), arrows indicate influences, and circles denote theoretical developments. A time-

line in years is shown on the left [Angles & Gutierrez, 2008].

From a database point of view, the conceptual tools that make up a db-model should at least

address data structuring, description, maintenance, and a way to retrieve or query the data. According

to these criteria, a db-model consists of three components [Codd, 1980]:

― A set of data structure types;

― A set of operators or inference rules;

― A set of integrity rules.

Several proposals for db-models only define the data structures, sometimes omitting

operators and/or integrity rules [Angles & Gutierrez, 2008].

In addition, each db-model proposal is based on certain theoretical principles, and serves as

base for the development of related models.

The short overview of Database Models (db-models) below follows one given in [Angles &

Gutierrez, 2008].

Before the advent of the relational model, most db-models focused essentially on the

specification of data structures on actual file systems (Figure 10).

Natural Language Addressing

45

At this time the main information structure is the "record". Let remember that the "record" is

a logical sequence of fields which contain data eventually connected to unique identifier (a "key").

The identifier (key) is aimed to distinguish one sequence from another [Stably, 1970]. The records are

united in the sets, called "files". There exist three basic formats of the records – with fixed, variable

and undefined length.

In the context-free file models, storing of the records is not connected to their content and

depends only on external factors – the sequence, disk address or position in the file. The main idea of

the context-depended file models is that the part of the record is selected as a key which is used for

making decision where to store the record and how to search it. This way the content of the record

influences on the access to the record [Markov et al, 2008].

Figure 10. Evolutionary scheme of DB-models [Angles & Gutierrez, 2008]

Modern DataBase Management Systems (DBMS) are built using context-depended file

models such as: unsorted sequential files with records with keys; sorted files with fixed record length;

static or dynamic hash files; index file and files with data; clustered indexed tables [Connolly &

Begg, 2002].

Two representative database models are the hierarchical [Tsichritzis & Lochovsky, 1976]

and the network [Taylor & Frank, 1976] models, both of which place emphasis on the physical level.

The relational db-model was introduced by Codd [Codd, 1980] and highlights the concept of

abstraction levels by introducing the idea of separation between physical and logical levels. It is based

on the notions of sets and relations.

As opposed to previous models, semantic db-models [Peckham & Maryanski, 1988] allow

database designers to represent objects and their relations in a natural and clear manner, providing

users with tools to faithfully capture the desired domain semantics. A well-known example is the

entity-relationship model [Chen, 1976].

Storing models

46

Object-oriented db-models [Kim, 1990] appeared in the eighties, when most of the research

was concerned with so-called “advanced systems for new types of applications [Beeri, 1988]”. These

db-models are based on the object-oriented paradigm and their goal is to represent data as a collection

of objects, which are organized into classes, and are assigned complex values.

Graph db-models made their appearance alongside object-oriented db-models. These models

attempt to overcome the limitations imposed by traditional db-models with respect to capturing the

inherent graph structure of data appearing in applications such as hypertext or geographic information

systems, where the interconnectivity of data is an important aspect. This type of models is outlined

further in this text.

Semi-structured db-models [Buneman, 1997] are designed to model data with a flexible

structure, for example, documents and Web pages. Semi-structured data is neither raw nor strictly

typed, as in conventional database systems. These db-models appeared in the nineties. Further in this

chapter we will outline such type model called Resource Description Framework (RDF).

Closely related to them is the XML (eXtensible Markup Language) [Bray et al, 1998] model,

which did not originate in the database community. Although originally introduced as a document

exchange standard, it soon became a general purpose model, focusing on information with tree-like

structure [Angles & Gutierrez, 2008].

Mapping of the data models to storage models is based on program tools called “access

methods”.

2.2 Memory management and access methods

Memory management is a complex field of computer science. Over the years, many

techniques have been developed to make it more efficient [Ravenbrook, 2010]. Memory management

is usually divided into three areas: hardware, operating system, and applications, although the

distinctions are a little fuzzy. In most computer systems, all three are present to some extent, forming

layers between the user's program and the actual memory hardware:

 Memory management at the hardware level is concerned with the electronic devices that

actually store data. This includes things like RAM, Associative memory, and memory

caches [Mano, 1993];

 Memory in the operating system must be allocated to user programs, and reused by other

programs when it is no longer required. The operating system can pretend that the

computer has more memory than it actually does, and that each program has the machine's

memory to itself. Both of these are features of virtual memory systems;

 Application memory management involves supplying the memory needed for a

program's objects and data structures from the limited resources available, and recycling

that memory for reuse when it is no longer required. Because in general, application

programs cannot predict in advance how much memory they are going to require, they

need additional code to handle their changing memory requirements.

Application memory management combines two related tasks:

Natural Language Addressing

47

 Allocation: when the program requests a block of memory, the memory manager must

allocate that block out of the larger blocks it has received from the operating system. The

part of the memory manager that does this is known as the allocator;

 Recycling: when memory blocks have been allocated, but the data they contain is no

longer required by the program, the blocks can be recycled for reuse. There are two

approaches to recycling memory: either the programmer must decide when memory can be

reused (known as manual memory management); or the memory manager must be able to

work it out (known as automatic memory management).

The progress in memory management gives the possibility to allocate and recycle not

directly blocks of the memory but structured regions or fields corresponding to some types of data. In

such case, we talk about corresponded "access methods".

The Access Methods (AM) had been available from the beginning of the development of

computer peripheral devices. As many devices so many possibilities for developing different AM there

exist. Our attention is focused only to the access methods for devices for permanently storing the

information with direct access such as magnetic discs, flash memories, etc. [Markov et al, 2008].

In the beginning, the AM were functions of the Operational Systems’ Core or so called

Supervisor, and were executed via corresponding macro-commands in the assembler languages

[Stably, 1970] or via corresponding input/output operators in the high level programming languages

like FORTRAN, COBOL, PL/I, etc.

The establishment of the first databases in the sixties of the previous century caused

gradually accepting the concepts "physical" as well as "logical" organization of the data

[CODASYL, 1971; Martin, 1975]. In 1975, the concepts "access method", "physical organization" and

"logical organization" became clearly separated. In the same time Christopher Date [Date, 1977]

wrote:

"The DataBase Management System (DBMS) does not know anything about:

a) Physical records (blocks);
b) How the stored fields are integrated in the records (nevertheless that in many cases it is

obviously because of their physical disposition);
c) How the sorting is realized (for instance it may be realized on the base of physical

sequence, using an index or by a chain of pointers);
d) How is realized the direct access (i.e. by index, sequential scanning or hash addressing).

This information is a part of the structures for data storing but it is used by the access method
but not by the DBMS".

Every access method presumes an exact organization of the file, which it is operating with

and is not related to the interconnections between the files, respectively, – between the records of one

file and that in the others files. These interconnections are controlled by the physical organization of

the DBMS [Date, 2004].

Therefore, in the DBMS we may distinguish four levels:

 Basic access methods of the core (supervisor) of the operation system;

 Specialized access methods realized using basic access methods;

 Physical organization of the DBMS;

 Logical organization of the DBMS.

Storing models

48

During the eighties of the last century, the total growing of the research and developments in

the computers’ field, especially in image processing, data mining and mobile support cause impetuous

progress of establishing convenient "spatial information structures" and "spatial-temporal information

structures" and corresponding access methods. From different points of view, this period has been

presented in [Ooi et al, 1993; Gaede & Günther, 1998; Arge, 2002; Mokbel et al, 2003;

Moënne-Loccoz, 2005]. Usually, the "one-dimensional" (linear) AM are used in the classical

applications, based on the alphanumerical information, whereas the "multi-dimensional" (spatial)

methods are aimed to serve the work with graphical, visual, multimedia information

[Markov et al, 2013].

2.3 Interconnections between raised access methods

Maybe one of the most popular analyses of the genesis of the access methods is given in

[Gaede & Günther, 1998]. The authors presented a scheme of the genesis of the basic

multi-dimensional AM and theirs modifications. This scheme firstly was proposed in [Ooi et al, 1993]

and it was expanded in [Gaede & Günther, 1998]. An extension in direction to the multi-dimensional

spatio-temporal access methods was given in [Mokbel et al, 2003].

The survey [Markov et al, 2008] presents a new variant of this scheme, where the new access

methods, created after 1998, are added. A comprehensive bibliography of corresponded articles, where

the methods are firstly presented, is given.

The access methods, presented on Figure 11 [Markov et al, 2008] may be classified as

follow:

 One-dimensional AM:
- Context free;
- Context depended;

 Multidimensional Spatial AM:
- Point AM:

- Multidimensional Hashing;
- Hierarchical Access Methods;
- Space Filling Curves for Point Data;

- Spatial AM:
- Transformation;
- Overlapping Regions;
- Clipping;
- Multiple Layers;

 Metric Access Methods;
 High Dimensional Access Methods:

- Data Approximation;
- Query Approximation:

- Clustering of the database;
- Splitting the database;

 Spatio-Temporal Access Methods:
- Indexing the past;
- Indexing the present;
- Indexing the future.

Natural Language Addressing

49

Relational Interval Tree

Relational X-Tree

Relational R-Tree

Linear Quadtree

R-Tree

Grid File

Extendible Hashing
EXCELL

Linear Hashing

Adaptive K-D-Tree

K-D-Tree

Point Quadtree
Region Quadtree

Space Filling Curves

K-D-B-Tree

Bkd-Tree

cCR-Tree

Circle Tree

DP-Tree

Gauss Tree

KDBKD Tree

KDBFD & KDBHD Tree

kNR-Tree

mQp-Tree

Prefix Hash Tree

Q+R Tree

sQSF-Tree cQSF-Tree

SH-Tree

TPR-Tree

Rexp-Tree

STAR-Tree

TPR*-Tree

PR-Tree

TR-Tree

VA-File
VA+-File

LPC-File
IQ-Tree

A-Tree

BSP-Tree

BD-Tree

Z-Ordering

Bintree

zkdB+tree

PM Quadtree

Interpolation-Based Grid File

DOT

hB-Tree

GBD-Tree

Nested Interpolation Based Grid File

hB -TreeП

Packed R-Tree

Cell Tree

Sphere Tree

R+-Tree R*-Tree

TR*-Tree
X-Tree

SR Tree
SS Tree

TV-Tree

Parallel R
-
Tree

Hilbert R-Tree

P-Tree (S)

Generalized Grid File

Buddy Tree

Buddy Tree with Overlapping

Buddy Tree with Clipping

BV Tree

R-File

Two-Level Grid File

Multi-Layer Grid File

Filter Tree

Multi-Level Grid File

Extended K-D-Tree

MOLPHE
Z-Hashing

Quantile Hashing

PLOP-Hashing

LSD-Tree

SKD-Tree

KD2B-Tree G-Tree

lz-Hashing

Segment Indexes

Twin Grid File

BANG File

P-Tree (J)

Cell Tree with Oversize Shelves

PMR-Quadtree PMR-Quadtree for moving objects

SV-Model

PSI

Duality Transformation

DualityTransf.+Kinetic Data Structures

NSI-Tree

Overlapping Linear Quadtree

Bottom-Up UpdatesHR-Tree
LUR-TreeMR-Tree

Polynomial GreedyPPR-Tree

HR+-Tree

MV3R-TreeMVB-Tree

3D R-Tree
2+3 R-Tree 2-3 TR-Tree

2D R-Tree

TB-Tree SETI

STR-TreeRT-Tree

Hashing Technique

SEB-Tree

NA-Tree

Slim Tree

DBIN
CLINDEX

BIRCH PCURE

MedRank

PvS Index
LSH

MDAM 0 MDAM 1 MDAM 3 MDAM 5 ArM 5 ArM 16 ArM 32

VP Tree MVP Tree

BST Tree
GNAT

M Tree

MVSB-Tree

SB-Tree

Interval Tree Ext.Mem.Interval Tree

Reactive Tree V-Reactive TreeFieldtree

R-link-Tree
Virtual Index-Sequential Access Method,
Virtual Direct Access Method

CRB-TreeCR-Tree

MDAM 2 MDAM 4 MDAM 6

B-link Tree
Persistent B-TreeSequential Access Method,

Index-Sequential AM,
Direct Access Method,
Partitioned Access Method

BUB-TreeUB-Tree
String B-Tree

GiST

Weight-bal. B-Tree
Level-balanced B-Tree

Partitioned B-Tree

MB+ Tree

B-Tree B+-Tree P+-Tree
Pyramid Techniques

Linear Greedy

Figure 11. Genesis of the Access Methods and their modifications extended variant of

[Gaede & Günther, 1998; Mokbel et al, 2003] presented in [Markov et al, 2008]

Storing models

50

 One-dimensional access methods

One-dimensional AM are based on the concept "record". The "record" is a logical sequence

of fields, which contain data eventually connected to unique identifier (a "key"). The identifier (key) is

aimed to distinguish one sequence from another [Stably, 1970]. The records are united in the sets,

called "files". There exist three basic formats of the records – with fixed, variable, and undefined

length.

In the context-free methods, the storing of the records is not connected to their content and

depends only on external factors – the sequence, disk address, or position in the file. The necessity of

stable file systems in the operating systems does not allow a great variety of the context-free AM.

There are three main types well known from sixties and seventies: Sequential Access Method (SAM);

Direct Access Method (DAM) and Partitioned Access Method (PAM) [IBM, 1965-68].

The main idea of the context-depended AM is that a part of the record is selected as a key,

which is used for making decision where to store the record and how to search it. This way, the

content of the record influences the access to the record.

Historically, from the sixties of the previous century on, the attention is directed mainly to

the second type of AM. Modern DBMS are built using context-depended AM such as: unsorted

sequential files with records with keys; sorted files with fixed record length; static or dynamic hash

files; index files and files with data; clustered indexed tables [Connolly & Begg, 2002].

 Multidimensional spatial access methods

Multidimensional Spatial Access Methods are developed to serve information about spatial

objects, approximated with points, segments, polygons, polyhedrons, etc. The implementations are

numerous and include traditional multi-attributive indexing, geographical and/or information systems

for global monitoring for environment and security, spatial databases, content indexing in multimedia

databases, etc.

From the point of view of the spatial databases, the access methods can be split into two

main classes of access methods – Point Access Methods and Spatial Access Methods [Gaede &

Günther, 1998].

Point Access Methods are used for organizing multidimensional point objects. Typical

instances are traditional records, where every attribute of the relation corresponds to one dimension.

These methods can be separated in three basic groups:

 Multidimensional Hashing (for instance Grid File and its varieties, EXCELL, Twin Grid

File, MOLPHE, Quantile Hashing, PLOP-Hashing, Z-Hashing, etc);

 Hierarchical Access Methods (includes such methods as KDB-Tree, LSD-Tree, Buddy

Tree, BANG File, G-Tree, hB-Tree, BV-Tree, etc.);

 Space Filling Curves for Point Data (like Peano curve, N-trees, Z-Ordering, etc).

Spatial Access Methods are used for working with objects, which have an arbitrary form.

The main idea of the spatial indexing of non-point objects is to use an approximation of the geometry

of the examined objects as more simple forms. The most used approximation is Minimum Bounding

Rectangle (MBR), i.e. minimal rectangle, which sides are parallel of the coordinate axes and

Natural Language Addressing

51

completely include the object. There exist approaches for approximation with Minimum Bounding

Spheres (SS Tree) or other polytopes (Cell Tree), as well as their combinations (SR-Tree) [Gaede &

Günther, 1998].

The usual problem when one operates with spatial objects is their overlapping. There are

different techniques to avoid this problem. From the point of view of the techniques for the

organization of the spatial objects, Spatial Access Methods can be split in four main groups:

 Transformation – this technique uses transformation of spatial objects to points in the

space with more or less dimensions. Most of them spread out the space using space

filling curves (Peano Curves, z-ordering, Hibert curves, Gray ordering, etc.) and then use

some point access method upon the transformed data set;

 Overlapping Regions – here the data sets are separated in groups; different groups can

occupy the same part of the space, but every space object is associated with only one of

the groups. The access methods of this category operate with data in their primary space

(without any transformations) eventually in overlapping segments. Methods which use

this technique includes R-Tree, R-link-Tree, Hilbert R-Tree, R*-Tree, Sphere Tree, SS-

Tree, SR-Tree, TV-Tree, X-Tree, P-Tree of Schiwietz, SKD-Tree, GBD-Tree, Buddy

Tree with overlapping, PLOP-Hashing, etc.;

 Clipping – this technique uses the clipping of one object to several sub-objects, which

will be stored. The main goal is to escape overlapping regions. However this advantage

can lead to the tearing of the objects, extending the resource expenses, and decreasing

the productivity of the method. Representatives of this technique are R+-Tree, Cell-Tree,

Extended KD-Tree, Quad-Tree, etc.;

 Multiple Layers – this technique can be considered as a variant of the techniques of

Overlapping Regions, because the regions from different layers can overlap.

Nevertheless there exist some important differences: first – the layers are organized

hierarchically; second – every layer splits the primary space in a different way; third –

the regions of one layer never overlaps; fourth – the data regions are separated from the

space extensions of the objects. Instances for these methods are Multi-Layer Grid File,

R-File, etc.

 Metric access methods

Metric Access Methods deal with relative distances of data points to chosen points, named

anchor points, vantage points or pivots [Moënne-Loccoz, 2005]. These methods are designed to limit

the number of distance computation, calculating first distances to anchors, and then finding the

searched point in a narrowed region. These methods are preferred when the distance is highly

computational, as e.g. for the dynamic time warping distance between time series. Representatives of

these methods are: Vantage Point Tree (VP Tree), Bisector Tree (BST-Tree), Geometric

Near-Neighbor Access Tree (GNNAT), as well as the most effective from this group – Metric Tree

(M Tree) [Chavez et al, 2001].

Storing models

52

 High dimensional access methods

Increasing the dimensionality strongly aggravates the qualities of the multidimensional

access methods. Usually, these methods exhaust their possibilities at dimensions around 15. Only

X-Tree reaches the boundary of 25 dimensions, after which this method gives worse results then

sequential scanning [Chakrabarti, 2001].

The exit of this situation is based on the data approximation and query approximation in

sequential scan. These methods form a new group of access methods – High Dimensional Access

Methods.

Data approximation is used in VA-File, VA+-File, LPC-File, IQ-Tree, A-Tree, P+-Tree,

etc.

For query approximation, two strategies can be used:

 Examine only a part of the database, which is more probably to contain the resulting

set – as a rule these methods are based on the clustering of the database. Some of these

methods are: DBIN, CLINDEX, PCURE;

 Splitting the database to several spaces with fewer dimensions and searching in each of

them. Here two main methods are used:

 Random Lines Projection. Representatives of this approach are MedRank, which uses

B+-Tree for indexing every arbitrary projection of the database, and PvS Index,

which consist of combination of iterative projections and clustering.

 Locality Sensitive Hashing, which is based on the set of local-sensitive hashing

functions [Moënne-Loccoz, 2005].

 Spatio-temporal access methods

The Spatio-Temporal Access Methods have additional defined time dimensioning

[Mokbel et al, 2003]. They operate with objects, which change their form and/or position during the

time. According to position of time interval in relation to present moment, the Spatio-Temporal

Access Methods are divided to:

 Indexing the past, i.e. these methods operate with historical spatio-temporal data. The

problem here is the continuous increase of the information over time. To overcome the

overflow of the data space two approaches are used – sampling the stream data at certain

time position or updating the information only when data is changed. Spatio-temporal

indexing schemes for historical data can be split in three categories:

 The first category includes methods that manage spatial and temporal aspects into

already existing spatial data;

 The second category can be explained as snapshots of the spatial information in each

time instance;

 The third category focuses on trajectory-oriented queries, while spatial dimension lag

on second priority.

Representatives of this group are: RT-Tree, 3DR-Tree, STR-Tree, MR-Tree, HR-Tree,

HR+-Tree, MV3R-Tree, PPR-Tree, TB-Tree, SETI, SEB-Tree;

Natural Language Addressing

53

 Indexing the present. In contrast to previous methods, where all movements are known,

here the current positions are neither stored nor queried. Some of the methods, which

answer the questions of the current position of the objects are 2+3R-Tree, 2-3TR-Tree,

LUR-Tree, Bottom-Up Updates, etc.;

 Indexing the future. These methods have to answer the questions about the current and

future position of a moving object – here are embraced the methods like PMR-Quadtree

for moving objects, Duality Transformation, SV-Model, PSI, PR-Tree, TPR-Tree,

TPR*-tree, NSI, VCIR-Tree, STAR-Tree, REXP-Tree.

2.4 Structured data models

Traditional database systems rely on the relational data model.

When it was proposed in the early 1970’s by Codd, a logician, the relational model generated

a true revolution in data management. In this simple model data is represented as relations in first

order structures and queries as first order logic formulas. It enabled researchers and implementers to

separate the logical aspect of the data from its physical implementation. Thirty years of research and

development followed, and they led to today’s mature and highly performance relational database

systems [Mendelzon et al, 2001].

2.5 Semi-structured data models

The age of the Internet brought new data management applications and challenges. Data is

now accessed over the Web, and is available in a variety of formats, including HTML, XML, as well

as several applications specific data formats. Often data is mixed with free text, and the boundary

between data and text is sometimes blurred. The way the data can be retrieved also varies

considerably: some instances can be downloaded entirely; others can only be accessed through limited

capabilities. To accommodate all forms and kinds of data, the database research community has

introduced the ”semi-structured data model”, where data is self-describing, irregular, and graph-

like. The new model captures naturally Web data, such as HTML, XML, or other application specific

formats [Mendelzon et al, 2001].

The topic of semi-structured data is relatively recent [Buneman, 2001]. Applications that

manage semi-structured data are becoming increasingly commonplace. Current approaches for storing

semi-structured data use existing storage machinery - they either map the data to relational databases,

or use a combination of flat files and indexes [Bhadkamkar et al, 2009].

In semi-structured data, the information that is normally associated with a schema contained

within the data, which is sometimes called “self-describing”. In some forms of semi-structured data,

there is no separate schema, in others it exists but only places loose constraints on the data,

Semi-structured data has recently emerged as an important topic of study for a variety of reasons.

First, there are data sources such as the Web, which we would like to treat as databases but which

cannot be constrained by a schema. Second, it may be desirable to have an extremely flexible format

Storing models

54

for data exchange between disparate databases. Third, even when dealing with structured data, it may

be helpful to view it as semi-structured for the purposes of browsing [Buneman, 2001].

The importance of semi-structured models which are “graph-like” revived the interest to

Graph models.

2.6 Graph models and databases

Graph database model is a model in which the data structures for the schema and/or

instances are modeled as a directed, possibly labeled, graph, or generalizations of the graph data

structure, where data manipulation is expressed by graph-oriented operations and type constructors,

and appropriate integrity constraints can be defined over the graph structure [Angles &

Gutierrez, 2008].

Graph database model can be defined as those in which data structures for the schema and

instances are modeled as graphs or generalizations of them, and data manipulation is expressed by

graph-oriented operations and type constructors.

The notion of graph database model can be conceptualized with respect to three basic

components, namely:

― Data structures;

― Transformation language;

― Integrity constraints.

Hence, a graph database model is characterized as follows:

― Data and/or the schema are represented by graphs, or by data structures generalizing the

notion of graph (hypergraphs or hypernodes) [Guting, 1994; Levene & Loizou, 1995;

Kuper & Vardi, 1984; Paredaens et al, 1995; Kunii, 1987; Graves et al, 1995a; Gyssens

et al, 1990];

 Data manipulation is expressed by graph transformations, or by operations whose main

primitives are on graph features like paths, neighborhoods, subgraphs, graph patterns,

connectivity, and graph statistics (diameter, centrality, etc.) [Gyssens et al, 1990; Graves

et al, 1995a; Guting, 1994];

 Integrity constraints enforce data consistency. These constraints can be grouped in

schema-instance consistency, identity and referential integrity, and functional and

inclusion dependencies. Examples of these are: labels with unique names, typing

constraints on nodes, functional dependencies, domain and range of properties [Graves

et al, 1995b; Kuper & Vardi, 1993; Klyne & Carroll, 2004; Levene &

Poulovassilis, 1991].

 Examples of graph database models

In these examples we illustrate the most representative graph database models and other

related models that do not fit properly as graph database models, but use graphs, for example, for

navigation, for defining views, or as language representation.

Natural Language Addressing

55

To give a flavor of the modeling in each proposal, we will use as a running example the toy

genealogy from [Angles & Gutierrez, 2008] (Figure 12). The genealogy diagram (right-hand side) is

represented as two tables (left-hand side) NAME-LASTNAME and PERSON-PARENT (Children

inherit the last name of the father just for modeling purposes).

The examples below are divided into two categories:

― Graph models with explicit schema (Table 2);

― Graph models with implicit schema (Table 3).

In the both tables, on the left side of the rectangle the corresponded schema is presented and

on the right side of the rectangle the examples of instances are given. For all examples in both tables a

brief explanation is added.

Figure 12. Running example: the toy genealogy

Table 2. Examples of the graph models with explicit schema

Logical Data Model (LDM). The schema (on the left) uses two basic type nodes for representing data

values (N and L), and two product type nodes (NL and PP) to establish relations among data values in a

relational style. The instance (on the right) is a collection of tables, one for each node of the schema.

Internal nodes use pointers (names) to make reference to basic and set data values defined by other

nodes [Kuper & Vardi, 1984, 1993].

Storing models

56

Hypernode Mode (HyM). The schema (left) defines a person as a complex object with the properties

name and last name of type string, and parent of type person (recursively defined). The instance (on the

right) shows the relations in the genealogy among different instances of person [Levene &

Poulovassilis, 1990; Poulovassilis & Levene, 1994; Levene & Loizou, 1995].

GROOVY. At the schema level (left), we model an object PERSON as a hypergraph that relates the

attributes NAME, LASTNAME and PARENTS. Note the value functional dependency (VDF) NAME,

LASTNAME → PARENTS logically represented by the directed hyperedge ({NAME, LASTNAME}

{PARENTS}). This VFD asserts that NAME and LASTNAME uniquely determine the set of

PARENTS [Levene & Poulovassilis, 1991].

Natural Language Addressing

57

GOOD. In the schema, we use printable nodes N and L to represent names and last names respectively,

and nonprintable nodes, Pe(rson) and CP, to represent relations Name-Lastname, and Child-Parent,

respectively. A double arrow indicates a nonfunctional relationship, and a simple arrow indicates a

functional relationship. The instance is obtained by assigning values to printable nodes and instantiating

the CP and PE nodes [Gyssens et al, 1990; Gemis & Paredaens, 1993].

GMOD. In the schema, nodes represent abstract objects (Person) and labeled edges establish relations

with primitive objects (properties name and last name), and other abstract objects (parent relation). For

building an instance, we instantiate the schema for each person by assigning values to oval nodes

[Andries et al, 1992].

Storing models

58

PaMaL. The example shows all the nodes defined in PaMaL: basic type (string), class (Person), tuple

(⊗), set (⊛) nodes for the schema level, and atomic (George, Ana, etc.), instance (P1, P2, etc), tuple

and set nodes for the instance level. Note the use of edges ∈ to indicate elements in a set, and the edge

type to indicate the type of class Person (these edges are changed to val in the instance level) [Gemis &

Paredaens, 1993].

GOAL. The schema presented in the example shows the use of the object node Person with properties

Name and Lastname. The association node Parent and the double headed edges parent and child allow

expression of the relation Person-Parent. At the instance level, we assign values to value nodes (string)

and create instances for object and association nodes. Nodes with same value were merged (e.g.

Deville) [Hidders & Paredaens, 1993].

Natural Language Addressing

59

GDM. In the schema each entity Person (object node represented as a square) has assigned the

attributes name and last name (basic value nodes represented round and labeled str.). We use the

composite value node PC to establish the relationship Parent-Child. Note the redundancy introduced by

the node PC. The instance is built by instantiating the schema for each person [Hidders, 2001, 2002].

Gram. At the schema level we use generalized names for definition of entities and relations. At the

instance level, we create instance labels (e.g. PERSON 1) to represent entities, and use the edges

(defined in the schema) to express relations between data and entities [Amann & Scholl, 1992].

Storing models

60

Table 3. Examples of the graph models with implicit schema

Object Exchange Model (OEM). Schema and instance are mixed. The data is modeled beginning in a

root node &pp, with children person nodes, each of them identified by an Object-ID (e.g. &p2). These

nodes have children that contain data (name and last name) or references to other nodes (parent).

Referencing permits establishing relations between distinct hierarchical levels. Note the tree structure

obtained if one forgets the pointers to OIDs, a characteristic of semi structured data

[Papakonstantinou et al, 1995].

GGL. Schema and instances are mixed. Packaged graph vertices (Person1, Person2, ...) are used to

encapsulate information about the graph defining a Person. Relations among these packages are

established using edges labeled with parent [Graves, 1993; Graves et al, 1994; Graves et al, 1995a;

Graves et al, 1995b].

Natural Language Addressing

61

RDF. Schema and instance are mixed together. In the example, the edges labeled type disconnect the

instance from the schema. The instance is built by the subgraphs obtained by instantiating the nodes of

the schema, and establishing the corresponding parent edges between these subgraphs [Klyne &

Carroll, 2004; Hayes & Gutierrez, 2004; Angles & Gutierrez, 2005].

Simatic-XT. This model does not define a schema. The relations Name-Lastname and Person-Parent

are represented in two abstraction levels. In the first level (the most general), the graph contains the

relations Name and Lastname to identify people (P1, ..., P6). In the second level we use the abstraction

of Person, to compress the attributes Name and Lastname and represent only the relation Parent

between people [Mainguenaud, 1992].

Storing models

62

 Advantages of Graph database models

Graph database models are applied in areas where information about data interconnectivity

or topology is more important, or as important, as the data itself. In these applications, the data and

relations among the data are usually at the same level.

Introducing graphs as a modeling tool has several advantages for this type of data.

― It allows for a more natural modeling of data. Graph structures are visible to the user and

they allow a natural way of handling applications data, for example, hypertext or

geographic data. Graphs have the advantage of being able to keep all the information

about an entity in a single node and showing related information by edges connected to it

[Paredaens et al, 1995]. Graph objects (like paths and neighborhoods) may have first

order citizenship; a user can define some part of the database explicitly as a graph

structure [Guting, 1994], allowing encapsulation and context definition [Levene &

Poulovassilis, 1990];

― Queries can refer directly to this graph structure. Associated with graphs are specific

graph operations in the query language algebra, such as finding shortest paths,

determining certain subgraphs, and so forth. Explicit graphs and graph operations allow

users to express a query at a high level of abstraction. To some extent, this is the

opposite of graph manipulation in deductive databases, where often, fairly complex rules

need to be written [Guting, 1994]. It is not important to require full knowledge of the

structure to express meaningful queries [Abiteboul et al, 1997]. Finally, for purposes of

browsing it may be convenient to forget the schema [Buneman et al, 1996];

― For implementation, graph databases may provide special graph storage structures, and

efficient graph algorithms for realizing specific operations [Guting, 1994].

Graph database models took off in the eighties and early nineties alongside object-oriented

models. Their influence gradually died out with the emergence of other database models, in particular

geographical, spatial, semi structured, and XML.

Recently, the need to manage information with graph-like nature especially in

RDF-databases has reestablished the relevance of this area [Angles & Gutierrez, 2008].

2.7 RDF databases

Resource Description Framework (RDF) is the W3C recommendation for semantic

annotations in the Semantic Web. RDF is a standard syntax for Semantic Web annotations and

languages [Klyne & Carroll, 2004].

The design of a traditional database is guided by the discovery of regularity or uniformity.

The principle of regularity is a standardization of design relying on an abstract view of the world,

where exceptions to the rule are not taken into account, since they are considered as insignificant in

the design of an advantageous structured schema. The popularity of relational database management

systems (RDBMS) is due to their ability to support many data management problems dealt by

Natural Language Addressing

63

applications. However, a priori uniformity required by relational model can lead to hardness when

modeling a not static world such as Semantic Web data [Faye et al, 2012].

The primary goal of RDF is to handle non regular or semi-structured data. The research

community has early recognized that there is an increasing amount of data that is insufficiently

structured to support traditional database techniques, but does contain a sufficiently regular structure

exploitable in the formulation and execution of queries [Muys, 2007].

It is widely acknowledged that information access can benefit from the use of ontologies. For

this purpose, available data has to be linked to concepts and relations in the corresponding ontology

and access mechanisms have to be provided that support the integrated model consisting of ontology

and data. The most common approach for linking data to ontologies is via RDF representation of

available data that describes the data as instances of the corresponding ontology that is represented in

terms of RDF Schema. Due to the practical relevance of data access based on RDF and RDF Schema,

a lot of effort has been spent on the development of corresponding storage and retrieval infrastructures

[Hertel et al, 2009].

The underlying structure of any expression in RDF is a collection of triples, each consisting

of a subject, a predicate and an object. A set of such triples is called RDF graph [RDF, 2013]. This can

be illustrated by a node and directed-edge diagram, in which each triple is represented as a

“node-edge-node” link (hence the term "graph") (Figure 13).

Figure 13. RDF triple

Each triple represents a statement of a relationship between the things denoted by the nodes

that it links. It has three parts:

― Subject;

― A predicate (also called a property) that denotes a relationship;

― Object.

The direction of the edge (predicate) is significant: it always points toward the object. The

nodes of RDF graph are its subjects and objects.

The assertion of RDF triple says that some relationship, indicated by the predicate, holds

between the things denoted by subject and object of the triple. The assertion of RDF graph amounts to

asserting all the triples in it, so the meaning of RDF graph is the conjunction (logical AND) of the

statements corresponding to all the triples it contains. A formal account of the meaning of RDF graphs

is given in [Hayes, 2004].

Storing models

64

In other words, RDF provides a general method to decompose any information into pieces

called triples [Briggs, 2012]:

 Each triple is of the form “Subject”, “Predicate”, “Object”;

 Subject and Object are the names for two things in the world. Predicate is the

relationship between them;

 Subject, Predicate, Object are given as URI’s (stand-ins for things in the real world);

 Object can additionally be raw text.

In technical terms the RDF-triples’ set form labeled directed graph, where each edge is a

triple, for instance, the triples:

Subject Predicate Object

<Tom> <is a> <Lecturer>

<Tom> <teaches> <Botany>

define some of the elements of the next graph [Briggs, 2012]:

The research community has early recognized the natural flexibility and expressivity of

triples. Indeed, triples consider both objects and relationships as first-class citizens; thus, allowing on-

the-fly generation of data. The power of RDF relies on the flexibility in representing arbitrary structure

without a priori schemas. Each edge in the graph is a single fact, a single statement, similar to the

relationship between a single cell in a relational table and its row’s primary key. RDF offers the ability

to specify concepts and link them together into a graph of data [Faye et al, 2012].

 RDF advantages

As a storage language, RDF has several advantages [Owens, 2009]. First, it is possible to

link different data sources together by adding a few additional triples specifying relationships between

the concepts. This would be more difficult in the case of an RDBMS in which schema realignment or

matching may be necessary. Then, RDF offers a great deal of flexibility due to the variety of the

underlying graph-based model (i.e. almost any type of data can be expressed in this format with no

needs for data to be present). There is no restriction on the graph size, as opposed to RDBMS field

where schema must be concise. This a significant gains when the structure of the data is not well

Natural Language Addressing

65

known in advance. Last, any kind of knowledge can be expressed in RDF, authorizing extraction and

reuse of knowledge by various applications.

Consequently RDF offers a very useful data format, for which efficient management is

needed. This becomes a hard issue for application dealing with RDF and known as RDF (or Triple)

Stores, due to the irregularity of the data. RDF Stores must allow the following fundamental

operations on repository of RDF data: performing a query, updating, inserting (assertion), and deleting

(retraction) triples [Owens, 2009]. In addition, there are issues that may require an extension of the

triple-based schemas and thus are affecting the design of the database tables:

― Storing multiple ontologies in one database;

― Storing statements from multiple documents in one database.

Both points are concerning the aspect of provenance, which means keeping track of the

source an RDF statement is coming from.

When storing multiple ontologies in one database it should be considered that classes, and

consequently the corresponding tables, can have the same name. Therefore, either the tables have to be

named with a prefix referring to the source ontology or this reference is stored in an additional

attribute for every statement [Pan & Heflin, 2004].

A similar situation arises for storing multiple documents in one database. Especially, when

there are contradicting statements it is important to know the source of each statement. Again, an

additional attribute denoting the source document helps solving the problem [Pan & Heflin, 2004].

The concept of “named graphs” [Caroll et al, 2004] is including both issues. The main idea

is that each document or ontology is modeled as a graph with a distinct name, mostly a URI. This

name is stored as an additional attribute, thus extending RDF statements from triples to so-called

quads. For the database schemas described above this means adding a fourth column to the tables and

potentially storing the names of all graphs in a further table.

 RDF disadvantages

Different authors report different and specific RDF disadvantages. For instance, in [Costello

& Jacobs, 2003] is noted that disadvantages of using the RDF format are:

― RDF uses namespaces to uniquely identify types (classes), properties, and resources.

Thus, one must have a solid understanding of namespaces;

― Constrained: the RDF format constrains one on how he design his XML (i.e., one can't

design his XML in any arbitrary fashion);

― Another XML vocabulary to learn: to use the RDF format one must learn the RDF

vocabulary.

Other point of view we see in [Baidu, 2013]. RDF disadvantages are:

― Generic triple storage often (but not always) implies less efficient lookups (special

indexes can still be built, but this moves away from schema flexibility);

― Certain data cannot easily be represented in RDF;

― Practical disadvantages with respect to (relatively) immature RDF storage systems and

tools and porting over existing systems;

― High overhead for developers to get the necessary expertise to do a good job;

Storing models

66

― Only non-standard solutions available for declaratively specifying (common types of

CWA) constraints;

― The RDF triple is ontology based, always need the same schema;

― Not easy to do some complex reasoning;

― Low efficient to query data in the RDF triples, compared against RDBMS.

From our point of view, it is important to discuss the problem of numbering large RDF

triple’s elements (strings). Developers generally make special provisions for storing RDF resources

efficiently. Indeed, rather than storing each Internationalized Resource Identifier (IRI) or literal value

directly as a string, implementations usually associate a unique numerical identifier to each resource

and store this identifier instead [Yongming et al, 2012].

There are two motivations for this strategy. First, since there is no a priori bound on the

length of the IRIs or literal values that can occur in RDF graphs, it is necessary to support variable-

length records when storing resources directly as strings. By storing the numerical identifiers instead,

fixed-length records can be used. Second, and more importantly, RDF graphs typically contain very

long IRI strings and literal values that, in addition, are frequently repeated in the same RDF graph.

Unique identifiers can be computed in two general ways [Yongming et al, 2012]:

― Hash-based approaches obtain a unique identifier by applying a hash function to the

resource string, where the hash function used for IRIs may differ from the hash function

used for literal values. Of course, care must be taken to deal with possible hash

collisions. In the extreme, the system may reject addition of new RDF triples when a

collision is detected. To translate hash values back into the corresponding IRI or literal

value when answering queries, a distinguished dictionary table is constructed;

― Counter-based approaches obtain a unique identifier by simply maintaining a counter

that is incremented whenever a new resource is added. To answer queries, dictionary

tables that map from identifiers to resources and vice versa are constructed. Typically,

these dictionary tables are stored as B-Trees for efficient retrieval. A variant on this

technique that is applicable when the RDF graph is static is to first sort the resource

strings in lexicographic order, and to assign the identifier n to the nth resource in this

order. In such a case, a single dictionary table suffices to perform the mapping from

identifiers to resources and vice versa [Yongming et al, 2012].

Various optimizations can be devised to further improve storage space. For example, when

literal values are small enough to serve directly as unique identifiers (e.g., literal integer values), there

is no need to assign unique identifiers, provided that the storage medium can distinguish between the

system-generated identifiers and the small literal values. Also, it is frequent that many IRIs in an RDF

graph share the same namespace prefix. By separately encoding this namespace prefix, one can further

reduce the storage requirements [Yongming et al, 2012].

In other words, the bottleneck problem for RDF is numbering of very great amount of

strings from RDF triples, sometimes up to several billion instances.

For goal of this research we chose the second approach for solving the problem, i.e. to use

counters. The new idea is that the process of numbering does not use B-Trees or any variant of

traditional hashing. We use NL-addressing to assign numbers and co-ordinate access to restore string

Natural Language Addressing

67

which corresponds to given number. The algorithm will be presented in Chapter 6. It has constant

complexity which is important for very large datasets.

 Storage and retrieval technologies for RDF

The state of the art with respect to existing storage and retrieval technologies for RDF data is

given in [Hertel et al, 2009] as well as in [Faye et al, 2012]. Different repositories are imaginable, e.g.

main memory, files or databases.

RDF schemas and instances can be efficiently accessed and manipulated in main memory.

Storing everything in-memory cannot be a serious method for storing extremely large volumes of data.

However, they can act as useful benchmark and can be used for performing certain operations like

caching data from remote sites or for performing inference. Most of the in-memory stores have

efficient reasoners available and can help solve the problem of performing inference in persistent RDF

stores, which otherwise can be very difficult to perform [CTS, 2012].

For persistent storage, the data can be serialized to files, but for large amounts of data the use

of database management system is more reasonable. Examining currently existing RDF stores we

found that they have used relational and object-relational database management systems.

Storing RDF data in a (relational) database requires an appropriate table design. There are

different approaches that can be classified in:

― Generic schemas, i.e. schemas that do not depend on the ontology and run on third party

databases (Jena SDB which can be coupled with almost all relational databases like

MySQL, PostsgreSQL, and Oracle);

― Ontology specific schemas, for instance, the native triple stores which provide persistent

storage with their own implementation of the databases (Virtuoso, Mulgara,

AllegroGraph, and Garlik JXT).

Main characteristics of several known RDF triple stores and our experimental program

RDFArM are presented in Table 77 of the Appendix B.

In the following we will discuss the NL-Addressing (Natural Language Addressing) as an

approach to be used for organizing middle-size or large RDF triple or quadruple stores or other kind of

graph data bases.

 Storing ontology generic schemas

 Vertical representation

The simplest RDF generic schema is triple store with only one table required in the database.

The table contains three columns named Subject, Predicate and Object, thus reflecting the

triple nature of RDF statements. Indexes are added for each of the columns in order to make joins less

expensive. This corresponds to the vertical representation for storing objects in a table

[Agrawa et al, 2001].

In this case, no restructuring is required if the ontology changes. This is the greatest

advantage of this schema. Adding the new classes and properties to ontology can be realized by a

Storing models

68

simple INSERT command in the table. On the other hand, performing a query means searching the

whole database and queries involving joins become very expensive. Another aspect is that the class

hierarchy cannot be modeled in this schema, what makes queries for all instances of a class rather

complex [Hertel et al, 2009].

In other words, since the collections of triples are stored in one single RDF table, the queries

may be very slow to execute. Indeed, when the number of triples scales, the RDF table may exceed

main memory size. Additionally, simple statement-based queries can be satisfactorily processed by

such systems, although they do not represent the most important way of querying RDF data.

Nevertheless, RDF triples store scales poorly because complex queries with multiple triple patterns

require many self-joins over this single large table as pointed out in [Faye et al, 2012].

The triple table approach has been used by systems like Oracle [oracledb, 2012; Chong et

al, 2005], 3store [Harris & Gibbins, 2003], Redland [Beckett, 2001], RDFStore [RDFStore, 2012] and

rdfDB [Guha, 2013].

 Normalized triple store (vertical partitioning)

The triple store can be used in its pure form [Oldakowski et al, 2005], but most existing

systems add several modifications to improve performance or maintainability. A common approach,

the so-called normalized triple store, is adding two further tables to store resource URIs and literals

separately as shown in Figure 14, which requires significantly less storage space [Harris &

Gibbins, 2003]. Furthermore, a hybrid of the simple and the normalized triple store can be used,

allowing storing the values themselves either in the triple table or in the resources table [Jena2, 2012].

Triples: Resources: Literals:

Subject Predicate IsLiteral Object

r1 r2 False r3

r1 r4 True l1

… … … …

ID URI

r1 …#1

r2 …#2

… …

ID Value

l1 Value1

… …

… …

Figure 14. Normalized triple store

In a further refinement, the Triples table can be split horizontally into several tables, each

modeling an RDF(S) property. These tables need only two columns for Subject and Object. The table

names implicitly contain the predicates. This schema separates the ontology schema from its instances,

explicitly models class and property hierarchies and distinguishes between class-valued and literal-

valued properties [Broekstra, 2005; Gabel et al, 2004].

To realize the vertical partitioning approach, the tables have to be stored by using a column-

oriented DBMS (i.e., a DBMS designed especially for the vertically partitioned case, as opposed to a

row oriented DBMS, gaining benefits of compressibility and performance), as collections of columns

rather than collections of rows. The goal is to avoid reading entire row into memory from disk, like in

row-oriented databases, if only a few attributes are accessed per query. Consequently, in column

oriented databases only those columns relevant to a query will be read. The approach creates

Natural Language Addressing

69

materialized views for frequent joins. Furthermore, the object columns of tables in their scheme can

also be optionally indexed (e.g., using an unclustered B+ tree), or a second copy of the table can be

created clustered on the object column. One of the primary benefits of vertical partitioning is the

support for rapid subject joins. This benefit is achieved by sorting the tables via subject. The tables

being sorted by subject, one has a way to use fast merge joins to reconstruct information about

multiple properties for subsets of subjects.

Index-all approach is a poor way to simulate a column-store. The vertical partitioning

approach offers a support for multi-valued attributes. Indeed, if a subject has more than one object

value for a given property, each distinct value is listed in a successive row in the table for that

property. For a given query, only the properties involved in that query need to be read and no

clustering algorithm is needed to divide the triples table into two-column tables.

Inserts can be slow in vertically partitioned tables since multiple tables need to be accessed

for statement about the same subject. With a larger number of properties, the triple store solution

manages to outperform the vertically partitioned approach [Faye et al, 2012].

 Storing ontology specific schemas

 Horizontal representation

Ontology specific schemas are changing when the ontology changes, i.e. when classes or

properties are added or removed. The basic schema consists of one table with one column for the

instance identificator (ID), one for the class name and one for each property in the ontology. Thus, one

row in the table corresponds to one instance. This schema is corresponding to the horizontal

representation [Agrawal et al, 2001] and obviously has several drawbacks:

― Large number of columns;

― High sparsity;

― Inability to handle multi-valued properties;

― The need to add columns to the table when adding new properties to the ontology,

etc.

Horizontally splitting the schema results in the so called one-table-per class schema, i.e. one

table for each class in the ontology is created. A class table provides columns for all properties whose

domain contains this class. This is tending to the classic entity-relationship-model in database design

and benefits queries about all attributes and properties of an instance.

However, in this form the schema still lacks the ability to handle multi-valued properties,

and properties that do not define an explicit domain must then be included in each table. Furthermore,

adding new properties to the ontology again requires restructuring existing tables [Hertel et al, 2009].

 Decomposition storage model

Another approach is vertically splitting the schema, what results in

the one-table-per-property schema, also called the decomposition storage model.

Storing models

70

In this schema one table for each property is created with only two columns for Subject and

Object. RDF(S) properties are also stored in such tables, e.g. the table for rdf:type contains the

relationships between instances and their classes.

This approach is reflecting the particular aspect of RDF that properties are not defined inside

a class. However, complex queries considering many properties have to perform many joins, and

queries for all instances of a class are similarly expensive as in the generic triple schema

[Hertel et al, 2009].

In practice, a hybrid schema is used to benefit from advantages of combining both the table-

per-class and table-per property schemas. This schema contains one table for each class, only storing

there a unique ID for the specific instance. This replaces the modeling of the rdf:type property. For all

other properties tables are created as described in the table-per-property approach (Figure 15) [Pan &

Heflin, 2004]. Thus, changes to the ontology do not require changing existing tables, as adding a new

class or property results in creating a new table in the database.

ClassA: Property1: ClassB:

ID

…#1

…

Subject Object

…#1 …#3

… …

ID

…#3

…

Figure 15. RDF Hybrid schema (the table-per-property approach)

A possible modification of this schema is separating the ontology from the instances. In this

case, only instances are stored in the tables described above.

Information about the ontology schema is stored separately in four additional tables Class,

Property, SubClass and SubProperty [Alexaki et al, 2001]. These tables can be further refined storing

only the property ID in the Property table and the domain and range of the property in own tables

Domain and Range [Broekstra, 2005]. This approach is similar to refined generic schema, where

ontology is stored the same way and only storage of instances is different.

To reduce the number of tables, single-valued properties with a literal as range can be stored

in the class tables [Wilkinson, 2006; Broekstra et al, 2002]. Adding new attributes would then require

changing existing tables. Another variation is to store all class instances in one table called Instances.

This is especially useful for ontologies where there are many classes with only few or no instances

[Alexaki et al, 2001; Wilkinson, 2006; Inseok et al, 2005].

The property table technique has the drawback of generating many NULL values since, for a

given cluster, not all properties will be defined for all subjects. This is due to the fact that RDF data

may not be very structured. A second disadvantage of property table is that multi-valued attributes,

that are furthermore frequent in RDF data, are hard to express. In a data model without a fixed schema

like RDF, it’s common to seek for all defined properties of a given subject, which, in the property

table approach, requires scanning all tables.

In this approach, including new properties requires also adding new tables; which is clearly a

limitation for applications dealing with arbitrary RDF content. Thus schema flexibility is lost and this

Natural Language Addressing

71

approach limits the benefits of using RDF. Moreover, queries with triples patterns that involve

multiple property tables are still expensive because they may require many union clauses and joins to

combine data from several tables. This consequently complicates query translation and plan

generation. In summary, property tables are rarely used due to their complexity and inability to handle

multi-valued attributes [Faye et al, 2012].

This approach has been used by tools like Sesame [Sesame, 2012; Broekstra et al, 2002],

Jena2 [Jena2, 2012; Wilkinson et al, 2003], RDFSuite [Alexaki et al, 2001] and 4store

[Harris et al, 2009].

 Multiple indexing frameworks

The idea of multi-indexing is based on the fact that queries bound on property value are not

necessarily the most interesting or popular type of queries encountered in real world Semantic Web

applications.

Due to the triple nature of RDF data, the goal is to handle equally the following type of

queries:

― Triples having the same subject;

― Triples having the same property;

― List of subjects or properties related to a given object.

For achieving this goal, these approaches maintain a set of six indices covering all possible

access schemes an RDF query may require. These indexes are PSO, POS, SPO, SOP, OPS, and OSP

(P stands for property, O for object and S for subject). These indices materialize all possible orders of

precedence of the three RDF elements. At first sight, such a multiple-indexing would result into a

combinatorial explosion for an ordinary relational table. Nevertheless, it is quite practical in the case

of RDF data [Weiss et al, 2008; RDF, 2013]. The approach does not treat property attributes specially,

but pays equal attention to all RDF items [Faye et al, 2012].

This approach has been used by tools like Kowari system [Wood et al, 2005], Virtuoso

[Erling & Mikhailov, 2007], RDF-3X [Neumann & Weikum, 2008], Hexastore [Weiss et al, 2008],

RDFCube [Matono et al, 2007], BitMat [Atre et al, 2009], BRAHMS [Janik & Kochut, 2005],

RDFJoin [McGlothlin & Khan, 2009], RDFKB [McGlothlin & Khan, 2009a], TripleT [Fletcher &

Beck, 2009], iStore [Tran et al, 2009], Parliament [Kolas et al, 2009].

 Storing models for popular ontologies

Storing models for nine popular linguistic, conceptual or mixed ontologies are outlined in

Table 4. These models are similar and practically are based on the well-known file systems or

relational databases (RDBMS). In the case of RDBMS, orientation is mainly toward SPARQL. The

ontologies are described by high-level languages (e.g. KIF, CycL, SubL, RDF, XML), which can be

interpreted and/or stored in relational structures (e.g. MySQL), ER-model (e.g. FreeBase) and others.

Storing models

72

In general, the systems for storing ontologies and, in particular, RDF data are based on (see

also [Magkanaraki et al, 2002]):

 Structures in memory (e.g. TRIPLE [Sintek & Decker, 2001]);

 Popular relational databases (e.g. ICS-FORTH RDF Suite [Alexaki et al, 2001; 2001a],

Semantics Platform 2.0 of Intellidimension Inc. [ISP2.0, 2012], Ontopia Knowledge Suite

[Ontopia, 2012]);

 Non-relational file systems, indexed by key B-trees using systems such as Oracle Berkeley

DB (e.g. rdfDB [Dumbill, 2000], RDF Store [RDFStore, 2012], Redland [Beckett, 2001],

Jena [McBride, 2001]).

Table 4. Methods for storing data in nine ontologies

 ontology name developer
quantity of

terms
storing models

integration with other
ontologies

1

WordNet

[Fellbaum et al, 1998;

Miller, 1995]

Princeton
University

about
100 000

files SUMO, FrameNet

2
Sensus

[ISI, 2012]
ISI USC

more than
70 000

files,
relational databases

subset of the WordNet

3
Omega

[Philpot et al, 2005]
ISI USC

about
120 000

relational databases
(MySQL)

WordNet, Mikrokosmos

4

Mikrokosmos

[Beale et al, 1996;

Mikr, 2012]

CLR UNMS
more than

7 000
relational database WordNet, Omega

5
OpenCyc

[OpenCyc, 2012]
Cycorp

more than
100 000

files (CycL, SubL,
RDF)

WordNet

6
DOLCE

[Masolo et al, 2003]
LAO ICST

about
4 000

files (KIF) No

7

PropBank

[Giuglea & Moschitti, 2004;

Kingsbury & Palmer, 2003]

University
PennState

more than
4 300

frame files FrameNet, VerbNet

8

FrameNet

[Fillmore, 1976;

Baker et al, 1998;

FrameNet, 2012]

ISI, Berkeley, CA
about

900 frames
files (XML)

WordNet,

PropBank,

SUMO

9
SUMO

[SUMO, 2012]

Teknowledge
Corporation, SUO

WG

more than
1 000

SUO-KIF files

FrameNet,

WordNet,

EMELD

Natural Language Addressing

73

2.8 Multi-layer representation of graphs

 Names and locations in graphs

Graph theory may be said to have its beginning in 1736 when EULER considered the

(general case of the) Königsberg bridge problem:

“Is there a walk crossing each of the seven bridges of Königsberg (now Kaliningrad, Russia)

exactly once?” [Euler, 1736] (Figure 16)

Figure 16. Illustration of Königsberg bridge problem [Euler, 1736]

What is interesting in this schema is that every bridge has two kinds of identification - every

bridge has:

― Its own name: Krämer Br. (Shopkeeper Br.), Schmiede Br. (Blacksmith Br.), Grüne Br.

(Green Br.), Köttel Br. (Guts, Giblets Br.), Honig Br. (Honey Br.), Holz Br. (Wooden

Br.), Hohe Br. (High Br.);

― Its own location, given by another names (addresses): a, b, c, d, e, f, g.

In this case the names are unique and different one from other. Because of this, the names of

locations may seem redundant. In the general case the names may coincide, but the addresses of

locations must be unique.

This way we come to the idea of “Labeled Graphs”. A graph labeling is an assignment of

integers to the vertices or edges, or both, subject to certain conditions. Graph labeling was first

introduced in the late 1960s. In the intervening years dozens of graph labeling techniques have been

studied in over 1000 papers [Gallian, 2011].

A labeled graph G = (V, E) is a finite series of graph vertices V with a set of graph edges E

of 2-subsets of V. The term "labeled graph" when used without qualification means a graph with each

Storing models

74

node labeled differently (but arbitrarily), so that all nodes are considered distinct for purposes of

enumeration [Weisstein, 2013] (Figure 17).

1

4

2

3

3

4

2
1

unlabeled graph edge-labeled graph vertex-labeled graph

Figure 17. Labeled graphs

If set of names is a multi-set [Knuth, 1998], i.e. if it may contain more than one instance of

the same name, than mapping the names to locations is not one-one. To make it one-one, additional

qualifiers are used like “building” and “street” in two definitions below:

― “Queen Victoria Building”: It is a late nineteenth-century building designed by the

architect George McRae in the central business district of Sydney, Australia;

― “Queen Victoria Street”: It is a street named after the British monarch who reigned

from 1837 to 1901, located in the city of London which runs east by north from its

junction with New Bridge Street and Victoria Embankment in Castle Baynard ward,

along a section that divides the wards of Queenhithe and Bread Street, then lastly

through the middle of Cordwainer ward, until it reaches Mansion House Street at Bank

junction.

Another approach is numbering like the street numbers of houses.

At the end, the case with multi-sets of names may be resolved by the analyzing current

context, for instance:

― “King Street”: It is a major east-west commercial thoroughfare in Toronto, Ontario,
Canada. It was named after King George III, the reigning British monarch at the time the
street was being built in early Toronto (then called the Town of York);

― “King Street”: It is a cross street in the Central Business District of Sydney, New South
Wales, Australia. It stretches from King Street Wharf and Lime Street near Darling
Harbour in the west, to Queens Square at St. James railway station in the east.

Depending where we are or what we talk about (Canada or Australia), saying “King Street”

we will understand one or another meaning (definition) without collisions.

If set of names does not contain more than one instance of the same name, than set of

locations is isomorphic to set of names, i.e. the correspondence between two sets is one-one. This

means that using of one or other of these sets closely depends of the interpreter and its functionality. If

the interpreter is a computer or a mathematician, the name of location (numbers, symbols, letters) are

preferable. If the interpreter is an end-user (human), the natural language names (words or phrases) are

preferable.

Natural Language Addressing

75

Now, one may put a question: “Is it possible, taking in account the context, one and the same

string of letters to be used as both name and point to a location (address) of the definition or other

information connected to it?” The positive answer is given by NL-addressing presented in this

monograph.

To illustrate this, a simple example is presented in the next section.

 Multi-layer representation of graphs

Consider a sample graph (Figure 18) [GraphDB, 2012], which contains three nodes named

(Alice, Bob, Chess) with identificators (Id.1, Id.2 and Id.3), six labeled edges connecting them (knows,

knows, is_member, members, members, is_member) with identificators (Id.100,..., Id.105), and some

additional features and their values.

Figure 18. A sample graph

The set of nodes does not contain repeated members but the set of edges is a multi-set –

every member is repeated two times and we need additional identification to separate different edges.

It is possible to present the information about graph in two tables – one for nodes (Table 5)

and another for the edges (Table 6) [Ivanova et al, 2013b].

Storing models

76

The names of columns and values of the corresponded cells are easy understandable. In this

case we may use relational database and the additional information of locations will be the

identification couples (key, column). It is well-known that in the relational databases there exits

special algorithm for computing real offset in the plain file of records using the definition of the table

where:

― Columns are clearly described by their names, width, type, etc.;

― Rows are identified by keys.

For Table 5 keys may be the names of the nodes or identifiers because these sets do not

contain repeated elements. In this case the identifiers may be avoided.

For Table 6 the identifiers could not be avoided because the set of edges’ names is multi-set,

i.e. it contains repeated elements (every element is included two times). In this case, as keys we may

use identifiers as single keys or couple (identifier, edge name) as complex key.

Table 5. Description of nodes of the sample graph and index

index information about nodes

key offset Node Id. Name from-edges to-edges Age Type

1 0 1 Alice 101; 103 100; 102 18 -

2 100 2 Bob 100; 104 101; 105 22 -

3 200 3 Chess 102; 105 103; 104 - Group

Table 6. Description of edges of the sample graph and index

index information about edges

key offset Edge Id. Label from node to node Since

100 0 100 knows 1 2 2001/10/03

101 50 101 knows 2 1 2001/10/04

102 100 102 is_member 1 3 2005/07/01

103 150 103 members 3 1 -

104 200 104 members 3 2 -

105 250 105 is_member 2 3 2011/02/14

For both tables to reach needed information we may scan sequentially records of the file till

find the right key.

Usually in relation databases, an index of keys and their offsets (locations of the rows’

records) in the file is built and search is provided firstly in the index and taking the value of the offset

(location) the row information is accessed directly in the main file.

For easy reading we assume that rows of the nodes’ table are 100 bytes long, and rows of the

edges’ table are 50 bytes long.

Natural Language Addressing

77

Indexes may be of different types – B-trees, hash tables, etc. In all cases, additional resources

are needed (memory to be stored and time to be processed). Note that the values of the keys are

duplicated in the indexes.

At the end, the identifiers play important role for easy representing inter-relations of the

graph. Because of this they could not be avoided.

If we will take in account the interrelations between nodes and edges, which define “context”

of the graph, we will see that another (“multi-layer”) representation is possible and the identifiers of

nodes and edges can be avoided (Table 7 and Table 8).

Table 7 contains a multi-layer representation of the sample graph with nodes as columns and

edges as layers. This is not exactly relational table because the layers may be stored in different files.

If we will use the possibility for NL-addressing, the names of the columns will define locations in files

of layers.

Table 7. Multi-layer representation of the sample graph with nodes as locations.

locations (nodes)

Alice Bob Chess

layers

Age 18 22
Type Group
knows; Bob; Alice;

since 2001/10/03 2001/10/04
members Alice; Bob
is_member Chess; Chess;

since 2005/07/01 2011/02/14

To find all edges from given node we have to take node name (column) as NL-address, for

instance “Bob”, and read all information from different layers (rows) stored at location determined by

“Bob” as NL-address.

If the information about edges is more important than we may transpose the matrix from

Table 7. This will give us a multi-layer representation of the sample graph with edges as locations

(Table 8). Here, the same considerations as for the Table 7 may be done.

Table 8. Multi-layer representation of the sample graph with edges as locations.

 locations (edges)

knows;
since

members is_member
since

Age Type

layers

Alice Bob;
2001/10/03

 Chess;
2005/07/01

18

Bob Alice;
2001/10/04

 Chess;
2011/02/14

22

Chess Alice;
Bob

 Group

Storing models

78

What is important is that NL-addressing reduces the information to be stored on the disc -

only the cells with text in bold of Table 7 or Table 8 will be stored. At a rough estimate we have:

 In the “relational” case (Table 5 + Table 6): at least 18 + 30 = 48 cells for the two tables and

real need of additional indexing to speed up the access. Note that empty cells in relational

tables really take place on the disk (they contain space symbols);

 In the “multi-layer” case (Table 7 or Table 8): only 8 filled cells and no need of additional

indexing.

In both cases the same information is stored, but in the second case the filled cells contain

larger information which may be accessed by single operation and this way may speed the access.

2.9 Multi-domain information model (MDIM)

Below we will use strong hierarchies of named sets to create a specialized mathematical

model for new kind of organization of information bases. The “information spaces” defined in the

model are kind of strong hierarchies of enumerations (named sets).

The independence of dimensionality limitations is very important for developing new

software systems aimed to process large volumes of high-dimensional data. To achieve this, we need

information models and corresponding access methods to cross the boundary of the dimensional

limitations and to obtain the possibility to work with large information spaces with variable and

practically unlimited number of dimensions. A step in developing such methods is the Multi-domain

Information Model (MDIM) introduced in [Markov, 1984; Markov, 2004].

2.9.1 Basic structures of MDIM

Main structures of MDIM are basic information elements, information spaces, indexes and

meta-indexes, and aggregates. The definitions of these structures are given below:

 Basic information elements

The basic information element (BIE) of МDIМ is an arbitrary long string of machine codes

(bytes). When it is necessary, the string may be parceled out by lines. The length of the lines may be

variable.

 Information spaces

Let the universal set UBIE be the set of all BIE.

Let E1 be a set of basic information elements. Let 1 be а function, which defines а biunique

correspondence between elements of the set E1 and elements of the set C1 of positive integer

numbers, i.e.:

E1 = {ei | ei UBIE , i=1,…, m1}.

C1 = {c1 | ci N, i=1,…,m1}

1 E1↔ C1

Natural Language Addressing

79

The elements of C1 are said to be numbers (co-ordinates) of the elements of E1.

The triple S1 = (E1, μ1, C1) is said to be а numbered information space of level 1

(one-dimensional or one-domain information space).

The triple S2 = (E2, μ2, C2) is said to be а numbered information space of level 2

(two-dimensional or multi-domain information space of level two) iff the elements of E2 are numbered

information spaces of level one (i.e. belong to the set NIS1) and 2 is а function which defines а

biunique correspondence between elements of E2 and elements of the set C2 of positive integer

numbers, i.e.:

E2 = {ei | ei NIS1 , i=1,…, m2}.

C2 = {ci | ci N, i=1,…,m2}

2 : E2↔ C2

The triple Sn = (En, μn, Cn) is said to be а numbered information space of level n

(n-dimensional or multi-domain information space) iff the elements of En are numbered information

spaces of level n-1 (set NISn-1) and n is а function which defines а biunique correspondence between

elements of En and elements of the set Cn of positive integer numbers, i.e.:

En = {ej | ej NISn-1 , j=1,…, mn}.

Cn = {cj | cj N, j=1,…,mn}

n : En↔ Cn

Every basic information element "e" is considered as an information space S0 of level 0. It is

clear that the information space S0 = (E0, μ0, C0) is constructed in the same manner as all others:

 The machine codes (bytes) bi, i=1,…,m0 are considered as elements of E0;
 The position pi (natural number) of bi in the string e is considered as co-ordinate of bi,

i.e.
C0 = {pk | pk N, k=1,…,m0} ,

 Function 0 is defined by the physical order of bi in e and we have 0 : E0↔ C0.
This way, the string S0 may be considered as a set of sub-elements (sub-strings). The

number and length of the sub-elements may be variable. This option is very helpful but it closely

depends on the concrete realizations and it is not considered as a standard characteristic of MDIM.

The information space Sn, which contains all information spaces of a given application is

called information base of level n. The concept information base without indication of the level is

used as generalized concept to denote all available information spaces. For instance every relation data

base may be represented as an information base of level 3 which contains set of two dimensional

tables.

 Indexes and meta-indexes

The sequence A = (cn, cn-1,…,c1), where ci Ci, i=1, …, n is called multidimensional space

address of level n of a basic information element. Every space address of level m, m < n, may be

extended to space address of level n by adding leading n-m zero codes. Every sequence of space

addresses A1, A2, …, Ak, where k is arbitrary positive number, is said to be a space index.

Every index may be considered as a basic information element, i.e. as a string, and may be

stored in a point of any information space. In such case, it will have a multidimensional space address,

Storing models

80

which may be pointed in the other indexes, and, this way, we may build a hierarchy of indexes.

Therefore, every index, which points only to indexes, is called meta-index.

The approach of representing the interconnections between elements of the information

spaces using (hierarchies) of meta-indexes is called poly-indexation.

 Aggregates

Let G = {Si | i=1,…,n} be a set of numbered information spaces.

Let τ = {νij : Si → Sj | i=const, j=1,…,n} be a set of mappings of one "main" numbered

information space Si G | i=const, into the others SJ G, j=1, …, n , and, in particular, into itself.

The couple: D = (G, τ) is said to be an "aggregate".

It is clear, we can build m aggregates using the set G because every information space

SJ G, j=1, …, n, may be chosen to be a main information space.

2.9.2 Operations in the MDIM

After defining the information structures, we need to present the operations, which are

admissible in the model.

In MDIM, we assume that all information elements of all information spaces exist.

If for any Si : Ei = Ø ˄ Ci = Ø , than it is called empty.

Usually, most of the information elements and spaces are empty. This is very important for

practical realizations.

 Operations with basic information elements

Because of the rule that all structures exist, we need only two operations with a BIE:

― Updating;

― Getting the value.

For both operations, we need two service operations:

― Getting the length of a BIE;

― Positioning in a BIE.

Updating, or simply – writing the element, has several modifications with obvious meaning:

― Writing as a whole;

― Appending/inserting;

― Cutting/replacing a part;

― Deleting.

There is only one operation for getting the value of a BIE, i.e. read a portion from a BIE

starting from given position. We may receive the whole BIE if the starting position is the beginning of

BIE and the length of the portion is equal to the BIE length.

Natural Language Addressing

81

 Operations with spaces

We have only one operation with a single space – clearing (deleting) the space, i.e.

replacing all BIE of the space with Ø (empty BIE). After this operation, all BIE of the space will have

zero length. Really, the space is cleared via replacing it with empty space.

We may provide two operations with two spaces: (1) copying and (2) moving the first space

in the second. The modifications concern how the BIE in the recipient space are processed. We may

have:

― Copy/move with clearing the recipient space;

― Copy/move with merging the spaces.

The first modifications first clear the recipient space and after that provide a copy or move

operation.

The second modifications may have two types of processing: destructive or constructive. The

destructive merging may be "conservative" or "alternative". In the conservative approach, the BIE of

recipient space remains in the result if it is with none zero length. In the other approach – the BIE from

donor space remains in the result. In the constructive merging the result is any composition of the

corresponding BIE of the two spaces.

Of course, the move operation deletes the donor space after the operation.

Special kind of operations concerns the navigation in a space. We may receive the space

address of the next or previous, empty or non-empty elements of the space starting from any given

co-ordinates.

The possibility to count the number of non empty elements of a given space is useful for

practical realizations.

 Operations with indexes, meta-indexes and aggregates

Operations with indexes, meta-indexes, and aggregates in the MDIM are based on the

classical logical operations – intersection, union, and supplement, but these operations are not so

trivial. Because of the complexity of the structure of the information spaces, these operations have two

different realizations.

Every information space is built by two sets: the set of co-ordinates and the set of

information elements. Because of this, the operations with indexes, meta-indexes, and aggregates may

be classified in two main types:

― Operations based only on co-ordinates, regardless of the content of the structures;

― Operations, which take in account the content of the structures.

The operations based only on the co-ordinates are aimed to support information processing

of analytically given information structures. For instance, such structure is the table, which may be

represented by an aggregate. Aggregates may be assumed as an extension of the relations in the sense

of the model of Codd [Codd, 1970]. The relation may be represented by an aggregate if the

aggregation mapping is one-one mapping. Therefore, the aggregate is a more universal structure than

the relation and the operations with aggregates include those of relation theory. What is the new is that

the mappings of aggregates may be not one-one mappings.

Storing models

82

In the second case, the existence and the content of non empty structures determine the

operations, which can be grouped corresponding to the main information structures: elements, spaces,

indexes, and meta-indexes. For instance, such operation is the projection, which is the analytically

given space index of non-empty structures. The projection is given when some coordinates (in

arbitrary positions) are fixed and the other coordinates vary for all possible values of coordinates,

where non-empty elements exist. Some given values of coordinates may be omitted during processing.

Other operations are transferring from one structure to another, information search, sorting,

making reports, generalization, clustering, classification, etc.

2.10 Multi-domain access method “ArM32”

For practical implementation aimed to store very large perfect hash tables and burst tries in

the external memory (hard disks) we need realization in accordance to the real possibilities. The

existing models, analyzed in this research, do not support such structures. Because of this, we decide

to make experiments with “Multi-Domain Information Model” (MDIM) [Markov, 1984] and

corresponded to it software tools. We will use MDIM as a model for database organization and

corresponded specialized tools we will upgrade to our case.

During the last three decades, MDIM has been discussed in many publications. See for

instance [Markov et al, 1990; Markov, 2004; Markov et al, 2013].

The program realizations of MDIM are called Multi-Domain Access Method (MDAM) or

Archive Manager (ArM) (Table 9).

Table 9. Realizations of MDAM:

no. name year machine type language and operating system

0 MDAM0 1975 MINSK 32 37 bit Assembler Tape OS

1 MDAM1 1981 IBM 360 32 bit FORTRAN DOS 360

2 MDAM2 1983 PDP 11 16 bit FORTRAN DOS 11

3 MDAM3 1985 PDP 11 16 bit Assembler DOS 11

4 MDAM4 1985 Apple II 8 bit UCSD Pascal Disquette OS

5 MDAM5 1986 IBM PC 16 bit Assembler, C MS DOS

6 MDAM6 1988 SUN 32 bit C SUN UNIX

7 ArM7 1993 IBM PC 16 bit Assembler MS DOS 3

8 ArM8 1998 IBM PC 16 bit Object Pascal MS Windows 16 bit

9 ArM32 2003 IBM PC 32 bit Object Pascal MS Windows 32 bit

10 NL-ArM 2012 IBM PC 32 bit Object Pascal MS Windows 32 bit

11 BigArM 2015 ... under developing 64 bit Pascal, C, Java MS Windows, Linux, Cloud

Natural Language Addressing

83

All projects of MDAM and ArM had been done by Krassimir Markov. The first program

realizations had been done by Krassimir Markov (MDAM0, MDAM1, MDAM2, MDAM3);

The next program realizations had been done by Krassimir Markov and:

- Dimitar Guelev (MDAM4);

- Todor Todorov (MDAM5 written on Assembler with interfaces to PASCAL and C,

MDAM5 rewritten on C for IBM PC);

- Vasil Nikolov (MDAM5 interface for LISP, MDAM6);

- Vassil Vassilev (ArM7 and ArM8);

- Ilia Mitov and Krassimira Minkova Ivanova (ArM 32);

- Vitalii Velychko (ArM32 interface to Java);

- Krassimira Borislavova Ivanova (NL-ArM).

For a long period, MDIM has been used as a basis for organization of various information

bases.

One of the first goals of the development of MDIM was representing the digitalized military

defense situation, which is characterized by a variety of complex objects and events, which occur in

the space and time and have a long period of variable existence [Markov, 1984]. The great number of

layers, aspects, and interconnections of the real situation may be represented only by information

spaces’ hierarchy. In addition, the different types of users with individual access rights and needs

insist on the realization of a special tool for organizing such information base.

Over the years, the efficiency of MDIM is proved in wide areas of information service of

enterprise managements and accounting. For instance, the using MDIM permits omitting the heavy

work of creating of OLAP structures [Markov, 2005].

In this research we will use the Archive Manager – “ArM32” developed for MS Windows

(32 bit) [Markov, 2004; Markov et al, 2008] and its upgrade to NL-ArM.

The ArM32 elements are organized in numbered information spaces with variable levels.

There is no limit for the levels of the spaces. Every element may be accessed by a corresponding

multidimensional space address (coordinates) given via coordinate array of type cardinal. At the first

place of this array, the space level needs to be given. Therefore, we have two main constructs of the

physical organizations of ArM32 information bases – numbered information spaces and elements.

The ArM32 Information space (IS) is realized as a (perfect) hash table stored in the external

memory. Every IS has 232 entries (elements) numbered from 0 up to 232-1. The number of the entry

(element) is called its co-ordinate, i.e. the co-ordinate is a 32 bit integer value and it is the number of

the entry (element) in the IS.

Every entry is connected to a container with variable length from zero up to 1G bytes. If the

container holds zero bytes it is called “empty”. In other words, in ArM32, the length of the element

(string) in the container may vary from 0 up to 1G bytes. There is no limit for the number of

containers in an archive but their total length plus internal indexes could not exceed 232 bytes in a

single file.

Storing models

84

If all containers of an IS hold other IS, it is called “IS of corresponded level” depending of

the depth of including subordinated IS. If containers of given IS hold arbitrary information but not

other IS, it is called “Terminal IS”.

To locate a container, one has to define the path in hierarchy using a co-ordinate array with

all numbers of containers starting from the one of the root information space up to the terminal

information space which is owner of the container.

The hierarchy of information spaces may be not balanced. In other words, it is possible to

have branches of the hierarchy which have different depth.

In ArM32, we assume that all possible information spaces exist.

If all containers of the information space are empty, it is called “empty”.

Usually, most of the ArM32 information spaces and containers are empty. “Empty” means

that corresponded structure (space or container) does not occupy disk space. This is very important for

practical realizations.

Remembering that Trie is a tree for storing strings in which there is one node for every

common prefix and the strings are stored in extra leaf nodes, we may say the ArM32 has analogous

organization and can be used to store (burst) tries.

 Functions of ArM32

ArM32 is realized as set of functions which may be executed from any user program.

Because of the rule that all structures of MDIM exist, we need only two main functions with

containers (elements):

 Get the value of a container (as whole or partially);

 Update a container (with several variations).

Because of this, the main ArM32 functions with information elements are:

― Arm Read (reading a part or a whole element);

― Arm Write (writing a part or a whole element);

― Arm Append (appending a string to an element);

― Arm Insert (inserting a string into an element);

― Arm Cut (removing a part of an element);

― Arm Replace (replacing a part of an element);

― Arm Delete (deleting an element);

― Arm Length (returns the length of the element in bytes).

MDIM operations with information spaces are over:

 Single space – clearing the space, i.e. updating all its containers to be empty;

 Two spaces – there exist several such type of operations. The most used is copying of

one space in another, i.e. copying the contents of containers of the first space in the

containers of the second. Moving and comparing operations are available, too.

The corresponded ArM32 functions over the spaces are:

― ArmDelSpace (deleting the space);

Natural Language Addressing

85

― ArmCopySpace and ArmMoveSpace (copying/moving the first space in the second in the

frame of one file);

― ArmExportSpace (copying one space from one file to the other space, which is located in

another file).

The ArM32 functions, aimed to serve the navigation in the information spaces return the

space address of the next or previous, empty or non-empty elements of the space starting from any

given co-ordinates. They are ArmNextPresent, ArmPrevPresent, ArmNextEmpty, and ArmPrevEmpty.

The ArM32 function, which create indexes, is ArmSpaceIndex – returns the space index of

the non-empty structures in the given information space.

The service function for counting non-empty ArM32 elements or subspaces is

ArmSpaceCount – returns the number of the non-empty structures in given information space.

Using ArM32 engine practically we have great limit for the number of dimensions as well as

for the number of elements on given dimension. The boundary of this limit in the current realization of

ArM32 engine is 232 for every dimension as well as for number of dimensions. Of course, another

limitation is the maximum length of the files, which depends on the possibilities of the operating

systems and realization of ArM. For instance, in the next version, ArM64 called “BigArM”, these

limits will be extended to cover the power of 64 bit addressing.

ArM32 engine supports multithreaded concurrent access to the information base in real time.

Very important characteristic of ArM32 is possibility not to occupy disk space for empty structures

(elements or spaces). Really, only non-empty structures need to be saved on external memory.

Summarizing, the advantages of the ArM32 are:

 Possibility to build growing space hierarchies of information elements;

 Great power for building interconnections between information elements stored in the

information base;

 Practically unlimited number of dimensions (this is the main advantage of the numbered

information spaces for well-structured tasks, where it is possible "to address, not to

search").

 Conclusion of the Chapter 2

This chapter introduced the main data structures and storing technologies which further we

will use to compare our results. Mainly they are graph data models as well as RDF storage and

retrieval technologies.

Firstly we defined concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics were outlined.

Graph models and databases were discussed more deeply and examples of different graph

database models were presented. The need to manage information with graph-like nature especially in

RDF-databases had reestablished the relevance of this area.

There is a real need of efficient tools for storing and querying knowledge using the

ontologies and the related resources. In this context, the annotation of unstructured data has become a

Storing models

86

necessity in order to increase the efficiency of query processing. Efficient data storage and query

processing that can scale to large amounts of possibly schema-less data has become an important

research topic. The proposed approaches usually rely on (object-) relational database technology or

on main-memory virtual machine implementations, while employing a variety of storage schemes

[Faye et al, 2012].

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures were in the center of our attention. The analysis of the

viewed tools showed that all of them use data storing models which are limited to text files, indexed

data or relational databases. These approaches do not conform to the specific structures of the

ontologies. This necessitates the development of new models and tools for storing ontologies which

correspond to their structure.

Storing models for several popular ontologies and summary of main types of storing models

for ontologies and, in particular, RDF data were discussed.

At the end of this chapter, our attention was paid to addressing and naming (labeling) in

graphs with regards to introducing the Natural Language Addressing (NL-addressing) in graphs. A

sample graph was analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we saw that a “multi-layer”

representation is possible and the identifiers of nodes and edges can be avoided.

Concluding, let us point on advantages and disadvantages of the multi-layer representation

of graphs.

The main disadvantages are:

 The layers are sparsed;

 The number of locations may be very great which causes the need of corresponded

number of columns in the table (in any cases hundred or thousand).

The main advantages are:

 Reducing the used resources;

 The NL-addressing means direct access to content of each cell. Because of this, for

NL-addressing the problem of recompiling the database after updates does not exist. In

addition, the multi-layer representation and natural language addressing reduce

resources and avoid using of supporting indexes for information retrieval services

(B-trees, hash tables, etc.);

 Finally, using NL-addressing, the multi-layer representation is easily understandable by

humans and interpretable by the computers.

If we will use indexed files or relational data bases, the disadvantages are so serious that

make the implementation impossible.

We propose to use the multi-dimensional model for organization of information. For this

purpose the “Multi-Domain Infrmation Model”and its realizations were presented. The Multi-

Dimensional Numbered Information Spaces are basis for context independed indexing. Because of this

they may be used for storing Big Data.

Natural Language Addressing

87

3 Access method based on NL-addressing

Abstract

This chapter is aimed to introduce a new access method based on the idea of NL-addressing.

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. Hash tables and tries give very good starting point. The main problem

is that they are designed as structures in the main memory which has limited size, especially in small

desktop and laptop computers. Because of this we need analogous disk oriented database

organization.

To achieve such possibilities, we decided to use “Multi-Domain Information Model”

(MDIM) and corresponded to it software tools. MDIM and its realizations are not ready to support

NL-addressing. We will upgrade them for ensuring the features of NL-addressing via new access

method called NL-ArM.

The program realization of NL-ArM, based on specialized hash functions and two main

functions for supporting the NL-addressing, access will be outlined. In addition, several operations

aimed to serve the work with thesauruses and ontologies as well as work with graphs, will be

presented.

3.1 Example of NL-addressing via burst tries

Analyzing Figure 8 and Figure 9, one may see a common structure in both figures. It is a trie

which leafs are containers. In Figure 8 leafs are Social Security Numbers (SS#) and in Figure 9 leafs

are Binary Search Trees (BST). In addition, Figure 5 looks as it is created from many connected

Perfect Hash Tables (PHT).

An inference from this is the idea about a multi-way burst trie which:

― Nodes are PHT with entries for all letters of alphabet plus some additional symbols, for

instance “0” and “1” (“true” and “false”);

― Containers may hold subordinated burst tries.

To illustrate this as a way for possible realization of NL-addressing using burst tries, let see

an example (Figure 19).

In this example we use natural numbers instead of letters i.e. their machine codes. This way

our alphabet will consists of:

― 256 natural numbers if we will use ASCII encoding;

― 216 natural numbers for UNICODE 16 encoding;

― 232 natural numbers for UNICODE 32 encoding.

Access method based on NL-addressing

88

We assume that the computer word is 32 bits long and our numbering will permit 232

numbers. What encoding will be used depends of concrete requirements. For easy reading, here we

will consider ASCII encoding. This way we will use a small part of all possibilities of such

construction.

As we pointed above, we extend the idea of burst tries by creating a hierarchy. In this case

every container of a burst trie may hold:

― A string of letters, i.e. a word or phrase of words (such container is colored in magenta

on Figure 19 and has number 114);

― Subordinated burst trie.

The path to the container colored in magenta on Figure 19 is A = (66, 101, 101, 114).

It means that:

― Container 66 of root burst trie holds non empty burst trie in which:

� Container 101 holds non empty burst trie in which:

 Container 101 holds non empty burst trie in which:

 Container 114 is holds any information (string).

Figure 19. Example of location A=(66,101,101,114)

The numbering is unique for every burst trie. Because of this, there is no problem to have the

same numbers of the containers in the subordinated burst tries what is illustrated at the Figure 19 –

container 101 holds burst trie with container 101.

Consider the path we just have seen. If we assume these numbers as ASCII codes:

66 = “B”, 101 = “e”, 114 = “r”,

we may “understand” the path as the word “Beer” (Figure 20).

Natural Language Addressing

89

Figure 20. Example of natural language path A=(Beer)

At the end, the container, colored in magenta at Figure 21 and located by this path, may hold

arbitrary long string of letters (words, phrases). In our example we choose it to be the remarkable

aphorism of Benjamin Franklin:

“Beer is proof that God loves us and wants us to be happy”.

Figure 21. Example of content located by path “Beer”

Perfect hash tables and burst tries give very good starting point. The main problem is that

they are designed as structures in the main memory which has limited size, especially in small desktop

and laptop computers.

Access method based on NL-addressing

90

3.2 NL-ArM access method

MDAM and respectively ArM32 are not ready to support NL-addressing. We have to

upgrade them for ensuring the features of NL-addressing. The new access method is called NL-ArM

(Natural Language Addressing Archive Manager).

The program realization of NL-ArM is based on a specialized hash function and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

 NL-ArM hash function

The NL-ArM hash function is called “NLArmStr2Addr”. It converts a string to space path. Its

algorithm is simple: four ASCII symbols or two UNICODE 16 symbols form one 32 bit co-ordinate

word. This reduces the space’ level four, respectively – two, times. The string is extended with leading

zeroes if it is needed. UNICODE 32 does not need converting – one such symbol is one co-ordinate

word.

There exists a reverse function, “NLArmAddr2Str”. It converts space address in ASCII or

UNICODE string. The leading zeroes are not included in the string.

The functions for converting are not needed for the end-user because they are used by the

NL-ArM upper level operations given below.

All NL-ArM operations access the information by NL-addresses (given by a NL-words or

phrases). Because of this we will not point specially this feature.

Let’s illustrate the algorithm of NL-ArM hash function.

In the case of Figure 21, the couple

{(name), (content)}

is:

{(B, e, e, r), (“Beer is proof that God loves us and wants us to be happy.” Benjamin Franklin)}.

To access the text, we have to convert NL-path (B, e, e, r) to path of numbers

(66, 101, 101, 114), i.e. we have the consequence:

Beer => (B, e, e, r) => (66, 101, 101, 114) =>

=> (“Beer is proof that God loves us and wants us to be happy” Benjamin Franklin).

NL-addressing means that human or program will set the correspondence:

(Beer) => (“Beer is proof that God loves us and wants us to be happy” Benjamin Franklin)

and all rest work has be done by the NL-ArM hash function which has to convert name in a space

path, i.e.

Beer => (B, e, e, r) => (66, 101, 101, 114).

This hash function is one-one, and because of this, the resulting hash table is a perfect one.

Natural Language Addressing

91

Note that the NL-ArM is an access method and it receives commands only from other

program units. Some of them are aimed to serve the human-computer interface and may redirect users’

requests directly to NL-ArM (such units are experimental modules presented in this monograph).

Other units may concern some information processing like reasoning and may send to NL-ArM

requests according theirs need.

In the last case, the programs set the correspondence (name) => (content).

 NL-ArM operations with terminal containers

Terminal containers are those which belong to terminal information spaces. They hold

strings up to 1GB long.

There are two main operations with strings of terminal containers:

― NLArmRead – read from a container (all string or substring);

― NLArmWrite – update the container (all string or substring).

Additional operations are:

― NLArmAppend (appending a substring to string of the container);

― NLArmInsert (inserting a substring into string of the container);

― NLArmCut (removing a substring from the string of the container);

― NLArmReplace (replacing a substring from the string of the container);

― NLArmDelete (empting the container);

― NLArmLength (returns the length of the string in the container in bytes).

In general, the container may be assumed not only as up to 1GB long string of characters but

as some other information again up to 1GB. As a rule, the access methods do not interpret the

information which is transferred to and from the main memory. It is important to have possibility to

access information in the container as a whole or as set of concatenated parts.

Assuming that all containers exist but some of them are empty, we need only two main

operations:

1) To update (write) the string or some of its parts.

2) To receive (read) the string or some of its parts.

The additional operations are modifications of the classical operations with strings applied to

this case.

To access information from given container, NL-ArM needs the path to this container and

buffer from or to which the whole or a part of its content will be transferred. Additional parameters are

length in bytes and possibly - the starting position of substring into the string. When string has to be

transferred as a whole, the parameters are the length of the string and zero as number of the starting

position.

Access method based on NL-addressing

92

 NL-ArM operations with information spaces (hash tables)

With information spaces we may provide service operations with hash tables such as

counting empty or non-empty containers, copying or moving strings of substrings from containers one

to those of another terminal information space. We will not use these operations in the frame of this

work.

3.3 Example of NL-storing the Sample graph

As final example of this chapter, let see how the sample graph from previous chapter can be

stored using NL-addressing.

To make sample graph more “realistic”, we will put a question about representing the

characteristics of the nodes and edges. At the Figure 18 characteristics have been written as comments

to nodes and edges.

In the graph, the characteristics of nodes (viz. age, type) may be represented as additional

loop edges of type “has_characteristics” and different characteristics may be given by keywords and

corresponded values for these edges.

The characteristics of edges (viz. since) may be represented as additional information to the

node pointed by the corresponded edge. This information may be given again by corresponded

keywords and theirs values.

The final multi-layer representation of our sample graph is given in Table 10 and the final

version of the sample graph is shown at Figure 22.

Table 10. Final multi-layer representation of sample graph

 space path

human location Alice Bob Chess

NL-ArM location (65, 108, 105, 99, 101) (66, 111, 98) (67, 104, 101, 115, 115)

layer (file name)

has_characteristics Alice; Age: 18 Bob; Age: 22 Chess; Type: Group

knows Bob - since: 2001/10/03 Alice - since: 2001/10/04

members
 Alice; since: 2005/07/01;

Bob; since: 2011/02/14

is_member Chess; since: 2005/07/01 Chess; since: 2011/02/14

Natural Language Addressing

93

Figure 22. Final variant of the sample graph

Really, the Table 10 show what we will have in our sample database:

― Every layer (row of Table 10) is separate trie and will be stored in a separate file with

name of the layer;

― Human locations are given by names: Alice, Bob, and Chess, and NL-ArM (internal

computer) locations age given by paths: (65, 108, 105, 99, 101), (66, 111, 98),

(67, 104, 101, 115, 115);

― All cells of Table 10 written in bold are containers which hold corresponded information

(strings) from the cells;

― The locations (space paths) are common for all layers.

Access method based on NL-addressing

94

 Storing RDF-graphs by NL-ArM

We may easy represent the Table 10 by RDF-triples and vice versa (Table 11).

Table 11. Representation of the sample graph by RDF-triples

Subject Relation Object

Alice has_characteristics Alice – Age : 18

Alice knows Bob – since : 2001/10/03

Alice is_member Chess – since : 2005/07/01

Bob has_characteristics Bob – Age : 22

Bob knows Alice – since : 2001/10/04

Bob is_member Chess – since : 2011/02/14

Chess has_characteristics Chess –Type : Group

Chess members Alice; Bob

In other words, NL-ArM is ready for storing RDF information. Mapping of Table 11 in

Table 10 is just the algorithm for creating RDF-triple stores based on MDIM and NL-addressing.

From Table 11 it follows that we may define two main information models for storing

RDF-graphs using NL-ArM.

The first model we will denote as

RSO model, i.e. Relation-Subject-Object model,

and the second one as

SRO model, i.e. Subject-Relation-Object model.

The first information model for storing RDF-graphs is based on choosing the relations as

separate layers (file names) and subjects as NL-paths in all layers, i.e.

RSO model: Relation (Subject) => Object.

The second is the dual one – the subjects may be chosen as layers and the relations as

NL-path, i.e.

SRO model: Subject (Relation) => Object.

In both cases, the object is the only information to be stored in the archives.

The abstract structure of both models is:

NL-ArM_archive_file_name (NL-address) => Stored_information

Natural Language Addressing

95

What model has to be preferred depends of the sets of relations and subjects, i.e. one that has

less size is preferable to be selected as set of layers. If both of models have great size than the next

Universal model may be preferred.

In the Universal information model (UNL model), both Subject and Relation are equally

presented. In this model concatenation of Subject and Relation is assumed as NL-path in a common

archive (trie), i.e.

UNL model: NL-ArM_archive (Subject, Relation) => Object.

 Conclusion of chapter 3

This chapter was aimed to introduce a new access method based on the idea of Natural

Language Addressing.

MDIM and its realizations are not ready to support NL-addressing. We upgraded them for

ensuring the features of NL-addressing via new access method called NL-ArM.

The program realization of NL-ArM is based on specialized hash functions and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

NL-ArM is ready for storing RDF information. It is possible to define tree information

models for storing RDF-graphs using NL-ArM: (1) RSO model (Relation-Subject-Object model), (2)

SRO model (Subject-Relation-Object model), and (3) UNL model ((Subject, Relation) => Object

Universal model).

Natural Language Addressing

96

4 Basic experiments

Abstract

In this chapter we will present two types “clear” experiments: with a text file and a

relational database. The reason is that they are wide used for storing semi-structured data.

4.1 Comparison with a text file

The need to compare NL-ArM access method with text files is determined by practical

considerations – in many applications the text files are main approach for storing semi-structured data.

Text files are kind of files of records which are still in the basis of modern database management

systems. Because of this, it is important to determine whether there exists a benefit of structuring data

in tries. For instance, if the records are connected to keywords (strings), the information may be

recorded by burst tries (i.e. by NL-addressing) rather than as usually with a clear indication of the

keywords in the records.

Important consideration in this case is that the sequential reading text file (to find concrete

keyword) is very slow operation and every indexed approach will be quicker. Indexed text files are

typical for relational data bases and this case will be analyzed further in this chapter.

Here, the goal is to investigate the size of the files and speed of their generation. In other

words, we have to compare writing in a sequential text file with writing in NL-ArM archive.

To compare so different file structures we need to use a common record structure. The

structure of text file is a record identified by a keyword, i.e.

<keyword><text information><CR>.

In ArM32 and, respectively, in NL-ArM archives, the information is structured in multi-way

multi-layer hash structures and the content of record may be accessed by keyword as path to location

of container where the text is stored, i.e.

<path> <text>.

In this case the keyword (path) is not stored on the disk.

In both cases the <text> is the same.

We have to make choice for length of the keywords. It may be arbitrary but with fixed

length.

Natural Language Addressing

97

Our choice for keywords’ length is based on understanding that the average word length in

English is approximately 5.10 characters [Sigurd et al, 2004]. In other words, the most frequently

used English words are up to 8 characters long (Figure 23).

Figure 23. Word Length for English (extracted from [Sigurd et al, 2004])

The average word length in French is approximately 5.13 characters, in Spanish - 5.22

characters, in German - 6.26 characters [Sigurd et al, 2004], in Russian – 5.28 characters

[Sharoff, 2001]. This means that length of 8 characters cover these languages, too.

Following this consideration, we chose 8 characters as length of the keywords in our

experiments.

The basis of the experiments is a structure of 30 symbols:

 Keyword – artificial arbitrary string with maximal length of 8 ASCII symbols.

Duplication of symbols is permitted;

 String of 22 arbitrary ASCII symbols,

which are stored (written) as follow:

 In the text file – as a structure consisting of keyword and string of length 30 bytes;

 In the NL-ArM archive - the same string (22 characters) stored in the elements with the

specified by path of 8 characters (four ASCII symbols in one co-ordinate), i.e. in the

archive will be written 22 bytes of the string and 8 symbols of the keyword will be

assumed as path (NL-address).

For the experiments, the NL-ArM hash function was programmed to convert ASCII string to

space path, i.e. four symbols to form one 32 bit co-ordinate word. The generated keyword string was

extended with leading zeroes if it is needed. This way the 8 byte string keyword is converted in two 32

bit hash values and we have to use two layer hash structure. For instance, the string “ABCDEFGH”

will be converted in two 32 bit words (ACBD) and (EFGH) where every letter’s ASCII code occupies

one byte.

Basic experiments

98

The experiments follow the ones made in [Markov, 2006] and were provided on the same

computer with a processor Celeron, 3.08 GHz, 512 MB RAM 160 GB HDD and operating system

Microsoft Windows XP Professional Ver. 2002, Service Pack 2. The results of the experiments are

given in Table 12, Table 13, Table 14, and Table 15. Corresponded graphic visualizations are given at

Figure 24, Figure 25, Figure 26, and Figure 27. We received the same results as in [Markov, 2006]

which means that the NL-addressing do not add significant complexity to one of the ArM32.

 Comparison of time characteristics

The Table 12 contains information about six experiments provided with different quantity of

records from 2500 up to 100 millions. The table contains data in milliseconds (ms) about time for

storing all data sets as well as the average time for storing of one record. The Figure 24 illustrates

graphically the same data.

Table 12. Time (ms) for writing in text file and NL-ArM archive

writing in: text file (ms) in NL-ArM-archive (ms)

number of records all data one record all data one record

2500 16 0.006400 47 0.018800

10000 62 0.006200 140 0.014000

250000 1625 0.006500 3328 0.013312

1000000 6703 0.006703 13359 0.013359

25000000 128719 0.005149 323407 0.012936

100000000 524281 0.005243 1314562 0.013146

Figure 24. Time in milliseconds for writing in text file and NL-ArM archive

Natural Language Addressing

99

The conclusion is that the time of storing the information has expectable regularities: for

great number of elements, writing in a NL-ArM archive became almost twice and half slower than

writing in a text file. It is because of building the hash tables of the information in the NL-ArM

archive.

Table 13 represents the time correlation between writing in text file and in NL-ArM archive.

This correlation is illustrated on Figure 25.

Table 13. Time correlation for writing in text file and NL-ArM archive

number of records text file NL-archive

2500 1 2.94

10000 1 2.26

250000 1 2.05

1000000 1 1.99

25000000 1 2.51

100000000 1 2.51

Figure 25. Time correlation between text file and NL-ArM for writing

It is important that the NL-ArM is constantly about two and half times slower. This means

that the including new records in NL-ArM archive take the same time (about 0.013 ms) per record

irrespective of the number of already stored records. For building very large data bases this is very

crucial characteristic.

Basic experiments

100

The speed of NL-ArM during storing the first 2500 – 5000 records is about three times

slower. This is due to initial creating empty hash tables (information spaces) which takes additional

time. This is illustrated on Figure 25 where in the beginning (most left part) of red curve there exists

specific irregularity.

 Comparison of size characteristics

The comparison of file sizes shows that for great number of elements the text file became a

little longer than NL-ArM archive. Adding indexes for speeding search in text file will increase the

occupied memory because of:

 Duplicating the keywords in the index structures;

 Adding pointers to the records of the text file.

In the same time, after every writing operation, the NL-ArM archive is readies for immediate

direct access (by arbitrary keywords) without need of additional indexing and duplication the

keywords, which “annihilate” transmuting into paths (NL-addresses).

Table 14 contains data for sizes (in bytes) of the text file and the NL-ArM archive. The

corresponded graphical visualization is shown on Figure 26.

The first column of Table 14 contains the number of records. The next two columns contain

the size of the text file and the NL-ArM archive after storing the corresponded numbers of records, i.e.

2 500 records occupy 75 000 bytes in the text file and 130 048 bytes in NL-ArM archive.

It is important that in this case (8 bytes keywords) the NL-ArM takes about 5.5 bytes

additional memory for every record to support hash tables’ organization.

In other words, if we take the value of the size NL-ArM archive from the last row of the

Table 14 (2 740 055 552 bytes) and subtract from it the real length of the stored 100 000 000 records

of 22 bytes (2 200 000 000), we will receive the size of internal NL-ArM additional memory for hash

indexes, which in this case is 540 055 552 bytes.

Now, dividing it on the number of records, i.e. 540055552/100000000 we receive the

average of additional hash indexing memory for each record, i.e. 5.40055552 bytes.

Assuming this value as 5.5 bytes we may say that file with keywords longer than 6 bytes up

to 8 bytes each will be stored by NL-ArM in a file with smallest size.

The same result is illustrated on the Figure 26 where the line of the size of the NL-ArM

archive is under the line of the size of the corresponded text file (of records).

In the same time we receive one very important quality: NL-ArM archive permits random

direct access to all stored records immediately after writing it without any additional indexing.

In experiments with text file we used artificially generated strings up to 8 symbols. If we use

real English words, at the first glance, it will be more effective to use text file for storing couples

(English word, definition), for instance, from a dictionary. If we want only to store the information,

this conclusion is correct.

Natural Language Addressing

101

But if we want to use it via random read and/or update, we have to build indexes for quick

access to the records which will duplicate the keywords and in addition will contain pointers to

locations of keywords and definitions in the file. The external indexing structures used in modern

databases need additional memory as well as time for realizing the same functionality. NL-ArM

avoids such indexes.

Table 14. Size in bytes of the text file and the NL-ArM archive

number of records text file NL-ArM-archive

2 500 75 000 130 048

10 000 300 000 360 448

250 000 7 500 000 6 659 072

1 000 000 30 000 000 26 116 608

25 000 000 750 000 000 640 016 896

100 000 000 3 000 000 000 2 740 055 552

Figure 26. Size in bytes of the text file and the NL-ArM archive

Table 15 represents the relation between sizes of the text file and NL-ArM archive. This

correlation is illustrated on Figure 27.

Basic experiments

102

Table 15. Relation between sizes of the text file and NL-ArM archive

number of records text file NL-ArM archive

2 500 1 1.7

10 000 1 1.2

250 000 1.13 1

1 000 000 1.15 1

25 000 000 1.17 1

100 000 000 1.09 1

Figure 27. Relation between text file and NL-ArM for writing

The analysis of this relation indicates that, for 8 characters as length of the keywords and

small quantity of records, the NL-ArM archive occupies more memory than text file but for the case of

very large data the NL-ArM archive is smaller.

The explanation of this regularity is in the specific hash indexing in the NL-ArM archives. In

the beginning, large empty hash structures are created which during the storing new records step by

step are filled with internal pointers. This way, for great number of records, the hash indexing memory

became about 5.5 bytes per record.

Natural Language Addressing

103

It is seen at the Figure 27. The graphics lines which represent sizes of text file and NL-ArM

archive are crossed after 250 000 records. After 25 000 000 records the ratio comes to 1.09:1 which

has to be examined in further experiments to find possible next cross point.

It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of

length of the strings of keywords of stored information, i.e. according of number of layers of hash

tables (depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

We did not provide experiments to compare NL-access with searching and random

reading/updating of records from text file because they are the slowest operations and every indexed

approach will be quicker [Connolly & Begg, 2002]. Indexed files are typical for relational data bases

and this case will be analyzed below.

4.2 Comparison with a relational database

To provide experiments with a relational database, we have chosen the system “Firebird”

because:

― It is a relational database offering many ANSI SQL standard features that runs on Windows,

Linux, and a variety of UNIX platforms;

― It offers excellent concurrency, high performance, and powerful query language;

― It has been used in production systems, under a variety of names, since 1981.

The Firebird Project is a commercially independent project of C and C++ programmers,

technical advisors and supporters developing and enhancing a multi-platform relational database

management system based on the source code released by Inprise Corp (known as Borland Software

Corp, too) on 25 July, 2000 [Firebird, 2013].

Database management system “Firebird” is built on the code of Borland InterBase

[InterBase, 2012]. It is a complete DBMS capable of managing databases in size from a few kilobytes

to scores of gigabytes with excellent performance [Cantu, 2012].

Firebird supports all major operating systems including Windows, Linux, Solaris, MacOS,

and there are multiple ways to access its database: native/API, dbExpress drivers, ODBC, OLEDB,

Net provider, JDBC, Python module, PHP, Perl, and others. InterBase [InterBase, 2012] and Firebird

[Borrie, 2004; ibphoenix, 2012] are widely distributed.

The experiments below were carried out with the version 2.0 of Firebird.

Basic experiments

104

The experiments were provided in two steps: (1) Writing and (2) Reading.

The information was structured in the same manner as for experiments with sequential text

files. The basis of the experiments is a table with two columns:

 Keyword - several (8 or 14) digital symbols;

 String - 22 arbitrary symbols,

which are stored (written) as follow:

 In the relational database – as a table structure consisting of two columns: keyword and

string both encoded in ASCII;

 In the NL-ArM archive - the same string (22 characters) will be stored in the locations

specified by keyword as path with two parts (digital ASCII symbols - 4+4 or 7+7,

respectively).

For experiments with relational database NL-ArM hash function was programmed to convert

ASCII digital strings of the two parts of keyword in two 32 bit integer co-ordinate values, i.e. every

part of keyword (digital string) is assumed as integer number and it is converted in a 32 bit integer

value. In other words, string of 7 digit symbols is integer value which is less than 232 and may be

stored in 32 bits. This way we illustrate the possibility to have different hash functions for different

specific cases of information.

To analyze performance of NL-ArM the keys were generated by special algorithm to test

different variants of storing. For instance 10 000 rows may be stored via different combinations of the

keys’ two parts values:

 From 1 x 1 up to 10 x 1000;

 From 1 x 1 up to 100 x 100;

 From 1 x 1 up to 1000 x 10.

This way we have different “rectangular” varying the values of theirs vertex points. For

Firebird keys were concatenated strings of the two parts:

 From 00010001 up to 00101000;

 From 00010001 up to 01000100;

 From 00010001 up to 10000010.

Special experiments were provided with “rectangular” which first point is shifted to point

1000000 x 1000000, i.e. for instance:

 From 1000000 x 1000000 up to 1000010 x 1010000;

 From 1000000 x 1000000 up to 1010000 x 1000010;

 From 1000000 x 1000000 up to 1001000 x 1001000.

For Firebird these keys looked as:

 From 10000001000000 up to 10000101010000;

 From 10000001000000 up to 10100001000010;

 From 10000001000000 up to 10010001001000.

Natural Language Addressing

105

 Comparison of writing time characteristics

In Table 16, several results from three variants of writing experiments are presented. The
variants are based on a tables with two columns (key, string) and 10 000, 100 000, and 1 000 000 rows
respectively.

The two columns of Table 16, marked as (X) and (Y), contain values of the two parts of the
keywords which in the same time are coordinates of initial point of NL-ArM experimental rectangular.

Its diagonal point is given by the corresponded offsets (X) and (Y).

In the next column, the quantity of rows (X*Y) is given, respectively – 10 000, 100 000,

and 1 000 000.

The writing time has been measured in milliseconds (ms) and the results are presented in the
next two columns for Firebird and NL-ArM respectively.

In the last column, the ratio between Fireburd and NL-ArM for writing time is given.
Graphical visualization of the ratio is on Figure 28.

Table 16. Writing time comparison of Firebird and NL-ArM

row
No.:

initial values
of co-ordinates

size of intervals
of co-ordinates

Number of
cells

writing time (ms) ratio

Firebird NL-ArM Firebird : NL-ArM

(X) (Y) (X) (Y) (X*Y) (ms) (ms)

1 1 1 10 1000 10000 21297 141 151 : 1

2 1 1 100 100 10000 14094 140 100 : 1

3 1 1 1000 10 10000 15438 156 98 : 1

4 1 1 10 10000 100000 160094 1563 102 : 1

5 1 1 100 1000 100000 145719 14062 103 : 1

6 1 1 1000 100 100000 141547 1265 112 : 1

7 1 1 10000 10 100000 155578 1719 90 : 1

8 1 1 1 100000 100000 292625 2907 100 : 1

9 1 1 100000 1 100000 289406 9390 30 : 1

10 1000000 1000000 10000 10 100000 156656 2109 74 : 1

11 1000000 1000000 10 10000 100000 162000 1672 96 : 1

12 1 1 10 100000 1000000 1740234 16640 104 : 1

13 1 1 100 10000 1000000 1591688 15187 104 : 1

14 1 1 1000 1000 1000000 1589734 14656 108 : 1

15 1 1 10000 100 1000000 1583906 13250 119 : 1

16 1 1 100000 10 1000000 1738047 17875 97 : 1

17 1000000 1000000 1000 1000 1000000 1778953 15750 112 : 1

 Total: 6830000 11577016 128482 90.1 : 1

Basic experiments

106

The average of writing time data in milliseconds for the three groups (10 000, 100 000, and

1 000 000) are presented in Table 17.

In the last column, the average ratio of Firebird and NL-ArM is given. This relation is

illustrated graphically on Figure 29.

Table 17. Average in milliseconds of writing time data

Number of cells
average writing time (ms) ratio

Firebird : NL-ArM Firebird ArM
10000 16943.000 145.670 116.330 : 1

100000 187953.125 4335.875 88.375 : 1
1000000 1670427.000 15559.670 107.330 : 1

Figure 28. Time in miliseconds for writing by

Firebird and NL-ArM

Figure 29. Time relation for writing by Firebird

and NL-ArM

Natural Language Addressing

107

The results are expectable.

During initialization, Firebird take some additional time, than for rest records the consuming

time has logarithmic regularity.

NL-ArM has no initialization procedures and has linear regularity for writing of all records

(Figure 28). This relation may be seen at Figure 29, and more easily at Figure 30 where axes are

logarithmic.

Figure 30. Logarithmic time relation for writing

In the same time we have to comment some disadvantages of NL-ArM in relation to

Firebird. The keys used in the experiments were strings for the Firebird (relational) variants and two

separate 32 bit (4-byte) co-ordinates for NL-ArM.

In relational model all keys have same influence on the writing time – they are written in the

plain file by the same manner (as parts of records) and extend the balanced index in one or other its

section which takes practically same time.

In NL-ArM the different values of co-ordinates cause various archive structures which take

corresponded time for combinations of values. Practically, NL-ArM creates hyper-matrix and large

empty zones need additional resources – time and disk space, which are not so great due to smart

internal index organization but really exists.

Comparison of Firebird and NL-ArM writing times for the case of large empty zones in the

matrix is given in Table 18. It is a sub-table from Table 16 and numbers of rows are the same.

Basic experiments

108

Table 18. Comparison of Firebird and NL-ArM for the case of large empty zones in

the matrix

row
No.:

initial values
of co-ordinates

size of
intervals

of co-
ordinates

Number
of cells

writing time
(ms)

ratio

Firebird
NL-
ArM

Firebird
: NL-
ArM

(X) (Y) (X) (Y) (X*Y) (ms) (ms)

7 1 1 10000 10 100000 155578 1719 90 : 1

4 1 1 10 10000 100000 160094 1563 102 : 1

10 1000000 1000000 10000 10 100000 156656 2109 74 : 1

11 1000000 1000000 10 10000 100000 162000 1672 96 : 1

The influence of storing types is presented in Table 19. Visualization of ratios is shown on

Figure 31.

For NL-ArM we have two cases:

1. Row oriented NL-ArM storing.

2. Column oriented NL-ArM storing.

Firebird is not so sensitive to the NL-ArM row and column oriented cases because these

cases are only switched parts of keyword and the key length is the same. For NL-ArM the second case

is more suitable because of column oriented hierarchical storing. Let remember, NL-ArM has multi-

layer structure of perfect hash tables with 232 entries. In addition, the NL-ArM hash tables have

balanced internal indexes specially adapted for storing large data sets. Because of this, they are not so

effective for small values of co-ordinates. For instance, the better ratio for the rectangle with starting

point 1000000x1000000 is just due to special internal indexing of NL-ArM which is adapted to great

co-ordinate values.

This conclusion is seen on Figure 31 where the Firebird ration line is practically horizontal

but NL-ArM ratio line descends.

Table 19. Influence of storing types

case type of ratio Firebird NL-ArM

1. column to row oriented case (ratio of row 4 to row 7) 1.029 0.909

2.
column to row oriented case for the rectangle with starting point

1000000x1000000 (ratio of row 11 to row 10)
1.034 0.793

Natural Language Addressing

109

Figure 31. Ratios for NL-ArM row and column oriented writing

The influence of offset (1000000) is presented in Table 20. Visualization of ratios is shown

on Figure 32.

Again, for NL-ArM we have two cases:

1. Row oriented NL-ArM storing.

2. Column oriented NL-ArM storing.

As in previous, Firebird is not so sensitive to the NL-ArM row and column oriented cases

because they are only switched parts of keyword and the key length is the same. For NL-ArM the

second case is more suitable because of column oriented hierarchical storing.

This conclusion is seen on Figure 32 where the Firebird ratio line is practically horizontal but

NL-ArM ratio line descends.

Table 20. Influence of the offset from 1 to 1000000

case type of ratio Firebird ratio NL-ArM ratio

1.
row oriented storing

(ratio of row 10 to row 7)
1.007 1.227

2.
column oriented storing

(ratio of row 11 to row 4)
1.012 1.070

Basic experiments

110

Figure 32. Ratios for the offset from 1 to 1000000

Concluding this part of experiments we have to note that the relations in Table 16 show that

in writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This result is due

to two reasons. The first is that balanced indexes of Firebird need reconstruction for including of every

new keyword. This is time consuming process. The second reason is the speed of updating NL-ArM

hash tables which do not need recompilation after including new information.

Due to specific of realization, for small values of co-ordinates NL-ArM is not as effective as

for the great ones.

Nevertheless, NL-ArM is always many times faster than Firebird.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

 Comparison of reading time characteristics

The experimental data for reading time characteristics are given in Table 21, which has

similar format as one for the writing time characteristics.

The experiments were done on the base of 6830000 queries with 8 or 14 byte numbers as

keywords (to model two-dimensional 4-bytes binary co-ordinates), stored in a text file in order to

maintain equivalence of Firebird with NL-ArM.

The columns of Table 21, marked as (X) and (Y), contain the co-ordinates of the initial point

of the experimental rectangular, i.e. initial values of the first and second parts of the keywords.

The diagonal point is given by the corresponded offsets (X) and (Y). In the next column

the quantity of read elements is given, respectively – 10 000, 100 000, and 1 000 000.

The reading time has been measured in milliseconds (ms) and the results are presented in the

next two columns. In the last column, the ratio between Fireburd and NL-ArM for reading time is

given.

Natural Language Addressing

111

Table 21. Reading time comparison of Firebird and NL-ArM

initial values
of co-ordinates

size of
intervals

of co-ordinates

Number of
elements

generated in
the specified

interval

reading time
for 10,000
elements

ratio of
Firebird
to ArM

Firebird ArM

No.: (X) (Y) (X) (Y) (X*Y) (ms) (ms)

1. 1 1 10 1000 10000 532 156 3:1

2. 1 1 100 100 10000 406 172 2:1

3. 1 1 1000 10 10000 563 187 3:1

4. 1 1 10 10000 100000 1265 172 7:1

5. 1 1 100 1000 100000 234 188 1:1

6. 1 1 1000 100 100000 672 110 6:1

7. 1 1 10000 10 100000 2297 203 11:1

8. 1 1 1 100000 100000 13406 125 107:1

9. 1 1 100000 1 100000 15953 422 37:1

10. 1000000 1000000 10000 10 100000 1906 32 59:1

11. 1000000 1000000 10 10000 100000 1265 31 40:1

12. 1 1 10 100000 1000000 13547 188 72:1

13. 1 1 100 10000 1000000 2562 156 16:1

14. 1 1 1000 1000 1000000 1359 125 10:1

15. 1 1 10000 100 1000000 3719 250 14:1

16. 1 1 100000 10 1000000 21625 204 106:1

17. 1000000 1000000 1000 1000 1000000 750 32 23:1

Total: 6830000 82061 2753 29.8:1

The average of reading time data in milliseconds for the three groups (10 000, 100 000, and

1 000 000) are presented in Table 22. This is illustrated on Figure 33.

Table 22. Average in milliseconds (ms) of reading time data

number of reading time ratio

records Firebird NL-ArM Firebird NL-ArM

10000 500.33 171.67 2.67 : 1

100000 4624.75 160.38 33.5 : 1

1000000 7260.33 159.17 40.17 : 1

Basic experiments

112

Figure 33. Time in milliseconds (ms) for reading by Firebird and NL-ArM

In the last column of Table 22, the average ratio of Firebird and NL-ArM for reading time is

given. This relation is illustrated graphically on Figure 34.

Figure 34. Time relation for reading by Firebird and NL-ArM

Concluding this part of experiments we have to note that the relations in Table 21 show that

in reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower.

This result is due to the speed of access in NL-ArM hash tables which do not need search

operations.

Again, note that if we need direct access to large dynamic data sets (via NL-path), than more

convenient are hash based tools like NL-ArM. For instance, such cases are large ontologies and

RDF-graphs.

Natural Language Addressing

113

 Conclusion of chapter 4

In this chapter two main types of basic experiments were presented. NL-ArM has been

compared with (1) sequential text file of records and (2) relational database management system

Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing semi-structured

data. To investigate the size of files and speed of their generation we compared writing in a sequential

text file and in a NL-ArM archive.

For 8 characters as length of the keywords and small quantity of records, the NL-ArM

archive occupies more memory than text file but for the case of very large data the NL-ArM archive is

smaller. It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of length

of the strings of keywords of stored information, i.e. according of number of layers of hash tables

(depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

We did not compare the sizes of files of NL-ArM and Firebird because of difference of

keywords – symbols for Firebird and integer values for NL-ArM.

In writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This

result is due to two reasons. The first is that balanced indexes of Firebird need reconstruction for

including of every new keyword. This is time consuming process. The second reason is the speed of

updating NL-ArM hash tables which do not need recompilation after including new information. Due

to specific of realization, for small values of co-ordinates NL-ArM is not as effective as for the great

ones.

In reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower. This

result is due to the speed of access in NL-ArM hash tables which do not need search operations.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

Natural Language Addressing

114

5 Experiments for NL-storing of small datasets

Abstract

In this chapter we will present several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of small size datasets which contain up to one hundred

thousands of instances.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two

regularities of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

This chapter starts with introduction of the idea of knowledge representation. Further in the

chapter three experiments with small size datasets are outlined: for NL-storing of dictionaries,

thesauruses, and ontologies. Presentation of every experiment starts with introductory part aimed to

give working definition and to outline state of the art in storing concrete structures.

We start with analyzing the easiest one: NL-storing dictionaries. After that, NL-storing of

thesauruses will be analyzed. An experiment with WordNet thesaurus and program WordArM based

on NL-addressing will be discussed.

At the end, a special attention will be given to NL-storing ontologies. This part of the chapter

begins with introducing the basic ontological structures as well as the corresponded operations and

tools for operating with ontologies. Further, NL-storing models for ontologies will be discussed and

experiments with OntoArM program for storing ontologies based on NL-addressing will be outlined.

5.1 Knowledge representation

In a letter written to Philip Jourdain in 1914, Gottlob Frege had written:

“Let us suppose an explorer travelling in an unexplored country sees a high snow-

capped mountain on the northern horizon.

By making inquiries among the natives he learns that its name is 'Aphla'. By sighting

it from different points he determines its position as exactly as possible, enters it in a map, and

writes in his diary: 'Aphla is at least 5000 meters high'.

Natural Language Addressing

115

Another explorer sees a snow-capped mountain on the southern horizon and learns

that it is called Ateb. He enters it in his map under this name.

Later comparison shows that both explorers saw the same mountain. Now the

content of the proposition 'Ateb is Aphla' is far from being a mere consequence of the

principle of identity, but contains a valuable piece of geographical knowledge. What is stated

in the proposition 'Ateb is Aphla' is certainly not the same thing as the content of the

proposition 'Ateb is Ateb'.

Now if what corresponded to the name 'Aphla' as part of the thought was the

reference of the name and hence the mountain itself, then this would be the same in both

thoughts. The thought expressed in the proposition 'Ateb is Aphla' would have to coincide

with the one in 'Ateb is Ateb', which is far from being the case. What corresponds to the name

'Ateb' as part of the thought must therefore be different from what corresponds to the name

'Aphla' as part of the thought. This cannot therefore be the reference which is the same for

both names, but must be something which is different in the two cases, and I say accordingly

that the sense of the name 'Ateb' is different from the sense of the name 'Aphla'.

Accordingly, the sense of the proposition 'Ateb is at least 5000 meters high' is also

different from the sense of the proposition 'Aphla is at least 5000 meters high'. Someone who

takes the latter to be true need not therefore take the former to be true. An object can be

determined in different ways, and every one of these ways of determining it can give rise to a

special name, and these different names then have different senses; for it is not self-evident

that it is the same object which is being determined in different ways.

We find this in astronomy in the case of planetoids and comets. Now if the sense of

a name was something subjective, then the sense of the proposition in which the name occurs,

and hence the thought, would also be something subjective, and the thought one man connects

with this proposition would be different from the thought another man connects with it; a

common store of thoughts, a common science would be impossible.

It would be impossible for something one man said to contradict what another man

said, because the two would not express the same thought at all, but each his owns.

For these reasons I believe that the sense of a name is not something subjective

(crossed out: in one's mental life), that it does not therefore belong to psychology, and that it is

indispensable” [Frege, 1980].

What is important in this example is [Ivanova et al, 2013c]:

― The names Ateb and Aphla refer different parts of the same natural object (mountain, let

call it Pirrin);

― The position of the referred object (mountain) is fixed by any artificial system

(geographical co-ordinates, address) which is another name of the same object;

― The names and the address correspond one to another and both to the real object but

without the explorer’s map, respectively – the explorer’s diary, it is impossible to restore

the correspondence;

Experiments for NL-storing of small datasets

116

― At the end, the names Ateb and Aphla are connected hierarchically to the name Pirrin

and the relations are:

� Aphla is_a_South_Side_of Pirrin;

� Ateb is_a_North_Side_of Pirrin.

The last case forms a simple vocabulary (Table 23):

Table 23. A simple vocabulary

name definition

Aphla The South Side of Pirrin mountain

Ateb The North Side of Pirrin mountain

Pirrin A mountain in the unexplored country with co-ordinates (x,y)

In addition, all cases given above form a simple ontology with four concepts which may be

represented by a graph (Figure 35):

 is_an_address_of

geographical co-ordinates Pirrin

 is_a_South_Side_of is_a_North_Side_of

Aphla Ateb

Figure 35. A simple ontology

The same information may be represented by a table (Table 24):

Table 24. A simple ontology

object is_a_South_Side_of is_a_North_Side_of is_an_address_of

Pirrin Aphla Ateb co-ordinates

What vocabularies, taxonomies, thesauruses, and ontologies, all have in common are

[Pidcock & Uschold, 2012]:

― They are approaches to help structure, classify, model, and or represent the concepts and

relationships pertaining to some subject matter of interest to some community;

Natural Language Addressing

117

― They are intended to enable a community to come to agreement and to commit to use the

same terms in the same way;

― There is a set of terms that some community agrees to use to refer to these concepts and

relationships;

― The meaning of the terms is specified in some way and to some degree;

― They are fuzzy, ill-defined notions used in many different ways by different individuals

and communities.

The major differences that distinguish these approaches [Pidcock & Uschold, 2012]:

― How much meaning is specified for each term?

― What notation or language is used to specify the meaning?

― What is the thing for? Taxonomies, thesauruses, and ontologies have different but

overlapping uses.

At the end, some additional information may be connected to the names. For instance, it may

be the type of mountain, minerals found, some photos, textual descriptions, etc. All such information

is connected to names and has to be accessed by names as keywords or paths to it, i.e. its computer

representation has to be organized using corresponded pointers, indexes of keyword, etc.

In this case the concept “knowledge representation” is used. As we have seen above, the

ontologies are useful approach for knowledge representation, which is understandable for humans as

well as for the specialized software.

Knowledge representation is closely connected to data models, i.e. the information structures

used for organizing the information in the internal or external computer memory. In other words,

knowledge representation is depended on the storing patterns and program tools for accessing data.

Below in this chapter and in the next chapter, storing of knowledge, represented by

structured and semi-structured data sets, will be discussed from point of view of using the NL-

addressing and NL-ArM for this purpose. Results from provided experiments will be analyzed.

In this chapter we will present several experiments aimed to show the possibilities of NL-

addressing to be used for NL-storing of small size datasets which contain up to one hundred thousands

of instances.

The experiments were provided at PC SONY Vaio, with Intel® Core2 Duo CPU T9550 @

2.66GHz 2.67GHZ, RAM 4.00 GB, 64-bit operating system Windows 7 Ultimate SP1.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two regularities

of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

5.2 Experiment for NL-storing dictionaries

Our first experiment is to realize a small multi-language dictionary based on NL-addressing.

For this purpose, we have taken data from the popular in Bulgaria “SA Dictionary” [Angelov, 2012].

Experiments for NL-storing of small datasets

118

SA Dictionary is a computer dictionary, which translates words from Bulgarian language to English

and vice versa.

For experiments we take a list of 23 412 words in English and Bulgarian with their

definitions in Bulgarian, stored in a sequential file with size of 2 410 KB.

The experimental program “WordArM” used for the experiments is specially designed for

storing dictionaries and thesauruses based on NL-addressing. It is outlined in the Appendix A.

 Definition of dictionary

For the purposes of this research, next definition of dictionary is appropriate:

Dictionary: a reference resource, in printed or electronic form, that consists of an alphabetical list

of words with their meanings and parts of speech, and often a guide to accepted pronunciation and

syllabification, irregular inflections of words, derived words of different parts of speech, and

etymologies [Collins, 2003]:

This definition is modeled by the construction:

<name> <definition>.

 Multi-language dictionary based on NL-addressing

For storing dictionaries we use simple model: the words (concepts) are used as paths to theirs

definitions stored in corresponded terminal containers.

The speed for storing, accessing, and size of the work memory and permanent archives are

given in Table 25.

Work memory is the memory taken for storing hash tables and service information during the

work of NL-ArM. Usually it has to be part of main computer memory. To analyze its real size in our

experiments, work memory is allocated as file.

Permanent archives are static copies of work memory (zipped files), aimed for long storing

the information. They have to be of small size and converting to and from expanded work memory

structures has to be quick (usually several seconds or minutes). For compressing of work memory we

use a separate archiving program.

Table 25. Experimental data for NL-storing of a dictionary

operation
number of
instances

total time in
milliseconds

average time for
one instance

work
memory

permanent
archive

NL-writing 23 412 22 105 0.94 ms
80 898 KB 5 938 KB

NL-reading 23 412 20 826 0.89 ms

The work memory taken during the work was 80 898 KB.

After finishing the work, occupied permanent compressed archive is 5 938 KB. This means

that the NL-indexing takes 5 102 KB additional compressed disk memory (the sequential file with

initial data is 2 410 KB and compressed by WinZip it is 836 KB).

Natural Language Addressing

119

To analyze work of the system, work memory was chosen to be in a file but not in the main

memory. In further realizations of WordArM, it may be realized as a part of main memory of

computer as:

― Dynamically allocated memory;

― File mapped in memory.

In this case, the speed of storing and accessing will be accelerated and used hard disk space

will be reduced.

The analysis of the results in Table 25 shows that the NL-addressing in this realization

permits access practically equal for writing and reading for all data.

The speed is more than a thousand instances per second.

Reading is possible immediately after writing and no search indexes are created.

5.3 Experiment for NL-storing thesauruses

The NL-storing model for vocabularies was simple because the one-one correspondence

“word-definition”.

The storing models for thesauruses are more complicated due to existing more than one

corresponded definitions for a given word (synonyms). Because of this, below we will outline and

analyze one such model – the storing model of WordNet thesaurus [WordNet, 2012].

The idea is to use NL-addressing to realize the WordNet lexical database and this way to

avoid recompilation of its database after every update.

The program used for the experiments is “WordArM” (see Appendix A).

 Definition of thesaurus

For the purposes of this research, the next definition of thesaurus is appropriate:

Thesaurus: a book or catalog of words and their synonyms and antonyms [YourDictionary, 2013].

A thesaurus is a networked collection of controlled vocabulary terms. This means that a

thesaurus uses associative relationships in addition to parent-child relationships. The expressiveness of

the associative relationships in a thesaurus varies and can be as simple as “correlated to terms” as in

term A is related to term B. The thesaurus has two kinds of links: broader/narrower term, which is

much like the generalization/specialization link, but may include a variety of others [Pidcock &

Uschold, 2012].

 WordNet thesaurus

 WordNet® is a large lexical database of English (http://WordNet.princeton.edu).

Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets),

each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and

Experiments for NL-storing of small datasets

120

lexical relations. The resulting network of meaningfully related words and concepts can be navigated

with the browser.

WordNet is freely and publicly available for download. WordNet's structure makes it a

useful tool for computational linguistics and natural language processing [Fellbaum et al, 1998;

Miller, 1995].

WordNet was created and is being maintained at the Cognitive Science Laboratory of

Princeton University under the direction of psychology professor George A. Miller. Development

began in 1985.

As of November 2012 WordNet's latest Online-version is 3.1 (announced on June 2011), but

latest released version is 3.0 (released on December 2006).

The 3.0 database contains 155 287 words organized in 117 659 synsets for a total of 206 941

word-sense pairs; in compressed form, it is about 12 megabytes in size [WordNet, 2012].

 WordNet system

The mathematical model of the WordNet is a graph V = (X, R), where X is the set of graph

nodes, and R is the set of edges between them.

The set X is divided into two disjoint subsets: X = X1 X2, X1 X2 =. The nodes from X1

correspond to the words and phrases, and nodes from X2 - to their meanings (interpretations). Each of

meanings correlates to one of the parts of speech: noun, verb, adjective or adverb.

The set of edges is also divided into two subsets which are not intersecting:

R = R1 R2, R1 R2 =. Edges of R1 connect the words with theirs meanings i.e. the elements X1

with elements X2. These edges represent relationships which belong to X1 x X2. Edges of R2 connect

"words with words" and "meanings with meanings”, i.e. represent relationships that belong to X1 x X1

and X2 x X2 respectively [Bashmakov, 2005]. Other types of relationships are defined by typification

of edges from R2.

Technically, the WordNet is an electronic thesaurus which defines a wide range of meanings

of words bounded together by semantic pointers. WordNet logical structure is shown in Figure 36.

In developing WordNet lexical database, it has been convenient to divide the work into two

interdependent tasks which bear a vague similarity to the traditional tasks of writing and printing a

dictionary [Fellbaum, 1998]:

― One task is to write the source files that contain the basic lexical data — the contents of

those files are the lexical substance of WordNet;

― The second task is to create a set of computer programs that would accept the source

files and do all the work leading ultimately to the generation of a display for the user.

The WordNet system falls naturally into four parts:

― The WordNet lexicographers’ source files;

― The software utility called “Grinder” aimed to convert lexicographers’ source files into

the WordNet lexical database;

― The WordNet lexical database;

― And the suite of software tools used to access the database.

Natural Language Addressing

121

Figure 36. Logical structure of the WordNet

WordNet’s source files are written by lexicographers. They are the product of a detailed

relational analysis of lexical semantics: a variety of lexical and semantic relations are used to represent

the organization of lexical knowledge.

The “Grinder” utility compiles the lexicographers’ files. It verifies the syntax of the files,

resolves the relational pointers, then generates the WordNet database that is used with the retrieval

software and other research tools. To build a complete WordNet database, all of the lexicographers’

files must be processed at the same time.

The main relation among words in WordNet is synonymy, as between the words “shut” and

“close” or “car” and “automobile”. Synonyms (words that denote the same concept and are

interchangeable in many contexts) are grouped into unordered sets (synsets). Each of WordNet’s

117 000 synsets is linked to other synsets by means of a small number of “conceptual relations”.

Additionally, a synset contains a brief definition (“gloss”) and, in most cases, one or more short

sentences illustrating the use of the synset members. Word forms with several distinct meanings are

represented in as many distinct synsets. Thus, each form-meaning pair in WordNet is unique

[WordNet, 2012].

Consider a representation of a synset of the word “accession” in the WordNet lexical

database:

00047131 04 n 02 accession 0 addition 0 001 @ 09536731 n 0000 |
something added to what you have already;
"the librarian shelved the new accessions";
"he was a new addition to the staff"

The number 00047131 is a unique identifier of the synset of the noun {accession, addition}.

The part of the record between the symbols "@" and "|" indicates that this synset is subordinated to the

synset with ID 09536731 which correspond to meaning "acquisition". The last part of the record (after

Experiments for NL-storing of small datasets

122

the symbol "|") is interpretation of synset and some examples of using the words included in the

synset.

From a software standpoint, this record requires a number of additional indexes for service

the access, which of course needs additional resources.

As an example, consider the information about the word "accession". As an answer to the

request for "accession", the WordNet system returns the following information (Figure 37):

The noun accession has 6 senses (no senses from tagged texts)
1. {13251723} <noun.process> accession#1 -- (a process of increasing by addition (as
to a collection or group); "the art collection grew through accession")
2. {13170404} <noun.possession> accession1#2 -- ((civil law) the right to all of that
which your property produces whether by growth or improvement)
3. {13082910} <noun.possession> accession#3, addition#4 -- (something added to
what you already have; "the librarian shelved the new accessions"; "he was a new
addition to the staff")
4. {07078650} <noun.communication> accession2#4, assenting#1 -- (agreeing with
or consenting to (often unwillingly); "accession to such demands would set a dangerous
precedent"; "assenting to the Congressional determination")
5. {05115154} <noun.attribute> entree#2, access#1, accession#5, admittance#1 --
(the right to enter)
6. {00232781} <noun.act> accession3#6, rise to power#1 -- (the act of attaining or
gaining access to a new office or right or position (especially the throne); "Elizabeth's
accession in 1558")

The verb accession has 1 sense (no senses from tagged texts)
1. {00989696} <verb.communication> accession#1 -- (make a record of additions to a
collection, such as a library)

Figure 37. Answer by WordNet system to a query for the word "accession"

 WordNet storing model

The WordNet database is in an ASCII format that is human- and machine-readable, and is

easily accessible to those who wish to use it with their own applications.

There are two main types of database files:

― Data file - contains all of the lexicographic data gathered from the lexicographers’ files

for the corresponding syntactic category, with relational pointers resolved to addresses in

data files;

― Index file - an alphabetized list of all of the word forms in WordNet for the

corresponding syntactic category.

WordNet stores information about words in four main data files and four main index files

(for nouns, verbs, adjectives and adverbs).

The index and data files are interrelated.

Natural Language Addressing

123

The data structure is the same in each of data files – one or more synsets are stored for every

word and the access is performed by the address of the first bytes of the synsets, which is apparently

given by an eight digit number beginning namely in this byte (Figure 38 and Figure 39). This value is

the unique identifier of the synset. It is its “relative address” from the beginning (first byte) of the file.

The synset data elements are separated by spaces. We should note that links to other synsets are given

again by the relative addresses.

13251723 22 n 01 accession 0 001 @ 13323403 n 0000 | a process of
increasing by addition (as to a collection or group); "the art collection grew
through accession"

13170404 21 n 01 accession 1 002 @ 13070995 n 0000 ;c 08338303 n

0000 | (civil law) the right to all of that which your property produces
whether by growth or improvement

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

07078650 10 n 02 accession 2 assenting 0 002 @ 07076600 n 0000 +

00795631 v 0102 | agreeing with or consenting to (often unwillingly);
"accession to such demands would set a dangerous precedent"; "assenting
to the Congressional determination"

05115154 07 n 04 entree 0 access 0 accession 0 admittance 0 003 @

05113619 n 0000 + 02426186 v 0401 ~ 05119817 n 0000 | the right
to enter

00232781 04 n 02 accession 3 rise_to_power 0 003 @ 00060914 n 0000 +

01989112 v 0101 + 02358456 v 0101 | the act of attaining or gaining
access to a new office or right or position (especially the throne);
"Elizabeth's accession in 1558"

Figure 38. Synsets of the word “accession” in WordNet data file for nouns

00989696 32 v 01 accession 0 002 @ 00990286 v 0000; c 00897092 n
0000 01 + 08 00 | make a record of additions to a collection, such as a
library

Figure 39. Synsets of the word “accession” in WordNet data file for verbs

What is important for us now is the algorithm of reaching the synsets.

There are four index files of WordNet (for nouns, verbs, adjectives and adverbs). They are

sorted in alphabetical order of words and for each word a special record is stored at separated line. Its

structure is clear: at the first place the word is given and, after some coded information, the relative

addresses of the corresponded synsets in corresponded data files age given (Figure 40 and Figure 41).

Experiments for NL-storing of small datasets

124

accession n 6 4 @ ~ + ; 6 0 13251723 13170404 13082910 07078650
05115154 00232781

Figure 40. Record for the word "accession" in the index of nouns

accession v 1 2 @ ; 1 0 00989696

Figure 41. Record for the word "accession" in the index of verbs

To reach all synsets of a word, firstly a binary search is made in all index files, the

corresponded relative addresses are collected and then system reads the synsets directly from the data

files.

Algorithmic complexity in this case is O(log(nn)+log(nv)+log(na)+log(nr)), where nn, nv, na

and nr are the quantities of nouns, verbs, adjectives and adverbs, respectively.

There is a second way to reach synsets. It is served by so called "sense index". This index is

also sorted, but for every word there exist as much records as number of synsets exists for given word

in all data files. For example, the word accession has seven records: six for its meanings as a noun and

one for its meaning as a verb. Each record contains only one relative address of a synset (Figure 42).

In this case, to reach all synsets of a word, firstly a binary search is made in the sense index

and the corresponded relative addresses are collected from all records for the word. Then, the system

reads the synsets directly from the data files.

Algorithmic complexity in this case is greater than O(log(n)), n= nn+nv+na+nr is the total

number of words in the database (nouns + verbs + adjectives + adverbs), because the words may be

repeated many times, and further work is needed to retrieve all occurrences of the word.

accession%1:04:03:: 00232781 6 0
accession%1:07:00:: 05115154 5 0
accession%1:10:02:: 07078650 4 0
accession%1:21:00:: 13082910 3 0
accession%1:21:01:: 13170404 2 0
accession%1:22:00:: 13251723 1 0
accession%2:32:00:: 00989696 1 0

Figure 42. Records for the word "accession" in the sense index

 Disadvantages of WordNet storing model

The WordNet storing model permits quick response of the system during its everyday using.

The (binary) search in four types sorted index files and one general sense index, using corresponded

hash tables, allows high speed of the search and, based on it, extracting the needed information via

direct access based on the relative addresses in the data files.

Many disadvantages of the WordNet organization are discussed in [Poprat et al, 2008]. Due

to importance of them, below we will include larger citations.

Natural Language Addressing

125

When the WordNet project started more than two decades ago, markup languages such as

SGML or XML were unknown. Because of this reason, a rather idiosyncratic, fully text-based data

structure for these lexicographic files was defined in a way to be readable and editable by humans —

and survived until today. This can really be considered as an outdated legacy given the fact that the

WordNet community has been so active in the last years in terms of data collection, but has refrained

from adapting its data formats in a comparable way to today’s specification standards.

There are two types of problems founded for the data format underlying the WordNet

lexicon and the software that helps building a WordNet file and creating an index for this file:

― First, WordNet’s data structure puts several restrictions on what can be expressed in a

WordNet lexicon. For example, it constrains lexical information to a fixed number of

homonyms and a fixed set of relations;

― Second, the data structure imposes a number of restrictions on the string format level.

If these restrictions are violated the WordNet processing software throws error messages

which differ considerably in terms of informativeness for error tracing and detection or even do not

surface at all at the lexicon builder’s administration level.

In addition, it seems that the length of a word is restricted to 425 characters and synsets are

only allowed to group up to 988 direct hyponymous synsets.

According to our experiences the existing WordNet software is hardly (re)usable due to

insufficient error messages that the software throws and limited documentation [Poprat et al, 2008].

In terms of the actual representation format of WordNet we found that using the current

format is not only cumbersome and error-prone, but also limits what can be expressed in a WordNet

resource [Poprat et al, 2008].

From our perspective this indicates the need for a major redesign of WordNet’s data

structure foundations to keep up with the standards of today’s meta data specification languages (e.g.,

based on RDF [Graves & Gutierrez, 2006], XML or OWL [Lungen et al, 2007]). We encourage the

reimplementation of WordNet resources based on such a state-of-the-art markup language (for OWL

in particular a representation of WordNet is already available [van Assem et al, 2006].

Of course, if a new representation format is used for a WordNet resource also the software

accessing the resource has to be adapted to the new format. This may require substantial

implementation efforts that we think are worth to be spent, if the new format overcomes the major

problems that are due to the original WordNet format [Poprat et al, 2008].

Finally, one more shortcoming of the WordNet database’s structure is that although all the

files are in ASCII, and are therefore editable, and in theory extensible, in practice this is almost

impossible.

The end user has access only to the static ("compiled") version of the database, which

couldn’t be extended and further developed. In addition, due to relative addresses that are used as

pointers, any change which cause alteration of the number of bytes in any data file makes it unusable

and it must be recompiled as well as the corresponded index files.

One of the Grinder’s primary functions is the calculation of addresses for the synsets in the

data files. Editing any of the database files would (most likely) create incorrect byte offsets, and would

thus derail many searching strategies. At the present time, building a WordNet database requires the

Experiments for NL-storing of small datasets

126

use of the Grinder and the processing of all lexicographers’ source files at the same time

[Fellbaum, 1998].

Let see a small example shown on Figure 43 - two variants of the synset of the word

“accession” from different compilations of the data file for nouns:

(a) Version of WordNet from August, 2012;

(b) An older version of WordNet from 2011 year, published in [Palagin et al, 2011].

The difference between relative addresses is visible on Figure 43.

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

а) version from the 2012 year

00047131 04 n 02 accession 0 addition 0 001 @ 09536731 n 0000 |

something added to what you have already; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

b) version from the 2011year

Figure 43. Synset the word "accession" from the data file for nouns

In the main, the WordNet database organization has the following important disadvantages:

1. Relative addressing is convenient for the computer processing, but it is difficult to be

used by the customer;

2. Manual creating of numerical addresses is impossible, and their use can be done only by

the special program;

3. The end user has access only to the static ("compiled") version of the database, which

couldn’t be extended and further developed;

4. Building the WordNet database requires the use of the Grinder and the processing of all

lexicographers’ source files at the same time;

5. Using the current format is not only cumbersome and error-prone, but also limits what

can be expressed in a WordNet resource.

We are going to experiment to realize WordNet lexical database without using relative

addresses as pointers and this way to avoid the pointed above limitations and recompilation of the

database after every update.

 Experiment to store WordNet by NL-addressing

The main source information of WordNet is published as lexicographer files.

The names of the WordNet lexicographer files and their corresponding file numbers are

listed in Table 26, along with a brief description of each file's content and corresponded number of

included instances (synsets).

The total number of instances (file records) is 117 871.

Natural Language Addressing

127

206 instances contain service information but not concepts’ definitions, so we have 117 665

instances for experiments, distributed in 45 thematically organized lexicographer files.

It is important to note that there is equal synsets in several lexicographer files. This has

matter when we integrate the 45 files in one source file for representing a thesaurus.

Table 26. WordNet lexicographer files

No.: Name Content
number of
instances

01 adj.all all adjective clusters 14435

02 adj.pert relational adjectives (pertainyms) 3661

03 adj.ppl participial adjectives 60

04 adv.all all adverbs 3621

05 noun.Tops unique beginner for nouns 51

06 noun.act nouns denoting acts or actions 6650

07 noun.animal nouns denoting animals 7514

08 noun.artifact nouns denoting man-made objects 11587

09 noun.attribute nouns denoting attributes of people and objects 3039

10 noun.body nouns denoting body parts 2016

11 noun.cognition nouns denoting cognitive processes and contents 2964

12 noun.communication nouns denoting communicative processes and contents 5607

13 noun.event nouns denoting natural events 1074

14 noun.feeling nouns denoting feelings and emotions 428

15 noun.food nouns denoting foods and drinks 2574

16 noun.group nouns denoting groupings of people or objects 2624

17 noun.location nouns denoting spatial position 3209

18 noun.motive nouns denoting goals 42

19 noun.object nouns denoting natural objects (not man-made) 1545

20 noun.person nouns denoting people 11088

21 noun.phenomenon nouns denoting natural phenomena 641

Experiments for NL-storing of small datasets

128

No.: Name Content
number of
instances

22 noun.plant nouns denoting plants 8159

23 noun.possession nouns denoting possession and transfer of possession 1061

24 noun.process nouns denoting natural processes 770

25 noun.quantity nouns denoting quantities and units of measure 1350

26 noun.relation nouns denoting relations between people or things or ideas 437

27 noun.shape nouns denoting two and three dimensional shapes 342

28 noun.state nouns denoting stable states of affairs 3544

29 noun.substance nouns denoting substances 2983

30 noun.time nouns denoting time and temporal relations 1028

31 verb.body verbs of grooming, dressing and bodily care 547

32 verb.change verbs of size, temperature change, intensifying, etc. 2383

33 verb.cognition verbs of thinking, judging, analyzing, doubting 695

34 verb.communication verbs of telling, asking, ordering, singing 1548

35 verb.competition verbs of fighting, athletic activities 459

36 verb.consumption verbs of eating and drinking 243

37 verb.contact verbs of touching, hitting, tying, digging 2196

38 verb.creation verbs of sewing, baking, painting, performing 694

39 verb.emotion verbs of feeling 343

40 verb.motion verbs of walking, flying, swimming 1408

41 verb.perception verbs of seeing, hearing, feeling 461

42 verb.possession verbs of buying, selling, owning 847

43 verb.social verbs of political and social activities and events 1106

44 verb.stative verbs of being, having, spatial relations 756

45 verb.weather verbs of raining, snowing, thawing, thundering 81

 TOTAL: 117871

Natural Language Addressing

129

Let see an example of two variants of the synset of the word "accession" (Figure 44):

(a) WordNet version and (b) NL-version.

13082910 21 n 02 accession 0 addition 0 001 @ 13082742 n 0000 |

something added to what you already have; "the librarian shelved the new
accessions"; "he was a new addition to the staff"

a) WordNet version

accession 21 n 02 ; 0 addition 0 001 @ acquisition n 0000 | something added
to what you already have; "the librarian shelved the new accessions"; "he
was a new addition to the staff"

b) NL-version

Figure 44. WordNet and NL-versions of the synset of the word "accession"

This example gives idea to experiment using NL-addressing to realize the WordNet lexical

database without using relative addresses and this way to avoid the limitations and recompilation of

the database after every update.

For experiments we have used files from Table 26 as source in two variants:

1. All 45 files concatenated in one big file as thesaurus with more than one hundred

thousands of concepts.

2. Every file was assumed as different layer of WordNet ontology.

The fist case will be discussed below, and the second case will be outlined in the next

section. The program used for experiments in the first case is “WordArM” (see Appendix A). A

screenshot from the WordArM for the case of WordNet as thesaurus is shown at Figure 45. The results

are given in Table 27.

Figure 45. WordArM results for the case of WordNet as thesaurus

Experiments for NL-storing of small datasets

130

Table 27. Experimental data for storing WordNet as thesaurus

operation number of instances total time in milliseconds average time for one instance

writing 125 062 107 157 0.86 ms

reading 117 641 91 339 0.78 ms

work memory: 385 538 KB; permanent archive: 15 603 KB; source text: 1 333 KB

We receive practically the same results as for storing dictionaries.

The analysis of the results in Table 27 shows that the NL-addressing permits access

practically equal for writing and reading for all data. The speed is more than a thousand instances per

second. Reading is possible immediately after writing and no search indexes are created.

The work memory for hash tables and their containers taken during the work of WordArM

was 385 538 KB. To analyze work of the system, work memory was chosen to be in a file in the

external memory. In further realizations, to accelerate the speed and reduce of used disk space, the

work memory may be realized as part of main memory (as dynamically allocated memory or as file

mapped in memory).

After finishing the work, occupied permanent archive for compressed archive is 15 603 KB,

i.e. in this case the NL-indexing takes 14 270 KB additional compressed memory (the sequential file

with initial data is 1 333 KB).

 What we gain and loss using NL-Addressing for storing thesauruses?

The loss is additional memory for storing structures which serve NL-addressing. But the

same if no great losses we will have if we will build balanced search trees or other kind in external

indexing. It is difficult to compare with other systems because such information practically is not

published.

The benefit is in two main achievements:

1. High speed for storing and accessing the information.

2. The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

5.4 Experiment for NL-storing ontologies

Storing graphs and ontologies has one important aspect – the layers which correspond to

types of relations between nodes of graph or ontology [Ivanova et al, 2013e]. The example with

sample graph in previous chapter indicates that it is important to ensure possibility for multi-layer

representation. To make experiment with real data, we will use the WordNet as ontology and its 45

types of relations (given by its files of different types) we store as 45 layers. To provide experiments

in this case, we have realized program “OntoArM”. It is outlined in the Appendix A.

Natural Language Addressing

131

 Definition of ontology

For the purposes of this research, the next definition of ontology is appropriate:

Ontology: a rigorous and exhaustive organization of some knowledge domain that is usually

hierarchical and contains all the relevant entities and their relations [WordNet, 2012].

People use the word ontology to mean different things, e.g. glossaries & data dictionaries,

thesauruses & taxonomies, schemas & data models, and formal ontologies & inference. A formal

ontology is a controlled vocabulary expressed in an ontology representation language. This language

has a grammar for using vocabulary terms to express something meaningful within a specified domain

of interest. The grammar contains formal constraints (e.g. specifies what it means to be a well-formed

statement, assertion, query, etc.) on how a term in the ontology’s controlled vocabulary can be used

together.

People make commitments to use a specific controlled vocabulary or ontology for a domain

of interest. Enforcement of ontology’s grammar may be rigorous or lax. Frequently, the grammar for

"light-weight" ontology is not completely specified, i.e. it has implicit rules that are not explicitly

documented [Pidcock & Uschold, 2012].

The word “ontology” has been used to refer to all of the above things. When used in the

AI/Knowledge_Representation community, it tends to refer to things that have a rich and formal logic-

based language for specifying meaning of the terms. Both a thesaurus and taxonomy can be seen as

having a simple language that could be given a grammar, although this is not normally done. Usually

they are not formal, in the sense that there is no formal semantics given for the language. However,

one can create a model in UML and a model in some formal ontology language and they can have

identical meaning. It is thus not useful to say one is ontology and the other is not because one lacks a

formal semantics. The truth is: there is a fuzzy line connecting these things [Pidcock &

Uschold, 2012].

In 1992, Tom Gruber offers a formal description of concepts and relationships between

them, called "ontology", which is a basis for communication between agents.

Ontology is an explicit specification of a conceptualization. The term is borrowed from

philosophy, where Ontology is a systematic account of Existence [Gruber, 1993a].

People, organizations and software systems must communicate between and among

themselves. However, due to different needs and background contexts, there can be widely varying

viewpoints and assumptions regarding what is essentially the same subject matter. Each uses different

jargon; each may have differing, overlapping and/or mismatched concepts, structures and methods

[Uschold & Gruninger, 1996] stressed that "ontology is a unifying framework for the

different viewpoints and serves as the basis for:

― Communication between people with different needs and viewpoints arising from their

differing contexts;

― Inter-Operability among systems achieved by translating between different modeling

methods, paradigms, languages and software tools;

― System Engineering Benefits: In particular:

Experiments for NL-storing of small datasets

132

 Re-Usability: the shared understanding is the basis for a formal encoding of the

important entities, attributes, processes and their inter-relationships in the domain of

interest. This formal representation may be (or become so by automatic translation)

a re-usable and/or shared component in a software system;

 Reliability: A formal representation also makes possible the automation of consistency

checking resulting in more reliable software;

 Specification: the shared understanding can assist the process of identifying

requirements and defining a specification for an IT system. This is especially true

when the requirements involve different groups using different terminology in the

same domain, or multiple domains”.

John Sowa notes that "the art of ranking things in general and species is of no small

importance and very much assists our judgment as well as our memory. (...) This helps one not merely

to retain things, but also to find them. And those who have laid out all sorts of notions under certain

headings or categories have done something very useful" [Sowa, 2000].

The word “ontology” comes from the Greek “ontos” for being and “logos” for word. It is a

relatively new term in the long history of philosophy, introduced by the 19th century German

philosophers to distinguish the study of being as such from the study of various kinds of beings in the

natural sciences. The more traditional term is Aristotle’s word “category” (kathgoria), which he used

for classifying anything that can be said or predicated about anything [Sowa, 2000a].

In the literature on artificial intelligence, the "ontology" is a term used to describe formally

represented knowledge based on a conceptualization. It requires a description of a set of objects by

corresponded concepts and relationships between these concepts (knowledge).

The word ontology can be used and has been used with very different meanings attached to

it. Ironically, the ontology field suffered a lot from ambiguity. The Knowledge Engineering

Community borrowed the term “Ontology” from the name of a branch of philosophy some 15 years

ago and converted into an object: “ontology”. In the mid-90s philosophers “took it back” and began to

clean the definitions that had been adopted [Gandon, 2002].

Formally, the ontology consists of:

 Terms organized in taxonomy;

 Definitions of terms and attributes;

 Axioms and rules for inference.

The ontology formally can be described by the ordered triple [Palagin & Yakovlev, 2005;

Gavrilova, 2001; Palagin, 2006; Guarino, 1998]:

O = <X,R,F>,

where X, R, F are a finite sets accordingly:

― X is a set of concepts (terms) from the subject area;

― R is a set of relationships between the elements of X;

― F is a set of functions to interpret the X and/or R.

Classifications of ontologies from different points of view and based on different principles

are given in many publications [Bashmakov, 2005; Dobrov et al, 2009].

Natural Language Addressing

133

A formal classification scheme is given in [Guarino, 1998]. From its viewpoint: "ontology is

a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its ontological

commitment to a particular conceptualization of the world. The intended models of a logical language

using such a vocabulary are constrained by its ontological commitment. Ontology indirectly reflects

this commitment (and the underlying conceptualization) by approximating these intended models”

[Guarino, 1998].

To illustrate the usefulness of ontologies let consider an example given by Prof. Assunción

Gómez-Pérez from the Universidad Politechnika de Madrid, during a lecture on ECAI 98, presented in

[Gandon, 2002].

The general problem is to formulate a query over a mass of information and get an answer as

precise and relevant as possible. In her tutorial at ECAI 98, Prof. Pérez asked: "What is a pipe?"

Extending her example we can imagine three answers to this very same question (Table 28).

Table 28. Three notions behind the word "pipe"

A short narrow tube with a small

container at one end, used for

smoking e.g. tobacco.

A long tube made of metal or

plastic that is used to carry water

or oil or gas.

A temporary section of

computer memory that can link

two different computer

processes.

We have one term and three concepts; it is a case of ambiguity. The contrary is one concept

behind several terms, and it is a case of synonyms e.g. car, auto, automobile, motorcar, etc. These

trivial cases poses a serious problem to computerize systems that are not able the see these difference

or equivalence unless they have been made explicit to it.

Communication between people is based on an implicit consensus about concepts that are

used. For example, when discussing a document, people involved in the discussion implicitly implied

that they have a common conceptual consensus about the nature of the document. On a question about

"text", the answer "knows" that "text" means the “document”.

This basic knowledge is lacking in information systems based only on usual terms and text

search (by coincidence).

One possible approach is knowledge to be clearly formulated and presented in a logical

structure that can be used by automated systems. This is exactly the purpose of ontology: to capture

semantics and relationships of concepts we use, making it clear (explicit) and possibly encoded in

Experiments for NL-storing of small datasets

134

symbolic systems so as to retrieve and exchange between different agents, which in particular can be

computer systems.

In conclusion, we recall some of the generally accepted terms and their definitions that are

used with ontologies [Gruber, 1993; Guarino & Giaretta, 1995; Bachimont, 2000; Gandon, 2002]

(Table 29).

Table 29. Some commonly accepted concepts and definitions

Concepts Definitions

Notion - Something formed in the mind, a constituent of thought;
- It is used to structure knowledge and perceptions of the world;
- Principle, idea semantically evaluable and redeploy able.

A Concept - Notion usually expressed by a term (or more generally by a sign);
- The concept represents a group of objects or beings having shared
characteristics “t” that enable us to recognize them a forming and belonging
to this group.

A Relation - Notion of an association or a link between concepts usually expressed by a
term or a graphical convention (or more generally by a sign).

Ontology - “That branch of philosophy which deals with the nature and the
organization of reality”;
- A branch of metaphysics which investigates the nature and essential
properties and relations of all beings as such.

Formal Ontology - The systematic, formal, axiomatic development of the logic of all forms and
modes of being.

Conceptualization - An intentional semantic structure which encodes the implicit rules
constraining the structure of a piece of reality;
- It also denotes the action of building such a structure.

An Ontology - A logical theory which gives an explicit, partial account of a
conceptualization;
- The aim of ontologies is to define which primitives, provided with their
associated semantics, are necessary for knowledge representation in a given
context.

Ontological theory - A set of formulas intended to be always true according to a certain
conceptualization.

A Taxonomy - A classification based on similarities.

A Partonomy - A classification based on “part-of” relation.

 Representing and operations with ontologies

Traditionally, ontologies are built by highly trained knowledge engineers with the assistance

of domain specialists. It’s time-consuming and laborious task. Ontology tools also require users to be

trained knowledge representation and predicate logic.

Natural Language Addressing

135

There are several approaches for representing ontologies. An example of such approach is

using of XML. It is a popular markup language of metadata. With the development of the XML,

different definitions of metadata have been proposed such as Dublin Core [Weibel et al, 1998] and

ebXML [ebxml, 2012].

However, from the viewpoint of ontology, XML is not suited to describe the

interrelationships of resources [Gunther, 1998]. Therefore, W3C has suggested the “Resource

Description Framework” (RDF). There are several ontology languages like XML, RDF schema

RDF(S), DAML+OIL and OWL. Many ontology tools have been developed for implementing

metadata of ontology using these languages [Hertel et al, 2009].

Operations with ontologies are functions of the so called “middleware”. What is called

middleware is the layer implementing the access to the physical ontology data store.

Besides an inference mechanism, the access layer should provide functions for creating,

querying and deleting data in the store.

While adding data requires parsing and ideally a validation of the incoming ontology

sentences, querying the ontology store needs the implementation of some kind of query language as

well as an interpretation and a translation of this query language into calls to the physical storage.

Another important feature of this layer is the possibility to export ontology data to a file for

exchange with other systems [Hertel et al, 2009].

The operations with several ontologies are needed when one application uses multiple

ontologies, especially when using modular design of ontologies or when we need to integrate with

systems that use other ontologies.

We will summarize some of these operations. The terminology in this area is still not stable

and different authors may use these terms in a bit shifted meaning, and so the terms may overlap,

however, all of these operations are important for maintenance and integration of ontologies

[Obitko, 2007].

― Merging of ontologies means creation of a new ontology by linking up the existing ones.

Conventional requirement is that the new ontology contains all the knowledge from the

original ontologies, however, this requirement does not have to be fully satisfied, since

the original ontologies may not be together totally consistent. In that case the new

ontology imports selected knowledge from the original ontologies so that the result is

consistent. The merged ontology may introduce new concepts and relations that serve as

a bridge between terms from the original ontologies;

― Mapping from ontology to another one is expressing of the way how to translate

statements from ontology to the other one. Often it means translation between concepts

and relations. In the simplest case it is mapping from one concept of the first ontology to

one concept of the second ontology. It is not always possible to do such “one to one”

mapping. Some information can be lost in the mapping. This is permissible; however

mapping may not introduce any inconsistencies;

― Alignment is a process of mapping between ontologies in both directions whereas it is

possible to modify original ontologies so that suitable translation exists (i.e. without

losing information during mapping). Thus it is possible to add new concepts and

Experiments for NL-storing of small datasets

136

relations to ontologies that would form suitable equivalents for mapping. The

specification of alignment is called articulation. Alignment, as well as mapping, may be

partial only;

― Refinement is mapping from ontology A to another ontology B so that every concept of

ontology A has equivalent in ontology B, however primitive concepts from ontology A

may correspond to non-primitive (defined) concepts of ontology B. Refinement defines

partial ordering of ontologies;

― Unification is aligning all of the concepts and relations in ontologies so that inference in

ontology can be mapped to inference in other ontology and vice versa. Unification is

usually made as refinement of ontologies in both directions;

― Integration is a process of looking for the same parts of two different ontologies A and B

while developing new ontology C that allows to translate between ontologies A and B

and so allows interoperability between two systems where one uses ontology A and the

other uses ontology B. The new ontology C can replace ontologies A and B or can be

used as an inter-lingua for translation between these two ontologies. Depending on the

differences between A and B, new ontology C may not be needed and only translation

between A and B is the result of integration. In other words, depending on the number of

changes between ontologies A and B during development of ontology C the level of

integration can range from alignment to unification;

― Inheritance means that ontology A inherits everything from ontology B. It inherits all

concepts, relations and restrictions or axioms and there is no inconsistency introduced by

additional knowledge contained in ontology A. This term is important for modular

design of ontologies where an upper ontology describes general knowledge and lower

application ontology adds knowledge needed only for the particular application.

Inheritance defines partial ordering between ontologies.

Not all of these operations can be made for all ontologies [Obitko, 2007]. In general, these

are very difficult tasks that are in general not solvable automatically, for example, because of:

― Undecidability when using very expressive logical languages;

― Insufficient specification of an ontology that is not enough to find similarities with

another one.

Because of these reasons these tasks are usually made manually or semi-automatically,

where a machine helps to find possible relations between elements from different ontologies, but the

final confirmation of the relation is left on human. Human then decides based on:

― The natural language description of the ontology elements;

― The natural language names of the ontology elements and common sense.

 Tools for developing ontologies

The tools for developing ontologies allow users to define new concepts, relationships and

instances, i.e. to create and/or expand existing ontologies. The ontology tools may contain some

additional features such as graphical representation, information search and additional tuning [Noy &

Natural Language Addressing

137

Musen, 2002]. Such tools are, for instance, SWOOP [Kalyanpur et al, 2005], Top Braid composer

[TBC, 2012], Internet Business Logic [IBL, 2012], OntoTrack [Liebig & Noppens, 2003] and IHMC

Cmap Ontology Editor [Hayes et al, 2005].

“Chimaera” helps with merging ontologies. It provides suggestions for subsumption,

disjointness or instance relationship. These suggestions are generated heuristically and are provided

for an operator, so that he may choose which one will be actually used [Chimaera, 2012]. “PROMT”

(or “SMART”) system is a similar system that provides suggestions based on linguistic similarity,

ontology structure and user actions. It points the user to possible effects of these changes

[Promt, 2012].

In [OntoTools, 2012] more than 150 tools (ontology editors) are outlined. At the first glance,

these tools may be classified on two groups – non commercial and commercial.

For instance, the first group include tools like Protégé [protégé, 2012], OilEd [Bechhofer et

al, 2001], Apollo [Apollo, 2012], RDFedt [rdfedit, 2012] OntoLingua [Farquhar et al, 1996], OntoEdit

[ontoprise, 2012; Sure et al, 2002; Sure et al, 2003], WebODE [Arpírez et al, 2001], KAON [Kaon,

2012], ICOM [ICOM, 2012], DOE [Bachimont, 2000; Bachimon et al, 2002; Troncy & Isaac, 2002;

DOE, 2012], WebOnto [Webonto, 2012], and OntoIntegrator [Nevzorova et al, 2007; Nevzorova &

Nevzorov, 2009; Nevzorova & Nevzorov, 2011].

Example of the commercial tools are Medius Visual Ontology Modeller [Polikoff, 2003;

sandsoft, 2012], LinKFactory Workbench [Deray & Verheyden, 2003] and K-Infinity [Macris, 2004;

OntoLex, 2012].

Many of the tools are closed systems. Therefore, it is not possible to evaluate the full

functional capabilities. Thus, the choice of editor of ontologies for practical purposes depends of:

 Free distribution;

 Local use of the web interface;

 Extensibility of functional possibilities of the applications;

 Ability to include modules designed by the user.

The basic features, capabilities, advantages, disadvantages, and comparative analysis of

available onto-editors are given in a number of meaningful overviews [Ovdei & Proskudina, 2004;

Calvanese et al, 2007; Filatov et al, 2007]. Analysis of literary sources about ontoeditors shows that

ontoeditor Protégé is closest to the listed requirements.

The instrumental systems for ontological engineering can be divided into three main groups

[Ovdei & Proskudina, 2004]:

The first group includes tools for creating ontologies that provide:

― Maintenance of collaborative development and review;

― Creation of ontologies according to any methodology;

― Maintenance of reasoning.

The second group includes tools for [Noy & Musen, 1999]:

― Unification of ontologies;

― Discovering semantic relations between different ontologies;

― Alignment the ontologies by establishing links between them and allowing the aligned

ontologies to reuse information from one another.

Experiments for NL-storing of small datasets

138

The third group includes tools for annotation of Web-based ontology resources.

Adding some new systems to survey of [Youn & McLeod, 2006], in Table 30 and Table 31

the basic and advanced features of several well-known ontological systems are outlined.

Table 30. Basic functions of the well-known ontological systems [Youn &

McLeod, 2006]

Import

format

Export

format

Graph

view

Consistency

check
Multi-user

Web

support
Merging

Protégé

[protégé, 2012]

XML,

RDF(S),

XML

Schema

XML,

RDF(S),

XML

Schema,

FLogic,

CLIPS, Java

html

Via plug-

ins like

GraphViz

and

Jambalaya

Via pluggins

like PAL and

FaCT

Limited

(Multi-user

capability added

to it in 2.0

version)

Via Protégé-

OWL plug-

in

Via

Anchor-

PROMPT

plug-in

OilEd

[Bechhofer et al, 2001]

RDF(S),

OIL,

DAML+O

IL

RDF(S), OIL,

DAML+OIL,

SHIQ, dotty,

html

No Via FaCT No
Very limited

namespaces
No

Apollo

[Apollo, 2012]

OCML,

CLOS

OCML,

CLOS
No Yes No No No

RDFedt

[rdfedit, 2012]

RDF(S),

OIL,

DAML,

SHOE

RDF(S), OIL,

DAML,

SHOE

No

Only checks

writing

mistakes

No

Via RSS

(RDF Site

Summary)

?

OntoLingua

[Farquhar et al, 1996]
IDL, KIF

KIF, CLIPS,

IDL, OKBC

syntax,

Prolog syntax

No Via Chimaera

Via write-only

locking, user

access levels

Yes ?

OntoEdit

(Free version)

[ontoprise, 2012;

Sure et al, 2002;

Sure et al, 2003]

XML,

RDF(S),

FLogic

and

DAML+O

IL

XML,

RDF(S),

FLogic and

DAML+OIL

Yes Yes No Yes ?

Natural Language Addressing

139

Import

format

Export

format

Graph

view

Consistency

check
Multi-user

Web

support
Merging

WebODE

[Arpírez et al, 2001]

RDF(S),

UML,

DAML+O

IL and

OWL

RDF(S),

UML,

DAML+OIL,

OWL,

PROLOG, X-

CARIN,

Java/Jess

Form based

graphical

user

interface

Yes

By

synchronization,

authentication and

access restriction

Yes
Via

ODEmerge

KAON

[Kaon, 2012]
RDF(S) RDF(S) No Yes

By concurrent

access control

Via KAON

portal
No

ICOM

[ICOM, 2012]

XML ,

UML
XML, UML Yes Via FaCT No No

With inter-

ontology

mapping

DOE

[Bachimont, 2000;

Bachimon et al, 2002;

Troncy & Isaac, 2002;

DOE, 2012]

XSLT,

RDF(S),

OIL,

DAML+O

IL, OWL

and

CGXML

XSLT,

RDF(S), OIL,

DAML+OIL,

OWL and

CGXML

No

Via type

inheritance and

detection of

cycles in

hierarchies

No

Load

ontology via

URL

No

WebOnto

[Webonto, 2012]
OCML

OCML, GXL,

RDF(S) and

OIL

Yes Yes
With global write-

only locking
Web based ?

ОntoIntegrator

[Nevzorova &

Nevzorov, 2011]

own

format
own format Yes ? No No ?

Medius VOM

[Polikoff, 2003;

sandsoft, 2012]

XML

Schema,

RDF and

DAML+O

IL

XML

Schema, RDF

and

DAML+OIL

UML

diagrams

via Rose

With a set of

ontology

authoring

wizards

Network based

Via read-

only browser

from Rose

Limited

(only

native

Rose

model)

LinKFactory

[Deray & Verheyden,

2003]

XML,

RDF(S),

DAML+O

IL and

OWL

XML,

RDF(S),

DAML+OIL,

OWL and

html

No Yes Yes Yes Yes

K-Infinity

[Macris, 2004;

OntoLex, 2012]

RDF RDF
With Graph

editor
Yes Network based No ?

Experiments for NL-storing of small datasets

140

Table 31. Additional functions of the well-known ontological systems [Youn &

McLeod, 2006]

Collaborative

working

Ontology

library

Inference

engine

Exception

handling

Ontology

storage
Extensibility Availability

Protégé

[protégé, 2012]
No Yes With PAL No

File & DBMS

(JDBC)
Via plug-ins Free

OilEd

[Bechhofer et al,

2001]

No Yes
With

FaCT
No File No Free

Apollo

[Apollo, 2012]
No Yes No No Files Via plug-ins Free

RDFedt

[rdfedit, 2012]
No No No Yes Files No Free

OntoLingua

[Farquhar et al,

1996]

Yes Yes No No Files No Free

OntoEdit

(Free version)

[ontoprise, 2012;

Sure et al, 2002;

Sure et al, 2003]

No No No No File Via plug-ins Free

WebODE

[Arpírez et al, 2001]
Yes No Prolog No

DBMS

(JDBC)
Via plug-ins Free

KAON

[Kaon, 2012]
? Yes Yes No ? No Free

ICOM

[ICOM, 2012]
No ? Yes No DBMS Yes Free

DOE

[Bachimont, 2000;

Bachimon et al,

2002;

Troncy & Isaac,

2002;

DOE, 2012]

No No Yes No File No Free

WebOnto

[Webonto, 2012]
Yes Yes Yes No File No

Free web

access

ОntoIntegrator

[Nevzorova &

Nevzorov, 2011]

No Yes No ?
relational

database
No Free

Natural Language Addressing

141

Collaborative

working

Ontology

library

Inference

engine

Exception

handling

Ontology

storage
Extensibility Availability

Medius VOM

[Polikoff, 2003;

sandsoft, 2012]

Yes

Yes

(IEEE

SUO)

Yes ? ? Yes Commercial

LinKFactory

[Deray &

Verheyden, 2003]

Yes Yes Yes No DBMS Yes Commercial

K-Infinity

[Macris, 2004;

OntoLex, 2012]

Yes Yes Yes ? DBMS No Commercial

General disadvantages of the outlined instrumental systems are:

 Lack of automatic (or automated) procedures for forming components of ontologies;

 User interface based only on English, which does not permit using of other languages,

such as Bulgarian, Russian, Greek, etc.;

 The structure of concepts may be built by only one type of relationships;

 For most commonly available ontological systems it is impossible to work with

ontologies of large volume (e.g. OntoEdit free – up to 50 concepts);

 Many tools store the ontologies in text files, which limits the speed of access to

ontologies;

 Some functions are not available in the free versions of the tools;

 User documentation is not good enough.

The above shortcomings of popular English language ontological tools exist in similar

instruments from Russian segment, in particular, "Multi-layer ontology editor" [Artemieva &

Reshtanenko, 2008], "OntoEditor+" [Nevzorova et al, 2004] and others.

 Experiment to store ontology by NL-addressing

Comparative analysis of the tools shows that all systems use finished products for data

storing, which are limited to text files or relational databases. Both approaches for storing do not meet

specific structures of the ontologies. This necessitates the development of new tools for storing

ontologies.

Storing graphs and ontologies has one important aspect – the layers which correspond to

types of relations between nodes of graph or ontology. The example with sample graph in previous

chapter indicates that it is important to ensure possibility for multi-layer representation.

To make experiment with real data, we use the WordNet as ontology and its 45 types of

relations (given by its files of different types, see Table 26) we store as 45 layers. For experiments in

this case, we have realized a program called “OntoArM”. It is outlined in the Appendix A.

A screenshot from the OntoArM with results for the case with 45 layers is given in Figure 46.

Experiments for NL-storing of small datasets

142

Figure 46. OntoArM results for the case of WordNet with 45 layers

The NL-addressing is case sensitive. The words “cut” and “CUT” are absolutely different as

NL-addresses. Because of this, for words “cut” and “CUT” we have to use separate queries (Figure

47). Of course, it is easy to program the system automatically to use both capital and small letters.

This is a problem to be solved at the middleware level.

In Figure 48 the OntoArM report for the query “cut; *” is shown.

The information on Figure 48 is shown with “no word wrap” option of WordPad program. In

Table 32, the same report is given in whole for both queries (cut; *) and (CUT; *). The definitions are

shown “as_is” in the lexicographer files, i.e. the access method does not convert the information to

any other style and stores and extracts the information “as_is”.

a) small letters b) capital letters

Figure 47. OntoArM panel for manual querying words cut and CUT

Natural Language Addressing

143

Figure 48. OntoArM report to query from Figure 47 a)

Table 32. Report of the queries from Figure 47 a) and b) for all 45 layers of WordNet

and for both queries (cut;*) and (CUT;*)

No. layer definition

1

cut ; adj_all ; { cut, shortened, (with parts removed; "the drastically cut film") }

{ cut, thinned, weakened, (mixed with water; "sold cut whiskey"; "a

cup of thinned soup") }

{ cut, slashed, ((used of rates or prices) reduced usually sharply; "the

slashed prices attracted buyers") }

{ cut, emasculated, gelded, ((of a male animal) having the testicles

removed; "a cut horse") }

CUT ; adj_all ; { [CUT1, UNCUT1,!] (separated into parts or laid open or

penetrated with a sharp edge or instrument; "the cut surface was

mottled"; "cut tobacco"; "blood from his cut forehead"; "bandages

on her cut wrists") }

{ [CUT2, UNCUT2,!] ((of pages of a book) having the folds of the

leaves trimmed or slit; "the cut pages of the book") }

{ [CUT3, UNCUT3,!] (fashioned or shaped by cutting; "a well-cut

suit"; "cut diamonds"; "cut velvet") }

2 cut ; adj_pert ; empty definition

3 cut ; adj_ppl ; empty definition

4 cut ; adv_all ; empty definition

5 cut ; noun_Tops ; empty definition

Experiments for NL-storing of small datasets

144

No. layer definition

6

cut ; noun_act ; { cut6, absence,@ (an unexcused absence from class; "he was

punished for taking too many cuts in his math class") }

{ cut5, reduction,@ (the act of reducing the amount or number; "the

mayor proposed extensive cuts in the city budget") }

{ cut, [cutting, verb.creation:cut11,+] cutting_off1, shortening,@

(the act of shortening something by chopping off the ends; "the

barber gave him a good cut") }

{ cut1, [cutting1, verb.contact:cut10,+ verb.contact:cut,+]

division,@ (the act of cutting something into parts; "his cuts were

skillful"; "his cutting of the cake made a terrible mess") }

{ cut2, [cutting2, verb.contact:cut10,+] opening2,@ (the act of

penetrating or opening open with a sharp edge; "his cut in the lining

revealed the hidden jewels") }

{ cut9, [cutting9, verb.contact:cut5,+] division,@ card_game,#p

(the division of a deck of cards before dealing; "he insisted that we

give him the last cut before every deal"; "the cutting of the cards

soon became a ritual") }

{ cut8, [undercut, verb.contact:undercut,+] stroke,@ tennis,;c

badminton,;c squash,;c ((sports) a stroke that puts reverse spin on the

ball; "cuts do not bother a good tennis player") }

7 cut ; noun_animal ; empty definition

8

cut ; noun_artifact ; { cut, gash, furrow,@ (a trench resembling a furrow that was made

by erosion or excavation) }

{ cut1, canal,@ (a canal made by erosion or excavation) }

9 cut ; noun_attribute ; empty definition

10 cut ; noun_body ; empty definition

11
cut ; noun_cognition ; { cut, fashion,@ (the style in which a garment is cut; "a dress of

traditional cut") }

12

cut ; noun_communication ; { cut4, track, excerpt,@ (a distinct selection of music from a

recording or a compact disc; "he played the first cut on the cd"; "the

title track of the album") }

{ cut, transition,@ ((film) an immediate transition from one shot to

the next; "the cut from the accident scene to the hospital seemed too

abrupt") }

13 cut ; noun_event ; empty definition

14 cut ; noun_feeling ; empty definition

15
cut ; noun_food ; { cut, cut_of_meat, meat1,@ (a piece of meat that has been cut from

an animal carcass) }

16 cut ; noun_group ; empty definition

Natural Language Addressing

145

No. layer definition

17 cut ; noun_location ; empty definition

18 cut ; noun_motive ; empty definition

19 cut ; noun_object ; empty definition

20 cut ; noun_person ; empty definition

21 cut ; noun_phenomenon ; empty definition

22 cut ; noun_plant ; empty definition

23
cut ; noun_possession ; { cut, share,@ loot,#p (a share of the profits; "everyone got a cut of

the earnings") }

24 cut ; noun_process ; empty definition

25 cut ; noun_quantity ; empty definition

26 cut ; noun_relation ; empty definition

27 cut ; noun_shape ; empty definition

28

cut ; noun_state ; { cut, [gash, verb.contact:gash,+] [slash, verb.contact:slash,+

verb.contact:slash1,+] [slice, verb.contact:slice1,+] wound,@ (a

wound made by cutting; "he put a bandage over the cut") }

{ cut1, gradation,@ (a step on some scale; "he is a cut above the

rest") }

29 cut ; noun_substance ; empty definition

30 cut ; noun_time ; empty definition

31

cut ; verb_body ; { cut14, cut4,$ verb.change:grow2,@ frames: 1 (grow through the

gums; "The new tooth is cutting") }{ cut4, grow,@ frames: 8 (have

grow through the gums; "The baby cut a tooth") }

32

cut ; verb_change ; { [cut, verb.communication:cut_off,^] cut_off,

verb.communication:interrupt,@ frames: 8,11 (cease, stop; "cut the

noise"; "We had to cut short the conversation") }

{ cut12, cut6,$ decrease1,@ frames: 4 (have a reducing effect; "This

cuts into my earnings")}

{ cut15, dissolve1,@ frames: 11 (dissolve by breaking down the fat

of; "soap cuts grease") }

{ [cut2, cut_back,^ cut_back1,^ cut_out,^] prune, rationalize,

rationalise, eliminate1,@ frames: 8 (weed out unwanted or

unnecessary things; "We had to lose weight, so we cut the sugar

from our diet") }

{ cut14, shorten9,@ frames: 8 (shorten as if by severing the edges or

ends of; "cut my hair") }

33 cut ; verb_cognition ; empty definition

34 cut ; verb_communication ; empty definition

35 cut ; verb_competition ; empty definition

36 cut ; verb_consumption ; empty definition

Experiments for NL-storing of small datasets

146

No. layer definition

37

cut ; verb_contact ; { cut14, penetrate,@ frames: 4 (penetrate injuriously; "The glass

from the shattered windshield cut into her forehead") }

{ cut13, fell,@ frames: 8 (fell by sawing; hew; "The Vietnamese cut

a lot of timber while they occupied Cambodia") }

{ cut15, reap,@ frames: 8 (reap or harvest; "cut grain") }

{ cut7, hit,@ noun.act:sport,;c frames: 8 (hit (a ball) with a spin so

that it turns in the opposite direction; "cut a Ping-Pong ball") }

{ [cut, noun.person:cutter,+ noun.artifact:cutter,+

noun.act:cutting1,+ cut_away,^ cut_out2,^ cut_up,^ cut_into1,^

cut_off2,^ cut_out1,^] separate1,@ frames: 8,11 (separate with or as

if with an instrument; "Cut the rope")}

{ [cut5, noun.act:cutting9,+] shuffle,@ frames: 2,8 (divide a deck

of cards at random into two parts to make selection difficult;

"Wayne cut"; "She cut the deck for a long time") }

{ [cut10, noun.act:cutting2,+ noun.act:cutting1,+] frames: 22

(make an incision or separation; "cut along the dotted line") }

{ cut11, cut10,$ verb.stative:be3,@ frames: 1 (allow incision or

separation; "This bread cuts easily") }

{ cut12, function,@ frames: 1 (function as a cutting instrument;

"This knife cuts well") }

38

cut ; verb_creation ; { cut, [tailor1, noun.person:tailor,+] design1,@

noun.cognition:fashion,;c frames: 8 (style and tailor in a certain

fashion; "cut a dress") }

{ cut15, perform,@ frames: 8 (perform or carry out; "cut a caper") }

{ [cut11, noun.act:cutting5,+ noun.act:cutting,+] create,@ frames:

8,11 (form or shape by cutting or incising; "cut paper dolls") }

{ cut1, cut11,$ create,@ frames: 8,11 (form by probing, penetrating,

or digging; "cut a hole"; "cut trenches"; "The sweat cut little rivulets

into her face") }

{ cut6, burn5, create3,@ frames: 8 (create by duplicating data; "cut a

disk"; "burn a CD")}

{ cut4, cut6,$ verb.communication:record1,@ frames: 8 (record a

performance on (a medium); "cut a record") }

{ cut5, cut4,$ verb.communication:record1,@ frames: 8 (make a

recording of; "cut the songs"; "She cut all of her major titles again")

}

39 cut ; verb_emotion ; empty definition

40
cut ; verb_motion ; { cut, stop1,@ frames: 8 (stop filming; "cut a movie scene")}

{ [cut1, noun.act:cutting3,+ cut_to,^] cut,$ verb.change:switch2,@

Natural Language Addressing

147

No. layer definition

frames: 22,4 (make an abrupt change of image or sound; "cut from

one scene to another") }

{ cut12, pass_through,@ frames: 8,9 (pass through or across; "The

boat cut the water") }

{ cut13, cut12,$ pass,@ frames: 22 (pass directly and often in haste;

"We cut through the neighbor's yard to get home sooner") }

{ cut15, move,@ noun.act:boxing,;c frames: 22 (move (one's fist);

"his opponent cut upward toward his chin") }

41
cut ; verb_perception ; { cut3, look1,@ frames: 8 (give the appearance or impression of;

"cut a nice figure") }

42 cut ; verb_possession ; empty definition

43
cut ; verb_social ; { cut13, free2,@ frames: 9 (discharge from a group; "The coach cut

two players from the team") }

44
cut ; verb_stative ; { cut, [skip, noun.act:skip,+ noun.person:skipper2,+] miss1,@

frames: 8 (intentionally fail to attend; "cut class") }

45 cut ; verb_weather ; empty definition

To update the content of a definition one may use form for manual work (Figure 49) and to

follow the next steps:

― To enter the concept and layer;

― To activate reading current definition pressing the RDF-Read button;

― To update content of definition on screen;

― To press RDF-Write button to store new variant of definition in the correspond archive.

Figure 49. OntoArM panel for manual updating definitions

Experiments for NL-storing of small datasets

148

The results from experiments for storing WordNet as ontology with 45 layers are given in

Table 33.

Table 33. Experimental data for storing WordNet as ontology

number of

layers
operation

number of

instances

total time in

milliseconds

average time (ms) for one

instance

45 writing 117 709 96 643 0.82

45 reading 112 945 91 618 0.81

45 work memory: 538 408 KB; permanent archive: 17 013 KB

source text in 45 files - not compressed: 16 338 KB; compressed by WinZip: 4937 KB

The work memory for storing hash tables and theirs containers was 538 408 KB. To analyze

work of system, the work memory was chosen to be in a file in the external memory. In further

realizations of OntoArM, to accelerate the speed and to reduce used disk space, work memory may be

realized as part of main memory (as dynamically allocated memory or as file mapped in memory).

After finishing the work, occupied disk memory for compressed permanent archives is

17 013 KB, i.e. in this case the NL-indexing takes 12 076 KB additional compressed memory (the 45

sequential files with initial data occupy 16 338 KB, and compressed by WinZip they take 4 937 KB).

The difference in the numbers of instances in Table 27 and Table 33 is due to removing the

equal instances and service information from input files when we use WordNet as thesaurus, stored as

one layer archive. For instance, the word “cut” has many instances and when we work with one layer

it must be written at least two NL-addresses – using small and capital letters: “cut” and “CUT”.

After updating, no recompiling of the data base is needed. For less than one millisecond after

entering new data, the information is ready for using.

 Comparing OntoArM and WordArM programs

To compare WordArM and OntoArM programs, we made experiment with both programs to

store WordNet data as one layer ontology. The results are given in the Table 34.

Table 34. Results for speed of WordArM and OntoArM programs

 WordNet as one layer ontology
WordNet as 45 layers

ontology

operation
WordArM average time

(ms) for one instance

OntoArM average time

(ms) for one instance

OntoArM average time

(ms) for one instance

writing 0.86 1.00 0.82

reading 0.78 0.95 0.81

Natural Language Addressing

149

From results in Table 34 we may conclude that OntoArM, working in parallel with 45 layers

ensures more high speed than working with one layer. This is due to available separate buffering for

each layer and small size of each of 45 archives (in the case of one layer all information is written in

one big file).

In addition, OntoArM is slower than WordArM in the case of one layer because of existing

operations for control of layers in OntoArM, which is not needed and not realized in WordArM.

 What gain and loss using NL-Addressing for storing ontologies?

The conclusions are the same as for the dictionaries and thesauruses.

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search threes or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to access information immediately after storing without recompilation the

database and rebuilding indexes.

 Conclusion of chapter 5

In this chapter we have presented several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of structured datasets.

Firstly we introduced the idea of knowledge representation. Further in the chapter we

discussed three main experiments - for NL-storing of dictionaries, thesauruses, and ontologies.

Presentations of every experiment started with introductory part aimed to give working

definition and to outline state of the art in storing concrete structures.

The explanation of the experiments begins with the easiest case – storing dictionaries.

Analyzing results from the experiment with a real dictionary data we may conclude that it is possible

to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using NL-

Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for storing

hash structures which serve NL-addressing. But the same if no great losses we will have if we will

build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

(1) High speed for storing and accessing the information.

(2) The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

Experiments for NL-storing of small datasets

150

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are files and relational databases.

Our experiment confirmed the conclusion about losses and benefits from using

NL-addressing given above for thesauruses. The same is valid for more complex structures.

Here we have to note that for static structured datasets it is more convenient to use standard

utilities and complicated indexes. NL-addressing is suitable for dynamic processes of creating and

further development of structured datasets due to avoiding recompilation of the database index

structures and high speed access to every data element.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, was to discover regularities in the NL-addressing realization. Analyzing Table 25, Table 27,

and Table 33 we may see the main two regularities of storing time using NL-addressing:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

Natural Language Addressing

151

6 Experiments for NL-storing of middle-size and large

RDF-datasets

Abstract

In this chapter we will present results from series of experiments which are needed to

estimate the storing time of NL-addressing for middle-size and large RDF-datasets.

The experiments for NL-storing of middle-size and large RDF-datasets are aimed to estimate

possible further development of NL-ArM. We assume that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. We will analyze what will be

the place of NL-ArM in this environment. Our hypothesis is that NL-addressing will have good

performance.

Chapter will start with describing the experimental storing models and algorithm used in

this research. Further an estimation of experimental systems will be provided to make different

configurations comparable. Special proportionality constants for hardware and software will be

proposed. Using proportionality constants, experiments with middle-size and large datasets became

comparable.

Experiments will be provided with both real and artificial datasets. Experimental results will

be systematized in corresponded tables. For easy reading visualization by histograms will be given.

6.1 Experimental storing model

Our first experiments in this research were to realize a small multi-language dictionary. In

this case, NL-storing model is simple because the one-one correspondence “word - definition”. The

storing models for thesauruses are more complicated due to existing more than one corresponding

definitions for a given word. Because of this, we outlined and analyzed the storing model of WordNet

thesaurus [WordNet, 2012]. The idea was to use NL-addressing to realize the WordNet lexical

database and this way to avoid recompilation of its database after every update. The program used for

the experiments was “WordArM” (see Appendix A).

The next step of experiments was storing graphs and ontologies which have one important

aspect – the layers which correspond to types of relations between nodes of graph or ontology

[Ivanova et al, 2013e]. To make experiments with real data, we have used the WordNet as ontology

and its 45 types of relations (given by its files of different types) we have stored as 45 layers. To

provide experiments in this case, we used program “OntoArM” (see Appendix A).

Experiments for NL-storing of middle-size and large RDF-datasets

152

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, was to discover regularities in the NL-addressing realization. More concretely, two

regularities of time for storing by using NL-addressing were discovered:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

The experiments for NL-storing of middle-size and large RDF-datasets have another goal.

We are interested to estimate possible further development of NL-ArM. We assume that its “software

growth” will be done in the same grade as one of the known systems like Virtuoso, Jena, and Sesame.

We will analyze what will be the place of NL-ArM in this environment. Our hypothesis is that

NL-addressing will have good performance.

Now, our next step is to provide experiments to use NL-addressing for storing middle-size

and large RDF-datasets. We have realized experimental program RDFArM (see Appendix A) for

storing RDF-datasets.

Let remember from Chapter 1 that the primary goal of Resource Description Framework

(RDF) is to handle non regular or semi-structured data [Muys, 2007]. RDF provides a general method

to decompose any information into pieces called triples [Briggs, 2012]:

― Each triple is of the form “Subject”, “Predicate”, “Object”;

― Subject and Object are the names for two things in the world. Predicate is the

relationship between them;

― Subject, Predicate, Object may be given as URI’s (stand-ins for things in the real world);

― Object can additionally be raw text.

The power of RDF relies on the flexibility in representing arbitrary structure without a priori

schemas. Each edge in the graph is a single fact, a single statement, similar to the relationship between

a single cell in a relational table and its row’s primary key. RDF offers the ability to specify concepts

and link them together into a graph of data [Faye et al, 2012].

Middle-size RDF-datasets are those which contain from several hundred thousand up to 10

millions of RDF-instances.

Large RDF-datasets may contain 50, 100, or more millions, as well as billions or trillions of

RDF-instances.

Unfortunately, due to financial limitations, we have no proper hardware for making

comprehensive program experiments with many gigabytes of source data. Because of this, storing of

very large RDF structures by NL- addressing is planned as future work. Here we will outline partial

experiments with limited quantity from several hundred thousand up to 100 millions of triples or

quadruples due to small main and hard disk memory as well as computational possibilities for

processing very large datasets both by our program and by other installations.

In the same time, due to constant complexity of NL-addressing, we may extrapolate the

results and provide preliminary comparison with published benchmarks of known RDF-stores using

corresponded normalizing the results.

Natural Language Addressing

153

 Experimental datasets

We will provide experiments with middle-size RDF-datasets, based on selected real middle-

size datasets from DBpedia's homepages [DBpedia, 2007a; DBpedia, 2007b] and artificial middle-size

datasets from Berlin SPARQL Bench Mark (BSBM) [Bizer & Schultz, 2008; Bizer & Schultz, 2009].

Real large datasets are taken from DBpedia's homepages [DBpedia, 2007c], BSBM [Bizer &

Schultz, 2009] and Billion Triple Challenge (BTC) 2012 [BTC, 2012]. Artificial large datasets are

taken from Berlin SPARQL Bench Mark (BSBM) [Bizer & Schultz, 2009].

The reason to make this choice is that we want to provide experiments with both real and

artificial data. The artificial datasets like BSBM [BSBM, 2012] contain standard artificially generated

data and it is possible to adapt the software to have best results just for this kind of data. The DBpedia

and BTC datasets were crawled using several seed sets collected from multiple real sources. Data in

BTC datasets are encoded in N-Quads format.

The N-Quads is a format that extends N-triples with context. Each triple in

N-Quad’s document can have an optional context value [N-Quads, 2013]:

<subject> <predicate> <object> <context>.

as opposed to N-triples, where each triple has the form:

<subject> <predicate> <object>.

The notion of provenance is essential when integrating data from different sources.

Therefore, modern RDF repositories store “subject-predicate-object-context” quadruples, where the

context typically denotes the provenance of a given statement. The SPARQL query language can

query such RDF datasets or entire collections of RDF graphs [SPARQL, 2013]. The context element is

also sometimes used to track a dimension such as time or geographic location.

Applications of N-Quads include:

― Exchange of RDF datasets between RDF repositories, where the fourth element is the

URI of the graph that contains each statement;

― Exchange of collections of RDF documents, where the fourth element is the HTTP URI

from which the document was originally retrieved;

― Publishing of complex RDF knowledge bases, where the original provenance of each

statement has to be kept intact.

N-Quads inherit the practical advantages of N-Triples:

― Simple parsing;

― Succinctness compared to alternatives such as reification or multi-document archives;

― Effective streaming and processing with line-based tools.

Let see a quadruple from BTC extracted from the data set [datahub_data0, 2012]:

<http://nektar.oszk.hu/resource/auth/magyar_irodalom><http://www.w3.org/2004/02/skos/core#nar

rower><http://nektar.oszk.hu/resource/auth/hungarikum><http://nektar.oszk.hu/data/auth/magyar

_irodalom>.

Experiments for NL-storing of middle-size and large RDF-datasets

154

In this quadruple:

<subject> = <http://nektar.oszk.hu/resource/auth/magyar_irodalom>

<predicate> = <http://www.w3.org/2004/02/skos/core#narrower>

<object> = <http://nektar.oszk.hu/resource/auth/hungarikum>

<context> = <http://nektar.oszk.hu/data/auth/magyar_irodalom>

 Storing models

The storing models we will use are multi-layer. First two models are for

N-Triples and the third is for N-Quads format.

In the first storing model, values of Predicates may be names of the layers (archives), the

Subjects will be the NL-addresses, and only Objects will be saved.

In the second storing model, values of Subjects and Predicates will be the NL-addresses in

the same archive, and only Objects will be saved using couple (Subject, Relation) as co-ordinates of

container where the Object will be saved.

In the third storing model, values of Subjects and Predicates will be the NL-addresses but

Objects and Contexts will be saved in different archives using couple (Subject, Relation) as co-

ordinates.

6.2 Experimental storing algorithm

All storing models pointed above may be generalized in one common model where Subjects,

Predicates, Objects, and Contexts are numbered separately and these numbers are used to construct

storing co-ordinates. For triple datasets the elements which contain context have to be omitted.

The experimental storing algorithm is illustrated on Figure 50. Main idea is to use

NL-addressing for quick unique numbering of elements of triples/quadruples and after that to use these

numbers as co-ordinates for storing information in the archives. In this case we have two kinds of

archives (1) archive of counters and (2) archive of values.

In Figure 50 we illustrated storing of RDF – triple

(beer, is, proof that...)

First we assign a number to subject – in this case: “beer”.

The same we do for the relation – in this case: “is”.

And after that we used these numbers as coordinates of the object - in this case: “proof that

...”.

Natural Language Addressing

155

Figure 50. Illustration of the experimental storing algorithm

 Common storing algorithm based on NL-addressing

1. Read a quadruple from input file.

2. Assign unique numbers to the <subject>, <predicate>, <object>, and <context>,

respectively denoted by NS, NP, NO, and NC. The algorithm of this step is given

below.

3. Store the structures:

― {NO; NC} in the “object” index archive using the path (NS, NP);

― {NS; NC} in the “subject” index archive using the path (NP, NO);

― {NP; NC} in the “predicate” index archive using the path (NS, NO).

4. Repeat from 1 until there are new quadruples, i.e. till end of file.

5. Stop.

 Algorithm for assigning unique numbers

1. A separate counters for the <subject>, <predicate>, <object>, and <context> are used.

Counters start from 1.

2. A separate NL-archives for the <subject>, <predicate>, <object>, and <context> are

used.

Experiments for NL-storing of middle-size and large RDF-datasets

156

3. In every NL-archive, using the values of respectively <subject>, <predicate>, <object>,

and <context> as paths:

IF no counter value exist at the corresponded path

THAN

― Store value of corresponded counter in the container located by the path;

― Store the content of <subject>, <predicate>, <object>, or <context> respectively in

corresponded data archive in hash table 1 (domain 1) using the value of the counter

as path;

― Increment the corresponded counter by 1.

ELSE assign the existing value of counter as number of NS, NP, NO, and NC,

respectively.

4. Return.

 Algorithm for reading based on NL-addressing

1. Read the request from screen form or file. The request may contain a part of the

elements of the quadruple. Missing elements are requested to be found.

2. From every NL-archive, using the values of given respectively <subject>, <predicate>,

<object>, or <context> as NL-addresses read the values of corresponded counters NS,

NP, NO, or NC.

3. If the corresponded co-ordinate couple exist, read the structures:

― {NO; NC} from the “object” index archive using path (NS, NP);

― {NS; NC} from the “subject” index archive using path (NP, NO);

― {NP; NC} from the “predicate” index archive using path (NS, NO).

4. IF all elements of the set {NS, NP, NO, NC} are given:

THAN using the set {NS, NP, NO, NC} read the quadruple elements (from

corresponded data archives).

ELSE using given values of the elements of the set {NS, NP, NO, NC} scan all possible

values of the unknown elements to reconstruct the set {NS, NP, NO, NC}. The result

contains all possible quadruples for the requested values.

5. End.

Comment: If any of parameters are not given, i.e. <subject>, <predicate>, <object>, or

<context>, as in SPARQL requests, the rest are used as constant addresses and omitted parameters

scan all non empty co-ordinates for given position. This way all possible requests like (?S-?P-?O),

(S-P-?O), (S-?P-O), (?S-P-O), etc., are covered (S stands for subject, P for property, O for object). For

more information about SPARQL see [SPARQL, 2013] as well as short outline of it in the end of

Appendix B.

No search indexes are needed and no recompilation of the data base is required after update

or adding new information in the data base.

Natural Language Addressing

157

6.3 Estimation of experimental systems

The goal of experiments presented in this chapter is to compare loading times of the

experimental program RDFArM with ones of several known systems measured for various datasets.

For this purpose, due to different characteristics of the experimental computer configurations and

software systems, we need to apply some proportionality constants to make results comparable.

Evaluation, comparison, and selection of modern computer and communication systems are

complex decision problem. System evaluation techniques can be either qualitative or quantitative

[Dujmovi'c, 1996]:

― Qualitative techniques are usually based on a list of features to be analyzed for each

competitive system. The list includes technical characteristics, costs, and other

components for evaluation. After a study of proposed systems the evaluator creates for

each proposal a list of advantages and a list of disadvantages. The lists summarizing

advantages and disadvantages are then intuitively compared and the final ranking of

proposed systems is suggested. Such an approach is obviously attractive only when the

decision problem is sufficiently simple. In cases with many decision criteria it is difficult

to properly intuitively aggregate a number of components affecting the final decision,

and it is not possible to precisely identify minor differences between similar proposals.

In addition, it is extremely difficult to justify whether a given difference in total cost is

commensurate to a corresponding difference in total performance. These difficulties can

be reduced by introducing quantitative components in the decision process

[Dujmovi'c, 1996].

― The aim of quantitative methods is to make the system evaluation process well

structured, relatively simple, and accurate, providing global quantitative indicators which

are used to find and to justify the optimum decision [Dujmovi'c, 1996].

For purposes of this research we will use simple evaluation system based on traditional

scoring techniques. The basic idea is very simple [Dujmovi'c, 1996]: for a set of evaluated systems we

first identify n relevant components (performance variables) that are individually evaluated. The

results of evaluation are individual normalized scores E1, ..., En, where 0 Ei 1 (or 0 Ei 100%).

The average score is then

E = (E1 + ... + En)/n.

If all components are not equally important then we introduce positive normalized weights,

which reflect the relative importance of individual components. W1,...,Wn. Usually, 0 Wi 1, i = 1,

2,..., n, and W1+ ... +Wn = 1.

The global score is defined as a weighted arithmetic mean:

E = W1E1 + W2E2 +...WnEn, 0 E 1.

Below we will compare our benchmark hardware configuration with three others. The

characteristics we will take in account are Processor, Physical Memory and Hard Disk capacity. We

assume that the operating systems and service software are equivalent in all cases. For concrete

computer systems used in the experiments we have respectively:

Experiments for NL-storing of middle-size and large RDF-datasets

158

 Configuration K is our benchmark configuration:

― Processor: Intel Core2 Duo T9550 2.66GHz; CPU Launched: 2009,

Average CPU Mark: 1810 (PK=1810) [T9550, 2009]

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T9550+%40+2.66GHz

&id=1011;

― Physical Memory: 4.00 GB (MK=4);

― Hard Disk: 100 GB data partition; 2 GB swap (DK=100);

― Operating System: 64-bit operating system Windows 7 Ultimate SP1.

Characteristic values of Configuration K are: PK=1810, MK=4, DK=100.

 Configuration A is benchmark configuration of [Becker, 2008]:
― Processor: Intel Pentium Dual Core 2.8 GHz; CPU Launched: 2008;

Average CPU Mark: 598 (PA =598) [Pentium Dual, 2008];

― Physical Memory: 1 GB (MA =1);

― Hard Disk: 40 GB data partition; 2 GB swap (DA =40);

― Operating System: Ubuntu Linux 7.10 64-bit.

Characteristic values of Configuration A are: PA =598, MA =1, DA =40.

 Configuration B: is benchmark configuration of [BSBMv2, 2008] and [BSBMv3, 2009]

DELL workstation:

― Processor: Intel Core2Quad Q9450 @ 2.66GHz, CPU Launched:2008,

Average CPU Mark: 3791 (PB =3791) [Q9450, 2008];

― Physical Memory: 8GB DDR2 667 (4 x 2GB) (MB =8);

― Hard Disks: 160GB (10,000 rpm) SATA2, 750GB (7,200 rpm) SATA2

(DB = 160 + 750 = 910);

― Operating System: Ubuntu 8.04 64-bit, Kernel Linux 2.6.24-16-generic; Java Runtime:

VM 1.6.0, HotSpot(TM) 64-Bit Server VM (build 10.0-b23); Separate partitions for

application data (on 7,200 rpm HDD) and data bases (on 10,000 rpm HDD).

Characteristic values of Configuration B are: PB =3791, MB =8, DB =910.

 Configuration C is benchmark configuration used for LDIF [LDIF Benchmarks, 2013;

LDIF, 2013]:

― Processor: Intel i7 950, 3.07GHz (quad core); CPU Launched: 2009, Average CPU Mark:

5664 (PC =5664) [i7 950, 2009];

― Physical Memory: 24GB (MC =24);

― Hard Disks: 2 × 1.8TB (7,200 rpm) SATA2 (DC =3600);

― Operating System: Ubuntu 11.04 64-bit, Kernel: 2.6.38-10; Java version: 1.6.0_22.

Characteristic values of Configuration C are: PC =5664, MC =24, DC =3600.

Natural Language Addressing

159

 Global scores of computer configurations

Normalized estimation EP of processors’ power will be computed by formula:

i
p

K

PE i A B C
P

, , ,

where Pj, j=K,A,B,C is the processor’s average CPU mark.

We assume that the processors’ power is very important and because of this we will use

processors weight as 0.5, i.e.

WP = 0.5.

Normalized estimation EM of physical memory will be computed by formula:

i
M

K

ME i A B C
M

, , ,

where Mj, j=K,A,B,C is the size of main memory in Giga bytes.

We assume that main memory is more important than hard disk memory and because of this

we will use main memory weight as 0.3, i.e.

WM = 0.3.

Normalized estimation EHD of hard disk capacity will be computed by formula:

i
D

K

DE i A B C
D

, , ,

where Dj, j=K,A,B,C is the size of hard disk memory in Giga bytes.

We assume that the hard disk memory weight as 0.2, i.e.

WD = 0.2.

Formula for computing the global score of computer configuration is defined as a weighted

arithmetic mean:

Ei = WP EP + WM EM + WD ED

or

Ei = 0.5 EP + 0.3 EM + 0.2 ED

 Global scores of experimental computer configurations

The global scores of experimental computer configurations are as follow.

 Global score EK of configuration K is 1:

PK=1810; EKP = 1810/1810 = 1

MK=4; EKM = 4/4 = 1

DK=100; EKD = 100/100 = 1

EK = 0.5EKP + 0.3EKM + 0.2EKD = 0.5*1+0.3*1+0.2*1 =

= 0.5+0.3+0.2 = 1

 Global score EA of configuration A is 0.32:

PA=598; EAP = 598/1810 = 0.33

MA=1; EAM = 1/4 = 0.25

DA=40; EAD = 40/100 = 0.40

EA = 0.5EAP+0.3EAM+0.2EAD = 0.5*0.33+0.3*0.25+0.2*0.40 =

= 0.165+0.075+0.08 = 0.32

Experiments for NL-storing of middle-size and large RDF-datasets

160

 Global score EB of configuration B is 3.465:

PB=3791 EBP = 3791/1810 = 2.09

MB=8 EBM = 8/4 = 2

DB=910 EBD = 910/100 = 9.1

EB = 0.5EBP+0.3EBM+0.2EBD = 0.5*2.09+0.3*2+0.2*9.1 =

= 1.045+0.6+1.82 = 3.465

 Global score EC of configuration C is 10.565:

PC=5664; ECP = 5664/1810 = 3.13

MC=24; ECM = 24/4 = 6

DC=3600; ECH = 3600/100 = 36

EC = 0.5ECP+0.3ECM+0.2ECD = 0.5*3.13+0.3*6+0.2*36=

= 1.565+1.8+7.2 = 10.565

 Hardware proportionality constants

The hardware proportionality constants Hi, i = A, B, C, for normalizing our results to be

comparable with results received on other computer configurations are as follow:

K∝A : HA = EK/EA = 1 / 0.32 = 3.125

K∝B : HB = EK/EB = 1 / 3.465 = 0.289

K∝C : HC = EK/EC = 1 / 10.565 = 0.095

 Comparing software systems’ performance

Enhancing the hardware power does not cause linear enhancing of the software performance.

To discover the value of growth one has to test both source and enhanced systems running equal or

similar software.

In our case we have the same problem. Configurations A, K, B, and C, may be ordered by

their Average CPU Marks as well as their General scores. In both cases we need to discover the

growth of software performance for different configurations. This is needed because we want to have

common basis for comparing our load time with those of other systems which are tested on different

computer configurations.

For this purpose we will follow simple algorithm.

Let program system X is tested on two computer configurations: U and W, where W is

enhanced configuration; and program system Y is tested on different computer configuration V of the

same class and similar characteristics as U. We have couples (X,U), (X,W), and (Y,V).

Computer configurations U and W are not available for testing and all work has to be done

on computer configuration V.

Computer configurations’ global scores are respectively:

EU = 0.3, EV = 1, and EW = 3.

Natural Language Addressing

161

X is tested on U by dataset S1 with 200 instances and on W with similar dataset S2 with 250

instances.

Y is tested on configuration V by datasets S1 and S2.

Loading times are respectively:

L(X,U,S1)=1000 sec., L(X,W,S2)=5 sec.;

L(Y,V,S1)=400 sec., L(Y,V,S2)=500 sec.

The problem we have to solve is:

“What will be the loading time of system Y if it will be run on computer configuration W

with dataset S2?” i.e. L(Y,W,S2) = ?.

Firstly we will illustrate the algorithm and after that we will give it in details.

We have the diagram (Figure 51):

Figure 51. Interrelations between computer configurations

Using published data we may estimate interrelations between computer configurations U and

W as well as between two versions of system X run on U and W. We have to use hardware

proportionality constants to make data comparable and to compute the ratio coefficient of software

growth by dividing the loading time on W by one on U.

To make data from experiments on V comparable with these on U and W we assume that V

and U are from the same class of computer power and there is no software growth for a system Y in

the transition from V to U. In other words, to estimate interrelations between computer configurations

V and U we need only hardware proportionality constant. After this step we will have data from

experiments on V transferred for the U, i.e. we will have results from system Y as if the system Y is

tested on configuration U.

We assume that the possible software growth of system Y from computer U to W is the same

as for the system X, i.e. we can use the same coefficient for software growth for systems X and Y.

This way we will have comparable data for computer configuration W.

Experiments for NL-storing of middle-size and large RDF-datasets

162

Below the algorithm is given in details:

1. Reduce loading time L(X,W,S2) of program system X, run on computer configuration W and

dataset S2 with |S2|=250 instances, to loading time L(X,W,S2’) of X for hypothetical dataset S2’ with

|S2’|=|S1|=200 instances, using the formula:

L(X,W,S2’) = |S2’| * (L(X,W,S2)/ |S2|) =

= |S1| * (L(X,W,S2)/ |S2|) = 200*(5/250) = 4

2. Compute ratio coefficient of growth GUW from (X,U) to (X,W) by equation:

GUW = L(X,U,S1)/L(X,W,S2’) = 1000/4 = 250

3. Compute loading time L(Y,U,S2) of system Y with dataset S2 if it is hypothetically ran on

configuration U, using hardware proportionality constant HVU:

V∝U : HVU = EV/EU = 1 / 0.3 = 3.33

and formula:

L(Y,U,S2) = HVU*L(Y,V,S2) = 3.33*L(Y,V,S2) = 3.33*500 = 1665

4. Compute loading time L(Y,W,S2) of system Y with dataset S2 if it is hypothetically ran on

configuration W, using ratio coefficient of growth GUW, hypothetical loading time L(Y,U,S2), and

formula:

L(Y,W,S2) = L(Y,U,S2)/GUW = L(Y,U,S2) / 250 = 1665/250 = 6.66

This way we have received comparable value of loading time of system Y with system X for

computer configuration W, i.e.

L(X,W,S2)=5 sec. and L (Y,W,S2) = 6.66 sec.

and we may conclude that system X will have a little better loading time than system Y if both are run

on computer configuration W with dataset S2.

One may suppose that we may use directly proportionality constant HWV:

W∝V : HWV = EW/EV = 3 / 1 = 3

and to reduce L(Y,V,S2)=500 sec. three times, i.e. 500/3 = 166.66.

This is not correct because the software growth is not taken in account.

We have to calculate possible software growth from V to W again going through U and

using GUW to calculate possible GVW. This may be done by using the proportionality constant HVU

because we need to calibrate growth from U to W by hardware proportionality of V and U. In other

words, to receive value of growth GVW from V to W we have to compute:

GVW = GUW/HVU

Finally:

L(Y,W,S2) = L(Y,V,S2)/GVW

Let see it for concrete values:

GUW = L(X,U,S1)/L(X,W,S2’) = 1000/4 = 250

HVU = EV/EU = 1 / 0.3 = 3.33

GVW = (GUW/HVU) = (250/3.33) = 75.07

L(Y,W,S2) = L(Y,V,S2)/GVW = 500 / 75.07 = 6.66

We received the same result as algorithm above. This proves that we have equivalent

approaches.

Natural Language Addressing

163

The algorithm may be presented by a formula:

Y W S YVW Y V SL R L(, , 2) (, , 2)*

where

v X W S
YVW

U X U S

E S L
R

E S L
(, , 2)

(, , 1)

* | 1|*
* | 2 |*

i.e.

v X W S
Y W S Y V S

U X U S

E S L
L L

E S L
(, , 2)

(, , 2) (, , 2)
(, , 1)

* | 1 |*
*

* | 2 |*

where:

― X, Y - program systems;

― U, V, W – computer configurations;

― (X,U), (X,W), (Y,V) – couples “program system – computer configuration”;

― EU, EV, EW - computer configurations’ global scores;

― S1, S2 – datasets;

― L(X,U,S1), L(X,W,S2), L(Y,V,S1), L(Y,V,S2), L(Y,W,S2) - loading times of given program system,

computer configuration, and dataset;

― HVU – computer configurations’ proportionality constant;

― GUW – ratio coefficient of growth of software system during migration from a computer

configuration to enhanced one.

 Experimental environment

Our experimental environment includes program systems, computer configurations, datasets

and experimental data like published benchmark results, different constants, ratio coefficients, etc. The

main concrete elements of our experimental environment are:

― Program systems to be compared are:

- RDFArM;

- Virtuoso;

- Jena;

- Sesame.

Virtuoso, Jena and Sesame have several variants depending of database used. These

variants have different loading times on the same computer configurations. In our

comparisons we will take the best result from the all benchmarks on given

configuration.

― Computer configurations used for benchmarking are A, K, B, C;

― Couples “program system – computer configuration” are:

- (RDFArM, K);

- (Virtuoso, A), (Virtuoso, B), (Virtuoso, C);

- (Jena, A), (Jena, B), (Jena, C);

- (Sesame, A), (Sesame, B), (Sesame, C).

― Computer configurations’ global scores are EA, EK, EB, and EC;

Experiments for NL-storing of middle-size and large RDF-datasets

164

― Middle-size datasets are:

- BSBM 50K;

- homepages-fixed.nt;

- BSBM 250K;

- geocoordinates-fixed.nt;

- BSBM 1M;

- BSBM 5M.

― Large size datasets are:

- infoboxes-fixed.nt;

- BSBM 25M;

- BSBM 100M.

― Proportionality constant between computer configurations K and A is HKA;

― Ratio coefficient of growth of software systems during migration from computer

configuration A to enhanced ones B and C are GAB and GAC;

― Corresponded loading times L will be presented at the places where they will be used.

 Software proportionality constants

To provide concrete comparisons of our experimental loading time data, we have to compute

HKA, GAB, and GAC.

For purposes of this research it is enough to compute average constants HKA, GAB, and GAC

based on average loading data for all chosen systems. We will use published benchmark results done

by Freie Universität Berlin, Web-based Systems Group (BSBM team) and available both as printed

publication and free accessible data in the Internet.

 Software proportionality for configurations K, A, and B

Benchmark results for dataset S1 (homepages-fixed.nt; 200 036 triples) used for benchmarks

on Configuration A are published in [Becker, 2008] and reproduced in Table 35.

Table 35. Benchmark results for dataset S1 (homepages-fixed.nt)

system loading time
in seconds

the best time
in seconds

Virtuoso (ogps, pogs, psog, sopg) 1327 1327

Jena SDB MySQL Layout 2 Index 5245

3557 Jena SDB Postgre SQL Layout 2 Index 3557

Jena SDB Postgre SQL Layout 2 Hash 9681

Sesame Native (spoc, posc) 2404 2404

Total average time in seconds: 2429.333

Natural Language Addressing

165

Benchmark results for dataset S2 (BSBM 250K; 250 030 triples) used for benchmarks on

Configuration B are published in [BSBMv2, 2008] and reproduced in Table 36.

Table 36. Benchmark results for dataset S2 (BSBM 250K)

system loading time in seconds

Virtuoso 33

Jena SDB 24

Sesame 18

Total average time in seconds: 25

Due to equal systems and range of their loading times on the same computer configuration,

we will use total average times as loading times of virtual system X, i.e. L(X,A,S1) = 2429.333 and

L(X,B,S2) = 25.

Following our algorithm, we reduce loading time L(X,B,S2) of virtual system X, run on

computer configuration B and dataset S2 with |S2|=250 030 triples, to loading time L(X,B,S2’) of X for

hypothetical dataset S2’ with |S2’|=|S1|=200 036 instances, using the formula

L(X,B,S2’) = |S1| * (L(X,B,S2)/ |S2|) = 200036*(25/250030) = 20.00.

We compute ratio coefficient of growth GAB from (X,A) to (X,B) by equation:

GAB = L(X,A,S1)/L(X,B,S2’) = 2429.333/20 = 121.46665.

Hardware proportionality constant HAK is:

A∝K : HAK = EK/EA = 1 / 0.32 = 3.125

Really measured RDFArM loading time on Configuration K for dataset S2 is 575.069 sec.

We compute loading time L(RDFArM,A,S2) using formula:

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2) = 3.125*575.069 = 1797.09.

At the end, we compute loading time L(RDFArM,B,S2) of system RDFArM with dataset S2 if it

is hypothetically run on configuration B, using ratio coefficient of growth GAB, hypothetical loading

time L(RDFArM,A,S2), and formula:

L(RDFArM,B,S2) = L(RDFArM,A,S2)/GAB = 1797.09 / 121.46665= 14.796

To verify our computations and to show the easiest way to find L(RDFArM,B,S2), we will use

our formula

RDFArM B S RDFArM K B RDFArM K SL R L(, , 2) , , (, , 2)*

i.e. we have to compute RRDFArM,K,B one time and to use it in benchmarks for all datasets. RRDFArM,K,B

may be computed by formula:

K X B S
RDFArM A B

A X A S

E S L
R

E S L
(, , 2)

, ,
(, , 1)

* | 1 |*
* | 2 |*

Experiments for NL-storing of middle-size and large RDF-datasets

166

or in linear view:

RRDFArM,K,B = (EK * |S1| * L(X,B,S2)) / (EA * |S2| * L(X,A,S1)) =

= (1 * 200036 * 25) / (0.32 * 250030 * 2429.333) =

= 5000900 / 194369961.5968= 0.025729.

We compute loading time L(RDFArM,B,S2) of system RDFArM with dataset S2 if it is

hypothetically run on configuration B, using ratio coefficient RRDFArM,K,B:

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B = 575.069 * 0.025729 = 14.796.

We receive the same result.

 Software proportionality for configurations K, A, and C

Software proportionality for configurations K, A, and C will be computed based on the

performance of systems Virtuoso and Jena because missing information about Sesame in the

benchmark publications.

Benchmark results for dataset S1 (infoboxes-fixed.nt; 15,472,624 triples) used for

benchmarks on Configuration A are published in [Becker, 2008] and reproduced in Table 37.

Table 37. Benchmark results for dataset S1 (infoboxes-fixed.nt)

system loading time in

seconds

the best time
in seconds

Virtuoso 7017 7017

Jena SDB MySQL Layout 2 Index 70851 70851

Jena SDB Postgre SQL Layout 2 Index 73199

Jena SDB Postgre SQL Layout 2 Hash 734285

Total average time: 38934

Benchmark results for dataset S2 (BSBM 100M; 100 000 748 triples) used for benchmarks

on Configuration C are published in [BSBMv6, 2011] and reproduced in Table 38.

Table 38. Benchmark results for dataset S2 (BSBM 100M)

system loading time in seconds

Virtuoso 6566

Jena TDB 4488

Total average time: 5527

Natural Language Addressing

167

Following our algorithm, we reduce loading time L(X,C,S2) of virtual system X, run on

computer configuration C and dataset S2 with |S2|=100 000 748 triples, to loading time L(X,C,S2’) of X

for hypothetical dataset S2’ with |S2’|=|S1|=15 472 624 instances, using the formula:

L(X,C,S2’) = |S1| * (L(X,C,S2)/ |S2|) =

= 15472624*(5527/100000748) = 855.166.

We compute ratio coefficient of growth GAC from (X,A) to (X,C) by equation:

GAC = L(X,A,S1)/L(X,C,S2’) = 38934/855.166 = 45.528.

Hardware proportionality constant HAK is:

A∝K : HAK = EK/EA = 1 / 0.32 = 3.125.

Really measured RDFArM loading time on Configuration K for dataset S2 is 43652.528

sec. We compute loading time L(RDFArM,A,S2) using formula:

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2) = 3.125*43652.528 = 136414.15.

At the end, we compute loading time L(RDFArM,C,S2) of system RDFArM with dataset S2 if it

is hypothetically run on configuration C, using ratio coefficient of growth GAC, hypothetical loading

time L(RDFArM,A,S2), and formula:

L(RDFArM,C,S2) = L(RDFArM,A,S2)/GAC = 136414.15/45.528= 2996.27 sec.

To verify our computations and to show the easiest way to find L(RDFArM,C,S2), we will use

our formula

RDFArM C S RDFArM K C RDFArM K SL R L(, , 2) , , (, , 2)*

i.e. we have to compute RRDFArM,K,C one time and to use it in benchmarks for all datasets. RRDFArM,K,C

may be computed by formula:

K X C S
RDFArM A C

A X A S

E S L
R

E S L
(, , 2)

, ,
(, , 1)

* | 1 |*
* | 2 |*

or in linear view:

RRDFArM,K,C = (EK * |S1| * L(X,C,S2)) / (EA * |S2| * L(X,A,S1)) =

= (1 * 15472624 * 5527) / (0.32 * 100000748 * 38934) =

= 85517192848 / 1245897319242.24 = 0.068639.

We compute loading time L(RDFArM,C,S2) of system RDFArM with dataset S2 if it is

hypothetically run on configuration C, using ratio coefficient RRDFArM,K,C:

L(RDFArM,C,S2) = L(RDFArM,K,S2) * RRDFArM,K,C = 43652.528 * 0.068639= 2996.27.

We receive same result.

 Ratio coefficients

To compare our results from experiments on computer configuration K

we will use ratio coefficients:

― For published results received on computer configuration A:

L(RDFArM,A,S2) = L(RDFArM,K,S2) * 3.125;

― For published results received on computer configuration B:

L(RDFArM,B,S2) = L(RDFArM,K,S2) * 0.025729;

― For published results received on computer configuration C:

L(RDFArM,C,S2) = L(RDFArM,K,S2) *0.068639.

Experiments for NL-storing of middle-size and large RDF-datasets

168

6.4 Experiments with middle-size datasets

We will compare RDFArM with RDF-stores:

― OpenLink Virtuoso Open-Source Edition 5.0.2 [Virtuoso, 2013];

― Jena SDB Beta 1 on PostgreSQL 8.2.5 and MySQL 5.0.45 [Jena, 2013];

― Sesame 2.0 [Sesame, 2012],

tested by Berlin SPARQL Bench Mark (BSBM) team and connected to it research groups

[Becker, 2008; BSBMv2, 2008; BSBMv3, 2009]. More information about latest versions of these

systems is given in Appendix B.

We will provide experiments with middle-size RDF-datasets, based on selected real datasets

from DBpedia [DBpedia, 2007a; DBpedia, 2007b] and artificial datasets created by BSBM Data

Generator [BSBM DG, 2013; Bizer & Schultz, 2009].

The real middle-size RDF-datasets which we will use consist of DBpedia's homepages and

geocoordinates datasets with minor corrections [Becker, 2008]:

― Homepages-fixed.nt (200,036 triples; 24 MB) Based on DBpedia's homepages.nt dated

2007-08-30 [DBpedia, 2007a]. 3 URLs that included line breaks were manually

corrected (fixed for DBpedia 3.0);

― Geocoordinates-fixed.nt (447,517 triples; 64 MB) Based on DBpedia's geocoordinates.nt

dated 2007-08-30 [DBpedia, 2007b]. Decimal data type URI was corrected (DBpedia

bug #1817019; resolved);

The RDF stores feature different indexing behaviors: Sesame automatically indexes after

each import, while SDB and Virtuoso allow for selective index activation which caouse corresponded

limitations or advantages. In order to make load times comparable, the data import by [Becker, 2008]

was performed as follows:

― Homepages-fixed.nt was imported with indexes enabled;

― Geocoordinates-fixed.nt was imported with indexes enabled.

In the case with RDFArM no parameters are needed. The data sets were loaded directly from

the source N-triple files.

The artificial middle-size RDF-datasets are generated by BSBM Data Generator [BSBM

DG, 2013] and published in N-triple as well as in Turtle format [BSBMv1, 2008; BSBMv2, 2008;

BSBMv3, 2009]. We converted Turtle format in N-triple format using “rdf2rdf” program developed

by Enrico Minack [Minack, 2010].

We have use four BSBM datasets – 50K, 250K, 1M, and 5M. Details about these datasets

are summarized in following Table 39.

Natural Language Addressing

169

Table 39. Details about used artificial middle-size RDF-datasets

Name of RDF-dataset: 50K 250K 1M 5M

Exact Total Number of Triples: 50,116 250,030 1,000,313 5,000,453

Number of Products 91 666 2,785 9,609

Number of Producers 2 14 60 199

Number of Product Features 580 2,860 4,745 3,307

Number of Product Types 13 55 151 73

Number of Vendors 2 8 34 196

Number of Offers 1,820 13,320 55,700 192,180

Number of Reviewers 116 339 1432 12,351

Number of Reviews 2,275 6,660 27,850 240,225

Total Number of Instances 4,899 23,922 92,757 458,140

File Size Turtle (unzipped) 14 MB 22 MB 86 MB 1,4 GB

 Loading of BSBM 50K

RDFArM has loaded all 50116 triples from BSBM 50K for about 113 seconds (112851 ms)

or average time of 2.3 ms per triple (Figure 52).

Number of Subjects in this dataset was S=4900; number of relations R=40; and number of

objects O=50116.

This means that practically we had 40 layers with 4900 NL-locations (containers) which

contain 50116 objects. The loading time’ results from our experiment and [Bizer & Schultz, 2008] are

given in Table 40 and shown on Figure 53.

Benchmark configuration used by [Bizer&Schultz, 2008] is Configuration B.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729;

and we compute final loading time as follow: 113 * 0.025729= 2.91 sec.

Experiments for NL-storing of middle-size and large RDF-datasets

170

Figure 52. Screenshot of the report of RDFArM for BSBM 50K

Table 40. Benchmark results for BSBM 50K

system loading time in seconds

Sesame 3

Jena SDB 5

Virtuoso 2

RDFArM 3

Figure 53. Benchmark results for BSBM 50K

From Table 40 and Figure 53 we may conclude that for BSBM 50K Virtuoso has the best

time, RDFArM has same loading time as Sesame and 40% better performance than Jena.

Natural Language Addressing

171

 Loading of homepages-fixed.nt

RDFArM has loaded all 200036 triples from homepages-fixed.nt for about 727 seconds

(727339 ms) or average time of 3.6 ms per triple (Figure 54).

Figure 54. Screenshot of the report of RDFArM for homepages-fixed.nt

More detailed information is given in Table 41. Every row of this table contains data for

storing of one hundred thousand triples. Total stored triples were 200036 and Table 41 contains three

rows.

Table 41. RDFArM results for homepages-fixed.nt

part triples

stored

ms

for all

ms

for one
Subjects Relations Objects

1 100000 360955 3.6 100000 1 100000

2 100000 366275 3.7 100000 1 100000

3 36 109 3.0 36 1 36

Total: 200036 727339 3.6 200036 1 200036

Number of Subjects in this dataset was S=200036; number of relations R=1; and number of

objects O=200036.

This means that practically we had only one layer with 200036 NL-locations (containers)

which contain the same number of objects. The loading time’ results from our experiment and

[Becker, 2008] are given in Table 42 and Figure 55.

Benchmark configuration used by [Becker, 2008] is Configuration A.

Our benchmark configuration is Configuration K.

Experiments for NL-storing of middle-size and large RDF-datasets

172

The loading times proportionality formula is

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125;

and we compute final loading time as follow: 727 x 3.125 = 2271.875 sec.

Table 42. Benchmark results for homepages-fixed.nt

system loading time in seconds

Virtuoso (ogps, pogs, psog, sopg) 1327

Jena SDB MySQL Layout 2 Index 5245

Jena SDB Postgre SQL Layout 2 Index 3557

Jena SDB Postgre SQL Layout 2 Hash 9681

Sesame Native (spoc, posc) 2404

RDFArM 2272

Figure 55. Benchmark results for homepages-fixed.nt

From Table 42 we may conclude that Virtuoso has the best time (about 42% better result

than RDFArM); RDFArM has about 5% better time than Sesame and 36% better time than Jena (we

take in account only the best results of compared systems, in this case – Jena).

Natural Language Addressing

173

 Loading of BSBM 250K

RDFArM has loaded all 250030 triples from BSBM 250K for about 575 seconds (575069

ms) or average time of 2.3 ms per triple (Figure 56).

More detailed information is given in Table 43. Every row of this table contains data for

storing of one hundred thousand triples. Total stored triples were 250030 and Table 43 contains three

rows.

Figure 56. Screenshot of the report of RDFArM for BSBM 250K

Table 43. RDFArM results for BSBM 250K

part triples

stored

ms

for all

ms

for one
Subjects Relations Objects

1 100000 238525 2.4 19854 6 100000

2 100000 228854 2.3 26505 22 100000

3 50030 107690 2.1 14525 22 50030

Total: 250030 575069 2.3 60884 22 250030

Number of Subjects in this dataset was S=60884; number of relations R=22; and number of

objects O=250030.

This means that practically we had 22 layers with 60884 NL-locations (containers) which

contain 250030 objects. The loading time’ results from our experiment and [BSBMv2, 2008] are given

in Table 44 and shown on Figure 57.

Experiments for NL-storing of middle-size and large RDF-datasets

174

Benchmark configuration used by [BSBMv2, 2008] is Configuration B.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729;

and we compute final loading time as follow: 575 x 0.025729= 14.79 sec.

Table 44. Benchmark results for BSBM 250K

system loading time in seconds

Sesame 19

Jena TDB 13

Virtuoso TS 05

Virtuoso RDF views 09

Virtuoso SQL 09

RDFArM 14.79

Figure 57. Benchmark results for BSBM 250K

From Table 44 and Figure 57 we may conclude that Virtuoso has 66% and Jena has 12%

better performance than RDFArM. RDFArM has 22% better performance than Sesame.

Natural Language Addressing

175

 Loading of geocoordinates-fixed.nt

RDFArM has loaded all 447517 triples from geocoordinates-fixed.nt for about 1110 seconds

(1110415 ms) or average time of 2.5 ms per triple (Figure 58).

More detailed information is given in Table 45. Every row of this table contains data for

storing of one hundred thousand triples. Total stored triples were 447517 and Table 45 contains five

rows.

Figure 58. Screenshot of the report of RDFArM for

geocoordinates-fixed.nt

Table 45. RDFArM results for geocoordinates-fixed.nt

part triples
stored

ms
for all

ms
for one

Subjects Relations Objects

1 100000 244453 2.4 34430 6 100000

2 100000 246747 2.5 34909 6 100000

3 100000 245530 2.5 33863 6 100000

4 100000 248198 2.5 33678 6 100000

5 47517 47517 2.6 16095 6 47517

Total: 447517 1110415 2.5 152975 6 447517

Number of Subjects in this dataset was S=152975; number of relations R=6; and number of

objects O=447517.

Experiments for NL-storing of middle-size and large RDF-datasets

176

This means that practically we had six layers with 152975 NL-locations (containers) which

contain 447517 objects, i.e. some containers in some layers are empty. The loading time’ results from

our experiment and [Becker, 2008] are given in Table 46 and Figure 59.

Benchmark configuration used by [Becker, 2008] is Configuration A.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is
L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125;

and we compute final loading time as follow: 1110 x 3.125= 3468.75 sec.

Table 46. Benchmark results for geocoordinates-fixed.nt

system loading time in seconds

Virtuoso (ogps, pogs, psog, sopg) 1235

Jena SDB MySQL Layout 2 Index 6290

Jena SDB Postgre SQL Layout 2 Index 3305

Jena SDB Postgre SQL Layout 2 Hash 9640

Sesame Native (spoc, posc) 2341

RDFArM 3469

Figure 59. Benchmark results for geocoordinates-fixed.nt

From Table 46 and Figure 59 we may conclude that RDFArM has the worst performance

(we take the best time of Jena). Virtuoso has 64%, Sesame has 33%, and Jena has 5% better

performance.

Natural Language Addressing

177

 Loading of BSBM 1M

RDFArM has loaded all 1000313 triples from BSBM 1M for about 2349 seconds (2349328

ms) or average time of 2.3 ms per triple (Figure 60).

Figure 60. Screenshot of the report of RDFArM for BSBM 1M

More detailed information is given in Table 47. Every row of this table contains data for

storing of one hundred thousand triples. Total stored triples were 1000313 and Table 47 contains 11

rows. This table has new structure. It contains number of stored triples to corresponded part including

it and in separate columns the time for storing the last 100000 triples and average time for one triple

from this part.

Table 47. RDFArM results for BSBM 1M

part triples
stored

ms for all ms for one ms for
last

100000

ms for one Subjects Relations Objects

1 100000 241099 2.4 241099 2.4 6859 22 100000

2 200000 480265 2.4 239166 2.4 14363 29 200000

3 300000 714453 2.4 234188 2.3 24365 29 300000

4 400000 962994 2.4 248541 2.5 34366 29 400000

5 500000 1194344 2.4 231350 2.3 44368 29 500000

6 600000 1423665 2.4 229321 2.3 54370 29 600000

Experiments for NL-storing of middle-size and large RDF-datasets

178

part triples
stored

ms for all ms for one ms for
last

100000

ms for one Subjects Relations Objects

7 700000 1655420 2.4 231755 2.3 64324 40 700000

8 800000 1892074 2.4 236654 2.4 73799 40 800000

9 900000 2116590 2.4 224516 2.2 83269 40 900000

10 1000000 2348501 2.3 231911 2.3 92729 40 1000000

11 1000313 2349328 2.3 827 2.6 92757 40 1000313

Number of Subjects in this dataset was S=92757; number of relations R=40; and number of

objects O=1000313.

This means that practically we had 40 layers with 92757 NL-locations (containers) which

contain 1000313 objects. The loading time’ results from our experiment and [BSBMv2, 2008;

BSBMv3, 2009] are given in Table 48 and shown on Figure 61.

Benchmark configuration used by [BSBMv2, 2008; BSBMv3, 2009] is Configuration B.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729;

and we compute final loading time as follow: 2349 x 0.025729 = 60.437421 sec.

Table 48. Benchmark results for BSBM 1M

system

loading time in min:sec

(a)

[BSBMv2, 2008]

(b)

[BSBMv3, 2009]

Sesame 02:59 03:33

Jena TDB 00:49 00:41

Jena SDB 02:09 -

Virtuoso TS 00:23 00:25

Virtuoso RV 00:34 00:33

Virtuoso SQL 00:34 00:33

RDFArM 01:00 01:00

Natural Language Addressing

179

Figure 61. Benchmark results for BSBM 1M

From Table 48 and Figure 61 we may conclude that Virtuoso has 62% and Jena has 32%

better performance than RDFArM. RDFArM has 67% better performance than Sesame.

 Loading of BSBM 5M

RDFArM has loaded all 5000453 triples from BSBM 5M for about 11704 sec. (11704116

ms) or average time of 2.3 ms per triple (Figure 62).

Figure 62. Screenshot of the report of RDFArM for BSBM 5M

Number of Subjects in this dataset was S=458142; number of relations R=55; and number of

objects O=5000453.

Experiments for NL-storing of middle-size and large RDF-datasets

180

This means that practically we had 55 layers with 458142 NL-locations (containers) which

contain 5000453 objects. The loading time’ results from our experiment and [Bizer & Schultz, 2008]

are given in Table 50 and shown on Figure 63.

More detailed information is given in Table 49. Every row of this table contains data for

storing of one hundred thousand triples. Total stored triples were 5000453 and Table 49 contains 51

rows.

This table contains number of stored triples to corresponded part including it and in separate

columns the time for storing the last 100000 triples and average time for one triple from this part.

Table 49. RDFArM results for BSBM 5M

part triples
stored

ms for all
ms
for
one

ms for last
100000

ms
for
one

Subjects Relations Objects

1 100000 250023 2.5 250023 2.5 5463 22 100000

2 200000 506660 2.5 256637 2.6 7973 22 200000

3 300000 751254 2.5 244594 2.4 10471 22 300000

4 400000 983196 2.5 231942 2.3 12974 22 400000

5 500000 1227104 2.5 243908 2.4 22353 29 500000

6 600000 1468063 2.4 240959 2.4 32357 29 600000

7 700000 1708663 2.4 240600 2.4 42360 29 700000

8 800000 1956034 2.4 247371 2.5 52363 29 800000

9 900000 2190644 2.4 234610 2.3 62366 29 900000

10 1000000 2430043 2.4 239399 2.4 72369 29 1000000

11 1100000 2666041 2.4 235998 2.4 82372 29 1100000

12 1200000 2910230 2.4 244189 2.4 92375 29 1200000

13 1300000 3143529 2.4 233299 2.3 102377 29 1300000

14 1400000 3371618 2.4 228089 2.3 112381 29 1400000

15 1500000 3605136 2.4 233518 2.3 122384 29 1500000

16 1600000 3838139 2.4 233003 2.3 132387 29 1600000

17 1700000 4070830 2.4 232691 2.3 142390 29 1700000

18 1800000 4298155 2.4 227325 2.3 152393 29 1800000

Natural Language Addressing

181

19 1900000 4527367 2.4 229212 2.3 162396 29 1900000

20 2000000 4758030 2.4 230663 2.3 172399 29 2000000

21 2100000 4985698 2.4 227668 2.3 182402 29 2100000

22 2200000 5212742 2.4 227044 2.3 192405 29 2200000

23 2300000 5439692 2.4 226950 2.3 202408 29 2300000

24 2400000 5685347 2.4 245655 2.5 212043 40 2400000

25 2500000 5922328 2.4 236981 2.4 221512 40 2500000

26 2600000 6155331 2.4 233003 2.3 230972 40 2600000

27 2700000 6391610 2.4 236279 2.4 240447 40 2700000

28 2800000 6630417 2.4 238807 2.4 249912 40 2800000

29 2900000 6855511 2.4 225094 2.3 259371 40 2900000

30 3000000 7078545 2.4 223034 2.2 268831 40 3000000

31 3100000 7305979 2.4 227434 2.3 278290 40 3100000

32 3200000 7533928 2.4 227949 2.3 287754 40 3200000

33 3300000 7773608 2.4 239680 2.4 297240 40 3300000

34 3400000 8006782 2.4 233174 2.3 306704 40 3400000

35 3500000 8239629 2.4 232847 2.3 316145 40 3500000

36 3600000 8464536 2.4 224907 2.2 325609 40 3600000

37 3700000 8693202 2.3 228666 2.3 335077 40 3700000

38 3800000 8919248 2.3 226046 2.3 344557 40 3800000

39 3900000 9150254 2.3 231006 2.3 354009 40 3900000

40 4000000 9383912 2.3 233658 2.3 363472 40 4000000

41 4100000 9616120 2.3 232208 2.3 372924 40 4100000

42 4200000 9850090 2.3 233970 2.3 382383 40 4200000

43 4300000 10073842 2.3 223752 2.2 391847 40 4300000

44 4400000 10305832 2.3 231990 2.3 401308 40 4400000

45 4500000 10536619 2.3 230787 2.3 410763 40 4500000

46 4600000 10769997 2.3 233378 2.3 420233 40 4600000

47 4700000 11004030 2.3 234033 2.3 429699 40 4700000

Experiments for NL-storing of middle-size and large RDF-datasets

182

48 4800000 11242836 2.3 238806 2.4 439169 40 4800000

49 4900000 11474107 2.3 231271 2.3 448643 40 4900000

50 5000000 11702852 2.3 228745 2.3 458099 40 5000000

51 5000453 11704116 2.3 1264 2.8 458142 55 5000453

Benchmark configuration used by [Bizer & Schultz, 2008] is Configuration B.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729;

and we compute final loading time as follow: 11704 * 0.025729= 301.13 sec.

Table 50. Benchmark results for BSBM 5M

system loading time in seconds

Sesame 1988

Jena SDB 1053

Virtuoso 609

RDFArM 301

Figure 63. Benchmark results for BSBM 5M

From Table 50 and Figure 63 we may conclude that RDFArM has best loading time (better

about 85% than Sesame, 71% than Jena, and 51% than Virtuoso).

Natural Language Addressing

183

6.5 Experiments with large datasets

We provided experiments with real large datasets which were taken from DBpedia's

homepages [DBpedia, 2007c] and Billion Triple Challenge (BTC) 2012 [BTC, 2012].

The real dataset from DBpedia's infoboxes-fixed.nt (15,472,624 triples; 2.1 GB) is based on

DBpedia's infoboxes.nt dated 2007-08-30 [DBpedia, 2007c]. 166 triples from the original set were

excluded because they contained excessively large URIs (> 500 characters) that caused importing

problems with Virtuoso (DBpedia bug #1871653). RDFArM has no such limitation. Infoboxes-

fixed.nt was imported with indexes initially disabled in SDB and Virtuoso. Indexes were then

activated and the time required for index creation time was factored into the import time. In the case

with RDFArM no parameters are needed. The datasets were loaded directly from the source file.

The RDF Stores, tested by [Becker, 2008], are:

― OpenLink Virtuoso Open-Source Edition 5.0.2 [Virtuoso, 2013];

― Jena SDB Beta 1 on PostgreSQL 8.2.5 and MySQL 5.0.45 [Jena, 2013];

― Sesame 2.0 beta 6 [Sesame, 2012].

The RDF stores feature different indexing behaviors: Sesame automatically indexes after

each import, while SDB and Virtuoso allow for selective index activation. More information about

latest versions of these systems is given in Appendix B.

Artificial large datasets are taken from Berlin SPARQL Bench Mark (BSBM) [Bizer &

Schultz, 2009; BSBMv3, 2009; BSBMv5, 2009; BSBMv6, 2011]. Details about the benchmark

artificial datasets are summarized in the following Table 51:

Table 51. Details about artificial large RDF-datasets

Number of Triples 25M 100M

Exact Total Number of Triples 25000244 100000112

Number of Products 70812 284826

Number of Producers 1422 5618

Number of Product Features 23833 47884

Number of Product Types 731 2011

Number of Vendors 722 2854

Number of Offers 1416240 5696520

Number of Reviewers 36249 146054

Number of Reviews 708120 2848260

Total Number of Instances 2258129 9034027

File Size Turtle (unzipped) 2.1 GB 8.5 GB

Experiments for NL-storing of middle-size and large RDF-datasets

184

 Loading of infoboxes-fixed.nt

RDFArM has loaded all 15 472 624 triples from infoboxes-fixed.nt for about 43652 seconds

(43652528 ms) or average time of 2.8 ms per triple (Figure 64).

Figure 64. Screenshot of the report of RDFArM for infoboxes-fixed.nt

More detailed information is given in Table 70 in Appendix A4. Every row of this table

contains data for storing of one hundred thousand triples. Total stored triples were 15,472,624 and

Table 70 contains 155 rows.

Number of Subjects in this dataset was S=1354298; number of relations R=56338; and

number of objects O=15472624.

This means that practically we had 56338 layers with 1354298 NL-locations (containers)

which contain 15472624 objects, i.e. some containers in some layers are empty. The loading time’

results from our experiment and [Becker, 2008] are given in Table 52 and Figure 65.

Benchmark configuration used by [Becker, 2008] is Configuration A.

Our benchmark configuration is Configuration K.

The loading times proportionality formula is
L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125;

and we compute final loading time as follow: 43652 x 3.125= 136412.5 sec.

Table 52. Benchmark results for infoboxes-fixed.nt

system loading time in seconds

Virtuoso (ogps, pogs, psog, sopg) 7017

Jena SDB MySQL Layout 2 Index 70851

Jena SDB Postgre SQL Layout 2 Index 73199

Jena SDB Postgre SQL Layout 2 Hash 734285

Sesame Native (spoc, posc) 21896

RDFArM 136412

Natural Language Addressing

185

Figure 65. Benchmark results for infoboxes-fixed.nt

From Table 52 and Figure 65 we may conclude that RDFArM has the worst loading time.

Virtuoso is 95%, Sesame is 84%, and Jena is 48% better than RDFArM (we take in account only the

best results of compared systems).

For large datasets it is very important to support multi-processors’ parallel loading of data.

RDFArM is developed to support such work. We simulate four processors’ configuration by

separating dataset on portions of 5 million triples and loading them separately (Table 70).

Table 53 presents final times for different processors.

Table 53. Benchmark results for multiprocessor loading of infoboxes-fixed.nt

processor number triples stored ms for storing
all triples

ms for storing
one triple

0 5000000 13394043 2.7

1 5000000 15054986 3.01

2 5000000 14182083 2.8

3 472624 1021416 2.2

As total loading time we assume the largest processor’s one, i.e. 15054.986 sec.

Experiments for NL-storing of middle-size and large RDF-datasets

186

 Loading of BSBM 25M

RDFArM has loaded all 25000244 triples from BSBM 25M for about 56488 seconds

(56488509ms) or average time of 2.3 ms per triple (Figure 66).

Figure 66. Screenshot of the report of RDFArM for BSBM 25M

Number of Subjects in this dataset was S=2258132; number of relations R=112; and number

of objects O=25000244.

This means that practically we had 112 layers with 2258132 NL-locations (containers) which

contain 25000244 objects, i.e. some containers in some layers are empty.

The loading time’ results from our experiment and [Bizer & Schultz, 2009; BSBMv3, 2009]

are given in Table 54 and Figure 67.

Benchmark configuration used by [Bizer & Schultz, 2009; BSBMv3, 2009] is

Configuration B. Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729.

We compute final loading time as follow: 56488*0.025729= 1453.38 sec.

Table 54. Benchmark results for BSBM 25M

system loading time in seconds

Sesame 44225

Jena TDB 1013

Jena SDB 14678

Virtuoso TS 2364

Virtuoso RV 1035

Virtuoso SQL 1035

RDFArM 1453

Natural Language Addressing

187

Figure 67. Benchmark results for BSBM 25M

From Table 54 and Figure 67 we may conclude that Jena (with 30%) and Virtuoso (with

29%) are better than RDFArM. RDFArM has 97% better performance than Sesame.

We simulate multi-processors’ configuration by separating dataset on portions of 5 million

triples and loading them separately. Table 55 presents final times for different processors.

Table 55. Benchmark results for multiprocessors’ loading of BSBM 25M

processor number triples stored
ms for storing

all triples
ms for storing

one triple

0 5000000 11353862 2.3

1 5000000 11570875 2.3

2 5000000 11529651 2.3

3 5000000 11107771 2.2

4 5000000 10925646 2.2

5 244 704 2.9

Experiments for NL-storing of middle-size and large RDF-datasets

188

 Loading of BSBM 100M and BSBM 200M

RDFArM has loaded all 100000112 triples from BSBM 100M for about 229344 seconds

(229343807 ms) or average time of 2.3 ms per triple (Figure 68).

Figure 68. Screenshot of the report of RDFArM for BSBM 100M

Number of Subjects in this dataset was S=9034046; number of relations R=341; and number

of objects O=100000112.

This means that practically we had 341 layers with 9034046 NL-locations (containers) which

contain 100000112 objects, i.e. some containers in some layers contain more than one object. The

loading time’ results from our experiment and [Bizer & Schultz, 2009; BSBMv3, 2009] are given in

Table 56 and Figure 69.

Benchmark configuration used by [Bizer & Schultz, 2009; BSBMv3, 2009] is

Configuration B. Our benchmark configuration is Configuration K.

The loading times proportionality formula is

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729.

We compute final loading time as follow:

229344 * 0.025729 = 5900.79 sec.

Table 56. Benchmark results for BSBM 100M

system loading time in seconds

Sesame 282455

Jena TDB 5654

Jena SDB 139988

Virtuoso TS 28607

Virtuoso RV 3833

Virtuoso SQL 3833

RDFArM 5901

Natural Language Addressing

189

Figure 69. Benchmark results for BSBM 100M

From Table 56 and Figure 69 we may conclude that Virtuoso is 35% better than RDFArM

and Jena is 4% better than RDFArM. RDFArM is 98% better than Sesame.

In [BSBMv6, 2011] results received from benchmarks on computer configuration C are

published. The N-Triples version of the dataset was used. For Virtuoso, the dataset was split into 100

respectively 200 Turtle files and loaded with the DB.DBA.TTLP function consecutively.

Benchmark configuration used by [BSBMv6, 2011] is Configuration C.

Our benchmark configuration is Configuration K.

The loading times proportionality formula for Configuration C is

L(RDFArM,C,S2) = L(RDFArM,K,S2) * RRDFArM,K,C and RRDFArM,K,C = 0.068639.

We compute RDFArM final loading time for BSBM 100M as follow:

229344 * 0.068639 = 15741.94 sec.

We compute RDFArM final loading time for BSBM 200M as follow:

2 * 229344 * 0.068639 = 31483.88 sec.

The loading time’ results from our experiment and [BSBMv6, 2011] are given in Table 57

and Figure 70.

Table 57. Benchmark results for BSBM 100M and 200M on Configuration C

system
loading time in seconds

100M 200M

Jena TDB 4488 9913

Virtuoso 6566 14378

RDFArM 15742 31484

Experiments for NL-storing of middle-size and large RDF-datasets

190

Figure 70. Benchmark results for BSBM 100M and 200M on Configuration C

We have no benchmarks for Sesame. Because of this experiment will not be used for the

analysis. From Table 57 and Figure 70 we may conclude that RDFArM has to be improved for big

datasets to be comparable to Virtuoso and Jena. This is done in its multi-processors’ version

RDFArM-MP.

We simulate multi-processors’ configuration by separating dataset on portions of 5 million

triples and loading them separately. Table 58 presents final times for different processors.

Table 58. Benchmark results for multiprocessors’ loading of BSBM 100M

processor number triples stored ms for storing
all triples

ms for storing
one triple

0 5000000 11271727 2.3

1 5000000 11251369 2.3

2 5000000 11514715 2.3

3 5000000 11318091 2.3

4 5000000 11484496 2.3

5 5000000 11571904 2.3

6 5000000 11524854 2.3

7 5000000 11541593 2.3

8 5000000 11547395 2.3

9 5000000 11582902 2.3

10 5000000 11508093 2.3

11 5000000 11461596 2.3

Natural Language Addressing

191

12 5000000 11588535 2.3

13 5000000 11597551 2.3

14 5000000 11565899 2.3

15 5000000 11367450 2.3

16 5000000 11379821 2.3

17 5000000 11337077 2.3

18 5000000 11420647 2.3

19 5000000 11507826 2.3

20 112 266 2.4

As total loading time of multi-processors’ configuration we assume the largest processor’s

time, i.e. 11597.551 sec.

We compute final loading time as follow: 11597.551 * 0.068639 = 796.04 sec.

 Conclusion of chapter 6

We have presented results from series of experiments which were needed to estimate the

storing time of NL-addressing for middle-size and very large RDF-datasets.

We described the experimental storing models and special algorithm for NL-storing RDF

instances. Estimation of experimental systems was provided to make different configurations

comparable. Special proportionality constants for hardware and software were proposed. Using

proportionality constants, experiments with middle-size and large datasets become comparable.

Experiments were provided with both real and artificial datasets. Experimental results were

systematized in corresponded tables. For easy reading visualization by histograms was given.

Experimental results will be analyzed in the next chapter.

The goal experiments for NL-storing of middle-size and large RDF-datasets were to estimate

possible further development of NL-ArM. We assumed that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. In the next chapter we will

analyze what will be the place of NL-ArM in this environment but already we may see that NL-

addressing have good performance and NL-ArM has similar results as Jena and Sesame.

Natural Language Addressing

192

7 Analysis of experiments

Abstract

In this research we have provided series of experiments to identify any trends, relationships

and patterns in connection to NL-addressing and its implementations. We have realized three types of

experiments:

― Basic experiments to compare our access method with two main types of organization

and access to information – sequential and relational;

― Experiments aimed to show the possibilities of NL-addressing to be used for NL-storing

of structured datasets;

― Experiments to examine the applicability of NL-addressing for middle-size and very

large RDF-datasets.

Below we will analyze these experiments. Special attention will be paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

7.1 Analysis of basic experiments

We started our experiments in Chapter 4 with two main types of basic experiments:

NL-ArM has been compared with:

― Sequential text file of records;

― Relational data base management system Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing information. To

investigate the size of files and speed of their generation we compared writing in a sequential text file

and in a NL-ArM archive.

The experiments have sown:

― NL-ArM is constantly about two and half times slower than writing in sequential text file

because of building the hash tables in the NL-ArM archive. This means that including

new records in NL-ArM archive take the same time (about 0.013 ms) per record

irrespective of the number of already stored records;

― The comparison of file sizes showed that, for great number of elements, text file became

longer than NL-ArM archive. This leads to the following conclusion - bulky text files

whose records are attached to long “keywords” would be saved more compactly in

Natural Language Addressing

193

NL-ArM archives instead as records in text files with explicitly given keywords in each

record.

Important consideration in this case was that reading sequential text file to find concrete

keyword is very slow operation. Every indexed approach is quicker. Indexed text files are typical for

databases and this case was analyzed in experiments with a database.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

Firebird is not access method but system for managing databases. It is important that all

queries in Firebird are in SQL and interpreted by the system, which requires appropriate time. The

primary goal for new Version 2.5 of Firebird is to establish the basics for a new threading architecture

which will speed up the Firebird on multi-processors’ computer systems [Firebird, 2013].

It is important to underline that the experiments were provided for data with fixed length. If

keywords’ length is variable, we will have problems to work with any RDBMS. NL-ArM supports

variable length of the keywords.

Calculating the hash function is faster than searching keywords in the index. But searching

operations in hash structures is slow operation; in this case search in index structures is more

convenient.

Another disadvantage of NL-ArM is connected to its special type of realization of the

internal index structure. In relational model all keys have same influence on the writing time – they are

written in the plain file by the same manner (as parts of records) and extend the balanced index in one

or other its section which takes logarithmic time. In NL-ArM the different values of co-ordinates cause

various archive structures which take corresponded time. Practically, NL-ArM creates hyper-matrix

and large empty zones need additional resources – time and disk space, which are not so great due to

smart internal index organization but really exists.

Experiments have shown that regarding NL-ArM:

― In writing, Firebird is on average 90.1 times slower. This is due to two reasons:

1. Balanced indexes of Firebird need reconstruction for including of every new keyword.

This is time consuming process;

2. The speed of updating NL-ArM hash tables which do not need recompilation after

including new information.

Due to specific of realization, for small values of co-ordinates NL-ArM is not effective

as for the great ones. Nevertheless, NL-ArM is always many times faster than Firebird.

― In reading, Firebird is on average 29.8 times slower due to avoiding search operations in

NL-ArM hash tables which speeds the access.

Finally, for large dynamic data sets more convenient are hash based tools like NL-ArM

because of random direct access to all stored records immediately after writing it without any

additional indexing. For storing big semi-structured datasets like large ontologies and RDF-graphs this

advantage is crucial.

Analysis of experiments

194

7.2 Analysis of experiments with structured datasets

In Chapter 5 we have presented several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of structured datasets.

We have provided three main experiments - for NL-storing of dictionaries, thesauruses, and

ontologies.

Analyzing results from the experiment with a real dictionary data we may conclude that it is

possible to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using

NL-Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for

storing hash structures which serve NL-addressing. But the same if no great losses we will have if we

will build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

― High speed for storing and accessing the information;

― The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are sequential files and relational databases (i.e. sets of interconnected indexed sequential files with

fixed records’ structure).

Our experiment confirmed the conclusion about losses and benefits from using

NL-addressing given above for thesauruses. The same is valid for more complex structures.

For static structured datasets it is more convenient to use standard utilities and complicated

indexes. NL-addressing is suitable for dynamic processes of creating and further development of

structured datasets due to avoiding recompilation of the database index structures and high speed

access to every data element.

7.3 Analysis of experiments with semi-structured datasets

In Chapter 6 the applicability of NL-addressing for middle-size and large semi-structured

RDF-datasets was concerned.

We have provided twelve experiments with middle-size and large RDF-datasets, based on

selected datasets from DBpedia's homepages and Berlin SPARQL Bench Mark (BSBM) to make

comparison with published benchmarks of known RDF triple stores.

 Rank-based multiple comparison

We will use the Friedman test to detect statistically significant differences between the

systems [Friedman, 1940]. The Friedman test is a non-parametric test, based on the ranking of the

Natural Language Addressing

195

systems on each dataset. It is equivalent of the repeated-measures ANOVA [Fisher, 1973]. We will

use Average Ranks ranking method, which is a simple ranking method, inspired by Friedman's statistic

[Neave & Worthington, 1992]. For each dataset the systems are ordered according to the time

measures and are assigned ranks accordingly. The best system receives rank 1, the second – 2, etc. If

two or more systems have equal value, they receive equal rank which is mean of the virtual positions

that had to receive such number of systems if they were ordered consecutively each by other.

Let n is the number of observed datasets; k is the number of systems.

Let irj be the rank of system j on dataset i. The average rank for each system is calculated as
k

i
j j

i 1

1R r
n

 .

The null-hypothesis states that if all the systems are equivalent than their ranks Rj should be

equal. When null-hypothesis is rejected, we can proceed with the Nemenyi test [Nemenyi, 1963]

which is used when all systems are compared to each other. The performance of two systems is

significantly different if the corresponding average ranks differ by at least the critical difference

 k(k 1)CD q

6N
where critical values q are based on the Studentized range statistic divided by 2 . Some of the

values of q are given in Table 59 [Demsar, 2006].

Table 59. Critical values for the two-tailed Nemenyi test

systems 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164

q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

The results of the Nemenyi test are shown by means of critical difference diagrams.

Experiments which we will take in account were presented in corresponded tables of Chapter

6 as follow (Table 60):

Table 60. Information about tests and results

test No: results

1 Table 40

2 Table 42

3 Table 44

4 Table 46

 5a Table 48 (a)

 5b Table 48 (b)

6 Table 50

7 Table 52

8 Table 54

9 Table 56

 10a Table 57 (a)

 10b Table 57 (b)

Analysis of experiments

196

Benchmark values from our 12 experiments and corresponded published experimental data

from BSBM team are given in Table 61. Published results do not cover all table, i.e. we have no

values for some cells. To solve this problem we will take in account only the best result for given

system on concrete datasets (Table 62). Sesame had no average values for tests 10a and 10b. Because

of this we will not use these test in our comparison. They were useful to see the need of further

refinement of RDFArM for big data.

The ranks of the systems for the ten tests are presented below in Table 63.

Table 61. Benchmark values for middle size datasets

system
TEST

1 2 3 4 5a 5b 6 7 8 9 10a 10b

RDFArM 3 2272 14.79 3469 60 60 301 136412 1453 5901 15742 31484

Sesame

Native (spoc,

posc)

3 2404 19 2341 179 213 1988 21896 44225 282455

Virtuoso

(ogps, pogs,

psog, sopg)

2 1327 1235 609 7017 6566 14378

Virtuoso TS 05 23 25 2364 28607

Virtuoso RDF

views

 09

Virtuoso SQL 09 34 33 1035 3833

Virtuoso RV 34 33 1035 3833

Jena SDB 5 13 129 1053 14678 139988

Jena TDB 49 41 1013 5654 4488 9913

Jena SDB

MySQL

Layout 2

Index

 5245 6290 70851

Jena SDB

Postgre SQL

Layout 2 Hash

 3557 3305 73199

Jena SDB

Postgre SQL

Layout 2

Index

 9681 9640 734285

Natural Language Addressing

197

Table 62. Chosen benchmark values for middle size datasets

system
TEST

1 2 3 4 5a 5b 6 7 8 9 10a 10b

RDFArM 3 2272 14.79 3469 60 60 301 136412 1453 5901 15742 31484

Sesame 3 2404 19 2341 179 213 1988 21896 44225 282455

Virtuoso 2 1327 05 1235 23 25 609 7017 1035 3833 6566 14378

Jena 5 3557 13 3305 49 41 1053 70851 1013 5654 4488 9913

Table 63. Ranking of tested systems

system
ranks for the tests

average rank
1 2 3 4 5a 5b 6 7 8 9

RDFArM 2.5 2 3 4 3 3 1 4 3 3 2.85

Sesame 2.5 3 4 2 4 4 4 2 4 4 3.35

Virtuoso 1 1 1 1 1 1 2 1 2 1 1.2

Jena 4 4 2 3 2 2 3 3 1 2 2.6

All average ranks are different. The null-hypothesis is rejected and we can proceed with the

Nemenyi test. Following [Demsar, 2006], we may compute the critical difference by formula:

 k(k 1)CD q

6N

where q we take as q0.10 = 2.291 (from Table 59 [Demsar, 2006; Table 5a]);

k will be the number of systems compared, i.e. k=4; N will be the number of datasets used in

benchmarks, i.e. N=10. This way we have:

0.10
4 *5 20CD 2.291* 2.291* 2.291*0.577 1.322
6 *10 60

We will use for critical difference CD0.10 the value 1.322.

Analysis of experiments

198

At the end, average ranks of the systems and distance to average rank of the first one are

shown in Table 64.

Table 64. Average ranks of systems and distance to average rank of the first one

place system average

rank

Distance between average rank of
the system and average rank of the

first one

1 Virtuoso 1.2 0

2 Jena 2.6 1.4

3 RDFArM 2.85 1.65

4 Sesame 3.35 2.15

The visualization of Nemenyi test results for tested systems is shown on Figure 71.

Figure 71. Visualization of Nemenyi test results

Analyzing these experiments we may conclude that RDFArM is at critical distances to Jena

and Sesame. RDFArM is nearer to Jena than to Sesame. RDFArM, Jena, and Sesame are significantly

different from Virtuoso.

Some recommendations to RDFArM may be given. RDF triple datasets has different

characteristics depending of their origination. This causes the need to adapt NL-ArM storage engine to

specifics of concrete datasets. For instance, important parameters are length of strings and quantity of

repeating values of subject, relation, and object.

Natural Language Addressing

199

7.4 Storing time and multi-processing

The NL-ArM characteristic, which we will analyze now, is NL-access time dependence on

growing of dataset size and possibility for multi-processing. Below we will outline data for NL-storing

instances with one-, two- and three-elements. Graphical illustrations will be given for loading selected

datasets. For two datasets will be given graphical comparison between times consumed by different

processors.

 NL-storing two-element instances

Two-element instances we use in experiments for NL-storing dictionaries (Table 25) and

thesauruses (Table 27). Two-element instance is couple: (name, value), where “name” is “one-

dimension” co-ordinate of NL-location where “value” (a string) has to be stored.

Measured times are gathered in Table 65.

Table 65. Access times for two-element instances

dataset
number of

instances

time for all instances in

ms

time for one instance in

ms

NL-writing of one-element instances

SA dictionary 23412 22105 0.94

WordNet as

thesaurus
125062 107157 0.86

Total: 148474 129262 0.87

NL-reading of one-element instances

SA dictionary 23412 20826 0.89

WordNet thesaurus 117641 91339 0.78

Total: 141053 112165 0.79

The average times are 0.87 ms for writing and 0.79 ms for reading.

 NL-storing instances with three elements (RDF-triple datasets)

Three-element instances we use in experiments for NL-storing RDF-triple datasets. Three-

element instance is triple: (subject, relation, object), where “subject” and “relation” are NL-locations,

and “object” is a string to be stored at NL-location given by two-dimensional co-ordinates (subject,

relation) where we store only one value (object) which is a string.

Analysis of experiments

200

Measured times are gathered in Table 66.

Table 66. Loading times for three-element instances

dataset
number

of triples

loading time in ms

for all triples for one triple

BSBM 50K 50116 112851 2.3

homepages-fixed.nt 200036 727339 3.6

BSBM 250K 250030 575069 2.3

geocoordinates-fixed.nt 447517 1110415 2.5

BSBM 1M 1000313 2349328 2.3

BSBM 5M 5000453 11704116 2.3

infoboxes-fixed.nt 15472624 43652528 2.8

BSBM 25M 25000244 56488509 2.3

BSBM 100M 100000112 229343807 2.3

total: 147421445 346063962 2.34745

The average loading time is 2.35 ms.

 NL-storing four-element instances (RDF-quadruple datasets)

We done series of experiments based on real data from the BTC datasets [BTC, 2012]. Here

we will outline only results for dataset http://km.aifb.kit.edu/projects/btc-2012/datahub/data-0.nq.gz.

Dataset “data-0.nq” contains 45595 quadruples. Information about its structure and results

from the experiments with it are shown in Table 67. A screenshot from the RDFArM program is

shown at Figure 72.

The average loading time is 3.6 ms.

Table 67. Results for storing datahub/data-0.nq

number of storing time for all instances

in ms

storing time for one

instance

in ms instances subjects relations contexts

45595 7325 894 101 162023 3.6

Natural Language Addressing

201

Figure 72. A screenshot from the RDFArM program

The time for NL-storing on Configuration K is about:

― 0.7 ms for two-element instances;

― 2.35 ms for three-element instances;

― 3.6 ms for four-element instances.

The conclusion is that every new element of the instance takes about one millisecond

additional time. This means that NL-storing time is depended on the number of elements in the

instances.

 Graphical illustrations

Graphical illustrations of loading selected datasets are given below.

Firstly (Figure 73), we show the graphic of time used for storing of one instance from BSBM

250K dataset. At the beginning RDFArM takes more time due to initialization of the hash structures.

The next graphic (Figure 74) illustrates the variation of storing time due to specifics of the

dataset, i.e. the size of elements to be used as NL-addresses – as long are the strings of subject and

relation, so long time it takes the string of object to be stored in the archive.

Nevertheless, storing time varies between 2.2 and 2.5 milliseconds.

The next two graphics are aimed to illustrate independence from size of the datasets. On

Figure 75 the storing times of BSBM 25M dataset is shown, and on Figure 76 storing times of BSBM

100M dataset are illustrated. On both graphics we see the same regularity – constant time for storing

of one triple independently of the number of already stored ones.

Simulating multi-processors work we are interested of regularity of used times from different

processors. It is expectable to have similar times because of constant complexity of NL-addressing.

This is seen of Figure 77 and Figure 78 where graphical comparison between times consumed by

different processors is given.

Analysis of experiments

202

Figure 73. Storing time for one instance of BSBM 250K

Figure 74. Storing time for one instance of BSBM 1M

Figure 75. Storing time for one instance of BSBM 25M

Natural Language Addressing

203

Figure 76. Storing time for one instance of BSBM 100M

Figure 77. Comparison of time used by processors for BSBM 25M

Figure 78. Comparison of time used by processors for BSBM 100M

Analysis of experiments

204

From experimental data and visualizations we may conclude that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

This time does not depend on the size of data sets, i.e. of the number of instances. Detailed

information for storing 100 millions triples is given in the Appendix A.5 (Table 71). Table 71 contains

results from an experiment for storing 100 millions triples from BSBM 100M [BSBMv3, 2009]. The

check points were on every 100 000 triples. For every check point in Table 71, the average time in ms

for writing one triple is shown. For comparison, the corresponded value of log n is given in third

column. Data from Table 71 are visualized in Figure 79.

Figure 79. Comparison of log n and average time in ms for storing one triple from

BSBM 100M

 Conclusion of chapter 7

In this chapter we have analyzed experiments presented in previous chapters 4, 5, and 6,

which contain respectively results from (1) basic experiments; (2) experiments with structured

datasets; (3) experiments with semi-structured datasets. Special attention was paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

From experimental data and visualizations we concluded that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

Natural Language Addressing

205

In Appendix B we outlined some systems which we have analyzed in accordance of further

development and implementing of NL-addressing. Two main groups of systems we have selected are:

― DBMS based approaches (non-native RDF data storage):

Oracle [Oracle, 2013], 3Store [AKT Project, 2013], Jena [Jena, 2013], RDF Suite

[RDF Suite, 2013], Sesame [Sesame, 2012], 4store [4store, 2013];

― Multiple indexing frameworks (native RDF data storage):

YARS [YARS, 2013], Kowari [Kowari, 2004], Virtuoso [Virtuoso, 2013], RDF-3X

[Neumann & Weikum, 2008], Hexastore [Weiss et al, 2008], RDFCube [Matono et al,

2007], BitMat [Atre et al, 2009], Parliament [Kolas et al, 2009].

Taking in account our experiments with relational data base we may conclude that for group

of DBMS based approaches we will have similar proportions if we realize NL-addressing for more

qualitative hardware platforms, for instance cluster machines.

Our approach is analogous to multiple indexing frameworks. The main difference is in

reducing the information via NL-addressing and avoiding its duplicating in indexes. Again, if we

realize NL-addressing for more qualitative hardware platforms, we will receive results which will

outperform the analyzed systems.

What gain and loss using NL-Addressing for RDF storing?

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search trees or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to update and access the information immediately after storing without

recompilation the database and rebuilding the indexes. This is very important because

half or analyzed systems do not support updates (see Table 77).

The main conclusion is optimistic. The future realization of NL-addressing for cluster

machines and corresponded operation systems is well-founded.

Natural Language Addressing

206

8 Practical aspects

Abstract

Some practical aspects of implementation and using of NL-addressing will be discussed in

this chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models will be outlined.

The implementations have to be done following corresponded methodologies for building

and using of ontologies. Such known methodology will be discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we will illustrate

following the OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of National

Academy of Sciences of Ukraine.

In this chapter we briefly will present ICON and its structure. Attention will be paid to the

storing of internal information resources of ICON realized on the base of NL-addressing and

experimental programs WordArM and OntoArM.

8.1 The transition to non-relational data models

Some of the world's leading companies and products which support extra-large ontology

bases are presented on page of W3C [LTS, 2012]. It should be noted, there exists a gradual transition

from relational to non-relational models for organizing ontological data. The graph oriented approach

for storing ontologies became one of the preferred. Perhaps the most telling example is the system

AllegroGraph® 4.9 [AlegroGraph, 2012] of the FRANZ Inc.

Franz Inc. is an innovative technology company with expert knowledge in developing and

deploying Semantic Web technologies (i.e. Web 3.0) and providing Common Lisp based tools that

offer an ideal environment to create complex, mission-critical applications [Franz Inc., 2013].

Natural Language Addressing

207

AllegroGraph and Allegro CL with AllegroCache are distinct platforms that provide scalable

technology infrastructures which offer start-ups and fortune 100 companies the ability to realize new

knowledge-rich applications for enhanced business intelligence.

AllegroGraph is a modern, high-performance, persistent graph database. AllegroGraph uses

efficient memory utilization in combination with disk-based storage, enabling it to scale to billions of

quads while maintaining superior performance. AllegroGraph supports SPARQL, RDFS++, and

Prolog reasoning from numerous client applications [AlegroGraph, 2012].

Franz Inc. announced at the June 2011 Semtech conference a load and query of 310 Billion

triples as part of a joint project with Intel. In August 2011, with the help of Stillwater SC

(http://www.stillwater-sc.com/) and Intel, they achieved the industry's first load and query of 1 Trillion

RDF Triples. Total load was 1,009,690,381,946 triples in just over 338 hours for an average rate of

829,556 triples per second.

The driving force has been AIDA platform of Amdocs Product Enabler Group (Amdocs).

The “Amdocs Intelligent Decision Automation” (AIDA) is an engine that is powered by Franz

AllegroGraph 4.0 real-time semantic technology [Guinn & Aasman, 2010].

AllegroGraph provides dynamic reasoning and DOES NOT require materialization.

AllegroGraph's RDFS++ engine dynamically maintains the ontological entailments required for

reasoning; it has no explicit materialization phase. (Materialization is the pre-computation and storage

of inferred triples so that future queries run more efficiently.)

The central problem with materialization is its maintenance: changes to the triple-store's

ontology or facts usually change the set of inferred triples. In static materialization, any change in the

store requires complete re-processing before new queries can run. AllegroGraph's dynamic

materialization simplifies store maintenance and reduces the time required between data changes and

querying. AllegroGraph also has RDFS++ reasoning with built in Prolog.

Let remember shortly some comments that concern one of the problems connected with RDF

triple stores.

In April, 2011, Dr. Jans Aasman, CEO† of Franz Inc., the leading supplier of Graph Database

technology for the Semantic Web wrote [Aasman, 2011]:

People ask me all the time, “Will triple stores replace relational databases in three or five

years?” and I usually give two answers:

Answer 1: Yes, because triple stores provide 100 times more flexibility. For example, triple

stores make it so much easier to add new predicates (think columns in relational databases) and write

complicated ad hoc queries or perform inference and rule processing. Triple stores will soon be as

robust, user-friendly and manageable as relational databases. Relational databases may continue to

perform a bit better on simple joins, but triple stores already produce better performance when it

comes to complicated queries, rule handling and inference. Given this robustness and usability – if the

speed is roughly the same – many people will make the choice to switch to the more flexible solution.

† CEO: Chief Executive Officer - the corporate executive responsible for the operations of the firm;
reports to a board of directors; may appoint other managers (including a president).

Practical aspects

208

Answer 2: No, triple stores will continue to be used in conjunction with relational databases

for the near future. Many installed legacy systems took millions of dollars to implement, and it’s

impractical to replace these systems in the near term. In these cases, triple stores can enable smart

integration of databases by adding intelligent metadata on top of databases. Many companies are

already using triple stores as a “smart brain” on top of their legacy systems [Aasman, 2011].

Post-relational data bases give new possibilities but are not aimed to replace RDBMS. Both

have one main goal – to store data effectively.

Because of this, it is not correct to claim one against another.

In addition, many new approaches are built over the RDBMS platforms. In the same time, it

is important to point main features of RDF triple stores which make them preferable.

Steve Harris, the CTO* of a company that extensively uses RDF triple stores commercially,

has outlined the “five main features” of RDF triple stores which make them preferable [TSRD, 2012]:

― Schema flexibility - it's possible to do the equivalent of a schema change to an RDF

store live, and without any downtime, or redesign - it's not a free lunch, you need to be

careful with how your software works, but it's a pretty easy thing to do;

― More modern - RDF stores are typically queried over HTTP it's very easy to fit them

into Service Architectures without performance penalties. Also they handle

internationalized content better than typical SQL databases - e.g. you can have multiple

values in different languages;

― Standardization - the level of standardization of implementations using RDF and

SPARQL is much higher than SQL. It's possible to swap out one triple store for another,

though you have to be careful you're not stepping outside the standards. Moving data

between stores is easy, as they all speak the same language;

― Expressivity - it's much easier to model complex data in RDF than in SQL, and the query

language makes it easier to do things like LEFT JOINs (called OPTIONAL in

SPARQL). Conversely though, if you data are very tabular, then SQL is much easier;

― Provenance - SPARQL lets you track where each piece of information came from, and

you can store metadata about it, letting you easily do sophisticated queries, only taking

into account data from certain sources, or with a certain trust level, on from some date

range etc.

There are downsides though. SQL databases are generally much more mature, and have

more features than typical RDF databases. Things like transactions are often much more crude, or

nonexistent. Also, the cost per unit information stored in RDF vs. SQL is noticeably higher. It's hard to

generalize, but it can be significant if you have a lot of data - though at least in our case it's an overall

benefit financially given the flexibility and power [TSRD, 2012].

* CTO: Chief Technology Officer or Chief Technical Officer is an executive-level position in a
company or other entity whose occupant is focused on scientific and technological issues within an
organization.

Natural Language Addressing

209

8.2 Building and using of ontologies

The flexibility of triple stores is very important for solving of two considerable practical

problems: building and using of domain ontologies and, directly connected to it, building and using of

ontologies of text documents.

 Domain ontologies

Domain ontologies are formal descriptions of the classes of concepts and the relationships

among those concepts that describe an application area. In other words, domain ontology models

concepts and relationships that are relevant to the given domain (e.g., biology, architecture, software

engineering) [Witte et al, 2010]. Building domain ontologies is not a simple task when domain experts

have no background knowledge on engineering techniques and/or they have not much time to invest in

domain conceptualization.

In order to develop domain ontology, some methodology has to be followed. For instance,

such methodology is the “METHONTOLOGY Framework” developed within the Ontological

Engineering group at Universidad Politécnica de Madrid [Fernández et al, 1997].

This methodology enables the construction of ontologies at the knowledge level, and has its

roots in the main activities identified by the IEEE software development process and in other

knowledge engineering methodologies. METHONTOLOGY guides in how to carry out the whole

ontology development through the specification, the conceptualization, the formalization, the

implementation and the maintenance of the ontology [Corcho et al, 2005].

The “METHONTOLOGY Framework” reduced the existing gap between ontological art and

ontological engineering [Fernández et al, 1997] mainly by:

― Identifying a set of activities to be done during the ontology development process. They

are: plainly, specify, acquire knowledge, conceptualize, formalize, integrate, implement,

evaluate, document, and maintain;

― Proposing the evolving prototype as the life cycle that better fits with the ontology life

cycle. The life of ontology moves on through the following states: specification,

conceptualization, formalization, integration, implementation, and maintenance. The

evolving prototype life cycle allows the ontologies to go back from any state to other if

some definition is missed or wrong. So, this life cycle permits the inclusion, removal or

modification of definitions anytime of the ontology life cycle. Knowledge acquisition,

documentation and evaluation are support activities that are carried out during the

majority of these states;

― METHONTOLOGY highly recommends the reuse of existing ontologies.

The METHONTOLOGY framework provides the idea of support activities: Knowledge

Acquisition and Validation/Verification. It is divided into three main phases: Specification,

Conceptualization and Implementation. These phases constitute an iterative process[Brusa et al, 2006].

Practical aspects

210

 Specification phase

The specification activity states why the ontology is being built, what its intended uses are

and who the end-users are.

The goal of the specification phase is to acquire informal knowledge about the domain, i.e.

to produce either an informal, semi-formal or formal ontology specification document written in

natural language, using a set of intermediate representations or using competency questions,

respectively.

It is important to bear in mind that knowledge acquisition is an independent activity in the

ontology development process. However, it is coincident with other activities. Most of the acquisition

is done simultaneously with the requirements specification phase, and decreases as the ontology

development process moves forward [Fernández et al, 1997].

 Conceptualization phase

In this activity, developer will structure the domain knowledge in a conceptual model that

describes the problem and its solution in terms of the domain vocabulary identified in the ontology

specification activity.

The goal of the conceptualization phase is to organize and structure this knowledge using

external representations that are independent of the implementation languages and environments The

conceptualization activity in METHONTOLOGY organizes and converts an informally perceived

view of a domain into a semi-formal specification using a set of intermediate representations based on

tabular and graph notations that can be understood by domain experts and ontology developers. The

result of the conceptualization activity is the ontology conceptual model. The formalization activity

transforms the conceptual model into a formal or semi-computable model [Corcho et al, 2005].

With the goal of speeding up the construction of ontology, one might consider reuse of

definitions already built into other ontologies instead of starting from scratch [Fernández et al, 1997].

 Implementation phase

The goal of implementation phase is to evaluate, i.e. validate/verification, developed

ontologies. The implementation activity builds computable models in an ontology language

(Ontolingua, RDF Schema, OWL, etc.). The maintenance activity updates and corrects the ontology if

needed [Corcho et al, 2005].

Ontologies’ implementation requires the use of an environment that supports the meta-

ontology and ontologies selected at the integration phase. The result of this phase is the ontology

codified in a formal language such us: CLASSIC, BACK, LOOM, Ontolingua, Prolog, C++, etc.

Evaluation means to carry out a technical judgment of the ontologies, their software

environment and documentation with respect to a frame of reference (the requirements’ specification

document) during each phase and between phases of their life cycle. Evaluation subsumes the terms

Verification and Validation [Fernández et al, 1997]:

Natural Language Addressing

211

― Verification refers to the technical process that guarantees the correctness of ontology,

its associated software environments, and documentation with respect to a frame of

reference during each phase and between phases of their life cycle;

― Validation guarantees that the ontologies, the software environment and documentation

correspond to the system that they are supposed to represent.

 Ontologies of text documents

Creating of ontologies of text documents is based on domain ontology and consists of

Document annotation and Ontology population [Amardeilh, 2006]:

― Document Annotation consists in (semi-)automatically adding metadata to documents,

i.e. providing descriptive information about the content of a document such as its title, its

author but mainly the controlled vocabularies as the descriptors of a thesaurus or the

instances of a knowledge base on which the document has to be indexed;

― Ontology Population aims at (semi-)automatically inserting new instances of concepts,

properties and relations to the knowledge base as defined by the domain ontology.

Once Document Annotation and Ontology Population are performed, the final users of an

application can exploit the resulting annotations and instances to query, to share, to access, to publish

documents, metadata and knowledge.

Document Annotation and Ontology Population can be seen as similar tasks.

― Firstly, they both rely on the modeling of terminological and ontological resources

(ontologies, thesaurus, taxonomies…) to normalize the semantic of the documentary

annotations as well as the concepts of the domain;

― Secondly, as human language is a primary mode of knowledge transfer, they both make

use of text-mining methods and tools such as Information Extraction to extract the

descriptive structured information from documentary resources or categorization to

classify a document into predefined categories or computed clusters;

― Thirdly, they both more and more rely on the Semantic Web standards and languages

such as RDF for annotating and OWL for populating [Amardeilh, 2006].

The document annotation and ontology population we will illustrate following the OntoPop

platform [Amardeilh, 2006] (Figure 80).

We have three phases (Figure 80):

(1) Extracting information from semi-structured texts - the text-mining solutions parse

a textual resource, creating semantic tags to mark up the relevant content with regard

to the domain of concern.

(2) Mapping between the results of the Information Extraction tool and the ontology

model - the mediation layer maps the semantic tags produced by the text mining tools

into formal representations, being the content annotations (RDF) or the ontology

instances (OWL).

(3) Representing and managing the domain ontology, the thesaurus and the knowledge

base - the semantic tags are used either to semantically annotate the content with

Practical aspects

212

metadata or to acquire knowledge, i.e. to semi-automatically construct and maintain

domain terminologies or to semi-automatically enrich knowledge bases with the

named entities and semantic relations extracted.

Phases: (1) (2) (3)

Figure 80. The OntoPop’s platform [Amardeilh, 2006]

 Operations with ontologies stored by NL-addressing

Operations for maintenance and integration of ontologies may be facilitated by using

 NL-addressing. It permits ontology operations to be realized by operations with corresponded layers

of ontologies. It is possible to create a “virtual” ontology by combining only the paths to ontologies

without any “real” creation a new one. In this case, the consistency has to be supported dynamically.

For instance, after merging ontologies irrespective of the kind of operation result (virtual or

real), new ontology will contain a union of the layers of source ontologies.

When same relation (layer) exists in both ontologies, the process of merging may be

provided in depth for all existing cells of layers. The problem to be solved is what to do if in different

archives exist cells with equal location but different content.

Here we have three variants:

(1) To select cell content of the first ontology.

(2) To select cell content of the second ontology.

(3) To keep both contents and dynamically to make decision what is appropriate.

Natural Language Addressing

213

Our preference is to create virtual ontologies because this will save resources (time and

space) and will give new possibilities based on dynamical selection of the content.

Using natural language addressing for storing dictionaries, thesauruses and ontologies

facilitate its realization.

Let remember that not all of operations for maintenance and integration of ontologies can be

made for all ontologies [Kalfoglou & Schorlemmer, 2003]. In general, these are very difficult tasks

that are in general not solvable automatically [Obitko, 2007].

What is common and may be realized is developing of new generation tools for storing

ontologies. At the first place, such tools are RDF-stores.

8.3 Building RDF-stores using NL-addressing

The Semantic Web and RDF triple stores are important research themes. Taking in account

that NL-addressing is a possibility which may be used in addition to all already existing tools and

approaches, below we will outline the main areas of its applicability. It is not correct to claim that

NL-addressing will replace one or another tool. It has to be used where it is really effective.

In Chapter 1 we presented main approaches for creating RDF-triple stores. Below, following

that explanation, we will sketch some practicable solutions [Ivanova et al, 2012b].

 NL-Addressing for ontology generic schemas

 Vertical representation

It is easy to realize vertical representation of a triple store via NL-addressing.

The values of Subject will be the addresses and all couples (Predicate, Object) for given

value may be stored at one and the same address. This way with one operation all edges of a node of

the graph will be received.

In the multi-layer variant, values of Predicate may be names of the layers (archives). In this

case, additional operations for reading edges will be needed. The advantage is possibility to work only

with selected layers and to reduce the time for access.

Nevertheless, in all cases the NL-addressing has constant complexity O(C), where C=max_L

is the maximal length of the words or phrases, used for NL-addressing.

In the same time, the relational table has complexity at least O(logd n), where “n” is number

of all indexed elements (words) and “d” is the base of supporting (d-)balanced indexing and search.

The memory for balanced indexes exceeds the NL-addressing memory for indexes of hash

tables.

The time for direct access is many times less than for access via search operations and

updating the information. Let remember the speed experiments with Firebird relation data base, which

had shown about 30-ty times for reading and more than 90-ty times for writing in NL-addressing’s

favor.

Practical aspects

214

 Normalized triple store (vertical partitioning)

The normalized triple store is ready for representing via NL-addressing.

We may use multi-layer variant where values of Predicate may be names of the layers

(archives). In this case, additional operations for reading edges will be needed. The advantage is

possibility to work only with selected layers and to reduce the time for access.

The Subject will be the NL-address and only Object will be saved. Possibility to concatenate

all Objects for a given Subject reduces the size of memory and access time.

In addition, the vertical partitioning approach may be realized directly by the Multi-domain

Information Model because it directly supports the column-oriented DBMS (one column = one

information space).

In all cases, the NL-addressing has constant complexity O(mC), where m is number of layers

and C=max_L is the maximal length of the word or phrases, used for NL-addressing.

 NL-Addressing for ontology specific schemas

 Horizontal representation

The horizontal representation is an example of a set of layers. Storing every class in a

separate layer (archive) gives possibility to add properties without restructuring existing tables.

Again, NL-addressing has constant complexity O(mC), where m is number of layers and

C=max_L is the maximal length of the word or phrases, used for NL-addressing.

 Decomposition storage model

The decomposition storage model is memory and time consuming due to duplicating the

information and generation of too much search indexes. In the same time, it is very near to the

NL-addressing style and may be directly implemented using NL-addressing but this will be not

efficient.

NL-addressing permits new possibilities due to omitting of explicit given information –

names as well as balanced indexes. The feature tables may be replaced by NL-addressing access to

corresponded points of the information space where all information about given Subject will exist.

This way we will reduce the needed memory and time.

 Multiple indexing frameworks

The NL-addressing directly supports idea of multi-indexing because of the multi-layer

structures and direct access to the Object values by NL-address computed on the base of the Subject

and Relation values. Only the Object’s index has to be generated if it is really needed.

The above outlined ideas give basis for experiencing in a real software implementation of

NL-addressing.

Natural Language Addressing

215

8.4 ICON - Instrumental Complex for Ontology designatioN

Design of ontologies, i.e. the formation sets of concepts, relations, axioms, and functions for

interpretation, is a laborious process. Manual construction of these sets needs both time and many

highly qualified specialists. This determines the development of tools (instrumental complexes) for

automation of process of ontology design and distribution. The instrumental complexes for automated

construction of ontologies are aimed to be used for the analysis and processing of large volumes of

semi-structured data, such as linguistic corpuses in English, Dutch, Russian, Ukrainian, Bulgarian, and

others languages.

Such instrumental complex is under development at the Kiev Institute of Cybernetics

"V.M.Glushkov" of the National Academy of Sciences of Ukraine with the participation of Bulgarian

experts from the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences. This

research is a part of this project and continues work for intelligent systems memory structuring

[Gladun, 2003] done during the years [Mitov, 2011].

The complex is called "ICON" (“Instrumental Complex for Ontology designatioN”, from

Russian “ИКОН”: “Инструментальный Комплекс Онтологического Назначения”)

[Palagin et al, 2011].

Information model of ICON is presented in Figure 81 below.

Figure 81. Information model of ICON

Practical aspects

216

ICON consists of three subsystems: “Information exchange”, “Information processing”, and

“Internal information resources”:

― “Information Exchange” subsystem is aimed to serve manual or automatic collecting

and distributing of information as well as interface with other subsystems of ICON to

support creating, storing, visualization and export of the ontological knowledge. It serves

retrieval of relevant to solving problem text documents which are available in the

Internet and/or in other electronic collections. It include graphical user interface for

knowledge engineers and domain experts, who provide preliminary design of ontologies,

control and verification of design results, deciding on degree of completion design and

more. Via this subsystem the external information resources can be accessed. They

include different sources from local or global information bases and networks, such as:

- Knowledge resources from given domain - electronic collections of encyclopedic

dictionaries, monolingual dictionaries, thesauruses, etc.;

- Internet resources - sources of text documents and distributed knowledge bases to be

used in the process of creating ontologies.

Collecting information from external sources is served by the ICON information-

retrieval system. It is designed to detect and extract textual documents from various

external sources and to create linguistic text corpora based on data from these

documents;

― “Information Processing” subsystem is a set of original software modules that

implement relevant algorithms for the ontology’ design, and finished tools, freely

available on the Internet, such as Protégé [protégé, 2012] used as one of the main

components in module for visual design. Processing of information includes: automatic

natural language processing; knowledge discovery, extraction, representation,

construction and verification of semantic structures; integration of ontological

knowledge, etc. There are two main groups of processing tools respectively for

Linguistic structures and Conceptual structures;

― “Internal information resources” subsystem is aimed to support storing of large

dictionaries, thesauruses, and ontologies in specialized electronic libraries based on

NL-addressing tools realized in this research. It contains:

 Linguistic libraries - a kind of electronic linguistic corpus which contains various

dictionaries and thesauruses as well as document databases with source and/or

processed information, for instance, a Linguistic corpuses of texts - a variety of text

documents to be processed; and published documents with received results;

 Conceptual libraries - they are built during the design or integration of ontologies.

They are used to store both source information and finished ontological models.

 Storing of the internal information resources of ICON

Storing of the internal information resources of ICON is based on several relational DBMS

as well as on program modules presented in this research – WordArM and OntoArM, outlined in

Natural Language Addressing

217

Appendix A. The main idea is to extend possibilities of “conventional” tools for semi-structured

datasets. Conventional DBMS are used to store some structured information, like sets of descriptions

of text documents to be processed.

Some finished tools for processing ontological information have their own databases but

they are not appropriate for storing semi-structured information. For instance, such tool is the system

Protégé [protégé, 2012]. It is written in Java and allows users to create their own database plug-ins.

This choice is also consistent with rest of the Protégé plug-in architecture. Protégé developers chose

the simplest schema that one could think of and focused on "maximal change" usage where the class

structure and hierarchy is undergoing constant change. In this design, therefore, there is no attention

paid to things such as query performance of any type.

Originally, Protégé has a single table that stores entire contents of the knowledge base which

is developed as a frame based one [protégé, 2012].

The frame table has a fixed number of columns which are listed in Appendix B. It includes

classes, slots, facets and instances. The Protégé meta-class architecture is used explicitly in the table to

simplify things: all classes, slots, and facets are treated as frames. Each entry in the database

corresponds to a frame in Protégé.

In the case of the superclass and subclass relations, Protégé stores duplicated information.

For example with class A it stores that its subclass is B and with B it stores that its superclass is A.

Maintaining separate records for these relations is necessary to maintain the ordering of both

subclasses and superclasses. So while the "slot value" information is indeed duplicated in these

records, the "index" information is unique (Subclass ordering is a user-interface feature that a number

of users have requested. Protégé attaches no meaning to the ordering of superclasses or subclasses.)

[protégé, 2012].

For large ontological structures the Protégé approach is not effective. As we have seen in

Chapter 4 “Basic experiments”, the relational data bases are slower than post-relational ones based on

NL-addressing, and take much resources for updating the information (especially for updating the

indexes). Finally, Protégé does not support functions for dictionaries and thesauruses. The OWL and

RDF descriptions are heavy to be parsed by human (see Appendix B).

The proper decision was to integrate Natural Language Addressing together with existing

tools and this way to have available all needed functions.

The model which has been chosen is multi-layer storing of graph information. To remember

it let's look at an example - the family tree of Figure 12 (its copy is given below).

Practical aspects

218

The tree is represented by two tables: “NAME/LASTNAME” and “PERSON/PARENT”.

For convenience, the children inherit the father's family.

The "multi-layer" representation of the family tree is given in Table 68.

Table 68. Multi-layer representation of the family tree

addresses

George Ana Julia James David Mary

layers
lastname Jones Stone Jones Deville Deville Deville

parent_of George; Ana James; Julia James; Julia

NL-addressing means direct access to content of each cell. Because of this,

for NL-addressing the problem of recompiling the database after updates does not exist. In addition,

the multi-layer representation and Natural Language Addressing reduce resources and avoid using of

supporting indexes for information retrieval services (B-trees, hash tables, etc.).

 Organization of ICON libraries

The ICON internal information resources are stored in libraries which may be of two main

types:

― Common libraries, which contain general information used practically by all users and

models;

― Local libraries, which contain specific information needed only for given user or model.

In addition, these information resources may be linguistic or conceptual.

This way we have a simple taxonomy (Figure 82):

Figure 82. Taxonomy of ICON internal information resources

Natural Language Addressing

219

Libraries may be installed on single computer or distributed on local network.

Special description in a “context” table is used to establish correspondence between names,

types, permissions, and allocations (paths) of library archives (files).

Common archives are allocated in shared folders. It is possible to have more than one folder

with common archives. Updating of common archives may be done after permission from the

administrator.

Local archives are stored in users’ folders, which may be shared or not, depending of user

preferences. Updating of local archives is under control of end-user.

Main difference between common and local archives is in the permissions for updating.

Common archives have more strict discipline for making updates – it is obligation of and may be done

only by administrators.

 ICON Libraries of linguistic structures

Libraries of linguistic structures are organized according different application areas

(domains) covered by ICON. The tool for organization of these libraries is WordArM. As a rule there

are no interconnections between linguistic archives (files) but there are many connections with

conceptual structures where the linguistic information is used.

Common linguistic archives contain dictionaries and thesauruses of general purpose like

Ukrainian-English dictionary or WordNet thesaurus of English.

Local linguistic archives contain thematic oriented dictionaries and thesauruses with specific

information which concern given practical domain. For instance, it may be Medical thesaurus or

Ukrainian-English dictionary of computer science.

One may note that the former ones have same general purposes as previous. This is quite

right. What will be declared as common and what as local depends only on decision of administrators

about the way of updating. Common archives may be changed only by administrator, but not by end-

user.

We have to point to a special “Data base of text documents” which consists of original text

documents and linguistic corpuses which are sources for creating the ontologies. In addition, we have

to mention the common and local archives with metadata about documents and other information

resources. The metadata is closely connected to documents and corresponded resources which are

source for conceptual structures. All these information sources are organized using the ArMSpeed tool

which is not mentioned in this research and because of this it is not discussed here.

 ICON libraries of conceptual structures

ICON conceptual libraries are built during the design or integration of ontologies. There are

two kinds of such libraries:

― Library of domain ontologies;

― Library of ontologies of text documents.

These libraries are supported by OntoArM.

Practical aspects

220

 ICON library of domain ontologies

Creating and editing domain ontologies in ICON is supported by its original ontological

editor (see Appendix A7). It is able to read and store ontologies in OWL and XML formats. An

example of the ontological graph generated by the ICON Ontological Editor is presented on Figure

109. This visualization of our sample graph (Figure 18) is created by this editor. In Table 72 the

corresponded ICON XML description of sample graph is given. It is generated automatically.

The ICON Ontological Editor uses functions of OntoArM for saving ontologies. Storing

model, chosen in ICON, is multi-layer storing of ontology graph based on Natural Language

Addressing. A sample list of layers used for storing common and local ontologies in ICON is

presented in Table 73 of Appendix A8. It permits a preliminary evaluation of the number of layers

needed for ICON at the project’s first stage (about 50 up to 100).

The domain ontology consists of upper level ontology with a set of sub-ontologies

subordinated to it. It is possible sub-ontologies to be stored in subfolders of those of the main ontology

but this is not obligatory. Using links (local or global paths) ontology may subordinate several others.

This way practically we have ontology network with unlimited size.

Ontology is stored in a separate folder. It contains all archives of all its layers. Link to

ontology is the path to folder which contains it.

In addition, ontology may be connected to some linguistic resources – dictionaries and/or

thesauruses. Again the connections are links but this time they point the file of the resource, i.e. the

path to it.

 ICON library of ontologies of text documents

A generalized view of OntoArM implementation is shown on Figure 83 (following

[Witte et al, 2010]).

Figure 83. Using OntoArM for storing ontologies of text documents

(following [Witte et al, 2010])

ArMSpeed OntoArM

Natural Language Addressing

221

Text corpus and its metadata is stored using ArMSpeed module. Beside NL-addressing, in

this module is used searching based on balanced trees.

Ontologies are stored by OntoArM.

Creating and editing ontologies of text documents in ICON is supported by its Ontological

Editor based on:

― ArMSpeed for storing documents;

― OntoArM for storing ontologies of text documents, using the same storing model as for

domain ontologies. It is multi-layer storing of ontology graph based on natural language

addressing. In addition to sample list of layers used for storing common and local

ontologies of text documents presented in Table 73, some specific for concrete text

documents layers are raised up.

Ontology of a text document is stored in a separate folder. It contains all archives of all its

layers. Link to ontology is the path to folder which contains it.

In addition, ontology of text document may be connected to some linguistic resources –

dictionaries and/or thesauruses. The connections are links (paths) to the files of linguistic resources.

 ICON methodology for construction of ontologies

ICON follows similar methodology as the “METHONTOLOGY Framework”

[Fernández et al, 1997].

It is important to point that ICON methodology permits inclusion, removal or modification

of definitions anytime of the ontology life cycle. This is very important facility which causes serious

problems to conventional databases which have to update permanently their indexing structures and

this way to consume large (time and space) resources.

In addition, the processes of document annotation and ontology population ICON are similar

to ones of OntoPop platform [Amardeilh, 2006] (Figure 80). NL-addressing is used for knowledge

representation in the ontology repository.

NL-addressing facilitates the whole ontology development in ICON through the

specification, the conceptualization, the formalization, the implementation and the maintenance of

very large ontologies.

 Conclusion of chapter 8

Some practical aspects of implementation and using of NL-addressing were discussed in this

chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models was outlined.

The implementations have to be done following corresponded methodologies for building

and using of ontologies. Such known methodology was discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Practical aspects

222

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we illustrated

following the known OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of NAS of

Ukraine.

In this chapter we briefly presented ICON and its structure. Attention was paid to the storing

of internal information resources of ICON realized on the base of NL-addressing and experimental

programs WordArM and OntoArM.

ICON is still under developing and, during solving concrete problems, new functions based

on NL-addressing and NL-ArM rise to be realized. For instance, such problems concern the

operations with ontologies; work with very large ontological structures; etc.

Natural Language Addressing

223

Conclusion

The main goal of this research was to study a new approach for storing semi-structured

datasets. To achieve this goal, we have studied and analyzed the existing methods and systems for

storing semi-structured datasets and we have proposed an information model for storing

semi-structured datasets and corresponded access method as well as tools for working in such style,

theirs main principles, and storing functions.

We have provided experiments and practical approbation of the proposed model and tools by

experimental software realizations and comparative evaluating in order to study their behavior under

practical conditions and to compare with other tools from the same class. The main conclusion is

optimistic. The future realization of NL-addressing, for instance – for cluster machines and

corresponded operation systems, is well-founded.

Our further research will be directed to several interesting areas of implementing
the NL-addressing in business applications where flexibility of this approach will give some new
possibilities. Implementing the NL-addressing in linguistic systems which work with large linguistic
data sets is another direction for further work.

Let point the area of cognitive modeling, too. It is clear; the human brain does not create
indexes. The information processing in the brain looks like our model for NL-addressing. It is very
interesting to provide research in this area.

Big Data

Maybe the most interesting is the area of so called “Big Data”. The term Big Data applies to

information that can’t be processed or analyzed using traditional processes or tools. Increasingly,

organizations today are facing more and more “Big Data challenges”. They have access to a wealth of

information, but they don’t know how to get value out of it because it is sitting in its most raw form or

in a semi-structured or unstructured format [Zikopoulos et al, 2012].

Popular approach for representing Big Data is Resource Definition Framework (RDF). Let

remember, RDF is a graph based data format which is schema-less, thus unstructured, and self-

describing, meaning that graph labels within the graph describe the data itself. The prevalence of RDF

data is due to variety of underlying graph based models, i.e. almost any type of data can be expressed

in this format including relational and XML data [Faye et al, 2012].

Big Data created the need for a new class of capabilities to augment the way things are done

today to provide better line of site and controls over our existing knowledge domains and the ability to

act on them.

Conclusion

224

BigArM

In the Big Data community, the “MapReduce Paradigm” has been seen as one of the key

enabling approaches for meeting the continuously increasing demands on computing resources

imposed by massive data sets. MapReduce is a highly scalable programming paradigm capable of

processing massive volumes of data by means of parallel execution on a large number of commodity

computing nodes. It was recently popularized by Google [Dean & Ghemawat, 2008], but today the

MapReduce paradigm has been implemented in many open source projects, the most prominent being

the Apache Hadoop [Hadoop, 2014]. The popularity of MapReduce can be accredited to its high

scalability, fault-tolerance, simplicity and independence from the programming language or the data

storage system.

At the same time, MapReduce faces a number of obstacles when dealing with Big Data

including the lack of a high-level language such as SQL, challenges in implementing iterative

algorithms, support for iterative ad-hoc data exploration, and stream processing

[Grolinger et al, 2014].

A possible solution may be the approach of Natural Language Addressing (NLA) presented

in this monograph. It is suitable for storing Big Data. Its main idea is to use internal encoding of letters

of a word or phrase as elements of co-ordinate vector which may be used as hyper-space address of the

information connected to this word or phrase. As result the standard indexing and recompilation of

information base are avoided.

Three main characteristics define Big Data: Volume, Variety, and Velocity [Zikopoulos et

al, 2012]. These characteristics cause corresponded problems of storing Big Data which may be solved

by means of NLA [Markov et al, 2014]:

― Volume (the sheer volume of data being stored today is exploding) – avoiding additional

indexing, duplication of keywords, and corresponded pointers, leads to reducing

additional memory needed for accessing information i.e. we may use addressing but not

classical search engines;

― Velocity (a conventional understanding of velocity typically considers how quickly the

data is arriving and stored, and its associated rates of retrieval) – avoiding recompilation

of information base permits high speed of storing and immediately readiness of

information to be accessed. This is very important possibility for stream data;

― Variety (it represents all types of data — a fundamental shift in analysis requirements

from traditional structured data to include raw, semi-structured, and unstructured data as

part of the decision-making and insight process) – natural language addressing permits

creating a special kind of graph information bases which may operate both with

structured as well as semi-structured information.

What is needed is to extend possibilities of ArM32 up to 64 bit addressing capabilities and to

rationalize the internal hash structures to speed access from milliseconds down to microseconds per

one access operation. This will be done in ongoing developing of its new version called “BigArM” for

64 bit machines and operating systems like MS Windows and Linux as well as for Cloud processing.

Natural Language Addressing

225

Collect/Report Paradigm

Realizing BigArM will permit new kind of Cloud processing of Big Data, called

“Collect/Report Paradigm” (CRP). Its idea is very simple and because of this it is perspective to be

realized.

CRP is based on the possibility of NLA to separate incoming information coded as RDF-

triples on many different layers stored in separate archives which may be distributed all over the

world. The correspondence between archives is strongly kept by names as addresses which are equal

for all layers.

Similar model we may see in the game of chance “Bingo” (Figure 84) for two or more

players, who mark off numbers on a grid with unique sequence of numbers printed on their individual

cards as they are announced by the Caller corresponding to numbered balls drawn at random; the game

is won by the first person to call out "bingo!" or "house!" after crossing off all numbers on the grid or

in one line of the grid [YourDictionary, 2013].

Figure 84. Illustration of Collect/Report Paradigm via example of Bingo game

Conclusion

226

To play Bingo one has to “collect” (to buy) one or more individual cards and after starting

the game to listen what number the Caller will announce, to find in the individual cards the same

numbers and to mark them (i.e. to process the stream of incoming data). After marking every new

number, (in real time, before next number will be announced) player has to analyze the configuration

of marked cells on the individual cards and to decide if it is the winner configuration. If the

configuration is a winner one, the player has to “report” (to call out) “Bingo”. Only the players with

winner configurations have to report, the others must stay silent.

In Collect/Report Paradigm, all nodes have to “listen” in parallel the incoming stream of

RDF-data and to “collect” (to store) information only in the layers the nodes have to support. In the

same time, nodes have to “listen” incoming stream of requests and only nodes, which have

information corresponded to given request has to “report” (to send answer).

As an example let’s remember a part from Table 32 (Table 69). Let it represents six nodes

numbered from 1 to 6 which may be distributed over the net. Incoming information is in RDF triples

(subject, relation, object). Information (objects) for the same subject and relation is concatenated in the

corresponded points. Let assume that Table 69 represents the state of nodes at given time moment. If

in this moment a request for word “cut” will come, only nodes 1 and 6 will “report” the content

(definitions) from corresponded cells. Node 1 will report only the first row which correspond to “cut”

with small letters but not its second row which corresponds to word “CUT” with capital letters. Nodes

2, 3, 4, and 5 will rest silent.

Table 69. A part from Table 32

node layer NLA definition

1 adj_all

cut

{ cut, shortened, (with parts removed; "the drastically cut film") }

{ cut, thinned, weakened, (mixed with water; "sold cut whiskey"; "a cup of

thinned soup") }

{ cut, slashed, ((used of rates or prices) reduced usually sharply; "the slashed

prices attracted buyers") }

{ cut, emasculated, gelded, ((of a male animal) having the testicles removed;

"a cut horse") }

CUT

{ [CUT1, UNCUT1,!] (separated into parts or laid open or penetrated with a

sharp edge or instrument; "the cut surface was mottled"; "cut tobacco";

"blood from his cut forehead"; "bandages on her cut wrists") }

{ [CUT2, UNCUT2,!] ((of pages of a book) having the folds of the leaves

trimmed or slit; "the cut pages of the book") }

Natural Language Addressing

227

node layer NLA definition

{ [CUT3, UNCUT3,!] (fashioned or shaped by cutting; "a well-cut suit";

"cut diamonds"; "cut velvet") }

2 adj_pert cut empty definition

3 adj_ppl cut empty definition

4 adv_all cut empty definition

5 noun_Tops cut empty definition

6 noun_act cut

{ cut6, absence,@ (an unexcused absence from class; "he was punished for

taking too many cuts in his math class") }

{ cut5, reduction,@ (the act of reducing the amount or number; "the mayor

proposed extensive cuts in the city budget") }

{ cut, [cutting, verb.creation:cut11,+] cutting_off1, shortening,@ (the act of

shortening something by chopping off the ends; "the barber gave him a good

cut") }

{ cut1, [cutting1, verb.contact:cut10,+ verb.contact:cut,+] division,@ (the

act of cutting something into parts; "his cuts were skillful"; "his cutting of

the cake made a terrible mess") }

{ cut2, [cutting2, verb.contact:cut10,+] opening2,@ (the act of penetrating

or opening open with a sharp edge; "his cut in the lining revealed the hidden

jewels") }

{ cut9, [cutting9, verb.contact:cut5,+] division,@ card_game,#p (the

division of a deck of cards before dealing; "he insisted that we give him the

last cut before every deal"; "the cutting of the cards soon became a ritual") }

{ cut8, [undercut, verb.contact:undercut,+] stroke,@ tennis,;c badminton,;c

squash,;c ((sports) a stroke that puts reverse spin on the ball; "cuts do not

bother a good tennis player") }

Conclusion

228

In general, Collect/Report Paradigm is illustrated on Figure 85.

Figure 85. Cloud Collect/Report Scheme for Storing and Accessing Big Data

Main advantages of Collect/Report Paradigm (Figure 85) are:

― Collecting information is done by all nodes independently in parallel. It is possible one

node to send information to another;

― Reporting information is provided only by the nodes which really contain information

related to the request; the rest nodes do not react, they remain silent;

― Input data as well as results are in RDF-triple or RDF-quadruple format.

Natural Language Addressing

229

Main results presented in the monograph

Chapter 1 was aimed to introduce the theoretical surroundings of our work.

Firstly in this chapter, we remembered the needed basic mathematical concepts. Special

attention was paid to the Names Sets – mathematical structure which we implemented in our research.

We used strong hierarchies of named sets to create a specialized mathematical model for new kind of

organization of information bases called “Multi-Domain Information Model” (MDIM). The

“information spaces” defined in the model are kind of strong hierarchies of enumerations (named

sets).

We will realize MDIM via special kind of hashing. Because of this, we remembered the main
features of hashing and types of hash tables as well as the idea of “Dynamic perfect hashing” and
“Trie”, especially – the “Burst trie”. A burst trie is an in-memory data structure, designed for sets of
records that each has a unique string that identifies the record and acts as a key. Burst trie consists of
three distinct components: a set of records, a set of containers, and an access trie.

Chapter 2 introduced the main data structures and storing technologies which further we

will use to compare our results. Mainly they are graph data models as well as RDF storage and

retrieval technologies.

Firstly we defined concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics were outlined.

Graph models and databases were discussed more deeply and examples of different graph

database models were presented. The need to manage information with graph-like nature especially in

RDF-databases had reestablished the relevance of this area.

There is a real need of efficient tools for storing and querying knowledge using the

ontologies and the related resources. In this context, the annotation of unstructured data has become a

necessity in order to increase the efficiency of query processing. Efficient data storage and query

processing that can scale to large amounts of possibly schema-less data has become an important

research topic. The proposed approaches usually rely on (object-) relational database technology or

on main-memory virtual machine implementations, while employing a variety of storage schemes

[Faye et al, 2012].

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures were in the center of our attention. The analysis of the

viewed tools showed that all of them use data storing models which are limited to text files, indexed

data or relational databases. These approaches do not conform to the specific structures of the

ontologies. This necessitates the development of new models and tools for storing ontologies which

correspond to their structure.

Storing models for several popular ontologies and summary of main types of storing models

for ontologies and, in particular, RDF data were discussed.

Conclusion

230

Our attention was paid to addressing and naming (labeling) in graphs with regards to

introducing the Natural Language Addressing (NL-addressing) in graphs. A sample graph was

analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we saw that a “multi-layer”

representation is possible and the identifiers of nodes and edges can be avoided.

Concluding, let us point on advantages and disadvantages of the multi-layer representation

of graphs.

The main disadvantages are:

 The layers are sparsed;

 The number of locations may be very great which causes the need of corresponded

number of columns in the table (in any cases hundred or thousand).

The main advantages are:

 Reducing the used resources;

 The NL-addressing means direct access to content of each cell. Because of this, for NL-

addressing the problem of recompiling the database after updates does not exist. In

addition, the multi-layer representation and natural language addressing reduce

resources and avoid using of supporting indexes for information retrieval services (B-

trees, hash tables, etc.);

 Finally, using NL-addressing, the multi-layer representation is easily understandable by

humans and interpretable by the computers.

If we will use indexed files or relational data bases, the disadvantages are so serious that

make the implementation impossible.

We proposed to use the multi-dimensional model for organization of information. For this

purpose the “Multi-Domain Infrmation Model”and its realizations were presented. The Multi-

Dimensional Numbered Information Spaces are basis for context independed indexing. Because of this

they may be used for storing Big Data.

Chapter 3 was aimed to introduce a new access method based on the idea of Natural

Language Addressing.

MDIM and its realizations are not ready to support NL-addressing. We upgraded them for

ensuring the features of NL-addressing via new access method called NL-ArM.

The program realization of NL-ArM is based on specialized hash functions and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

NL-ArM is ready for storing RDF information. It is possible to define tree information

models for storing RDF-graphs using NL-ArM: (1) RSO model (Relation-Subject-Object model), (2)

SRO model (Subject-Relation-Object model), and (3) UNL model ((Subject, Relation) => Object

Universal model) .

Natural Language Addressing

231

In Chapter 4 two main types of basic experiments were presented. NL-ArM has been

compared with (1) sequential text file of records and (2) relational database management system

Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing semi-structured

data. To investigate the size of files and speed of their generation we compared writing in a sequential

text file and in a NL-ArM archive.

For 8 characters as length of the keywords and small quantity of records, the NL-ArM

archive occupies more memory than text file but for the case of very large data the NL-ArM archive is

smaller. It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of length

of the strings of keywords of stored information, i.e. according of number of layers of hash tables

(depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

We did not compare the sizes of files of NL-ArM and Firebird because of difference of

keywords – symbols for Firebird and integer values for NL-ArM.

In writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This

result is due to two reasons. The first is that balanced indexes of Firebird need reconstruction for

including of every new keyword. This is time consuming process. The second reason is the speed of

updating NL-ArM hash tables which do not need recompilation after including new information. Due

to specific of realization, for small values of co-ordinates NL-ArM is not as effective as for the great

ones.

In reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower. This

result is due to the speed of access in NL-ArM hash tables which do not need search operations.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

In Chapter 5 we have presented several experiments aimed to show the possibilities of NL-

addressing to be used for NL-storing of structured datasets.

Firstly we introduced the idea of knowledge representation. Further in the chapter we

discussed three main experiments - for NL-storing of dictionaries, thesauruses, and ontologies.

Presentations of every experiment started with introductory part aimed to give working

definition and to outline state of the art in storing concrete structures.

Conclusion

232

The explanation of the experiments begins with the easiest case – storing dictionaries.

Analyzing results from the experiment with a real dictionary data we may conclude that it is possible

to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using

NL-Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for storing

hash structures which serve NL-addressing. But the same if no great losses we will have if we will

build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

(1) High speed for storing and accessing the information.

(2) The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are files and relational databases.

Our experiment confirmed the conclusion about losses and benefits from using NL-

addressing given above for thesauruses. The same is valid for more complex structures.

Here we have to note that for static structured datasets it is more convenient to use standard

utilities and complicated indexes. NL-addressing is suitable for dynamic processes of creating and

further development of structured datasets due to avoiding recompilation of the database index

structures and high speed access to every data element.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, was to discover regularities in the NL-addressing realization. Analyzing Table 25, Table 27,

and Table 33 we may see the main two regularities of storing time using NL-addressing:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

In Chapter 6 we have presented results from series of experiments which were needed to

estimate the storing time of NL-addressing for middle-size and very large RDF-datasets.

We described the experimental storing models and special algorithm for NL-storing RDF

instances. Estimation of experimental systems was provided to make different configurations

comparable. Special proportionality constants for hardware and software were proposed. Using

proportionality constants, experiments with middle-size and large datasets become comparable.

Experiments were provided with both real and artificial datasets. Experimental results were

systematized in corresponded tables. For easy reading visualization by histograms was given.

The goal experiments for NL-storing of middle-size and large RDF-datasets were to estimate

possible further development of NL-ArM. We assumed that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. In the next chapter we will

Natural Language Addressing

233

analyze what will be the place of NL-ArM in this environment but already we may see that NL-

addressing have good performance and NL-ArM has similar results as Jena and Sesame.

In Chapter 7 we have analyzed experiments presented in previous Chapters 4, 5, and 6,

which contain respectively results from (1) basic experiments; (2) experiments with structured

datasets; (3) experiments with semi-structured datasets. Special attention was paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

From experimental data and visualizations we concluded that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

In Appendix B we outlined some systems which we have analyzed in accordance of further

development and implementing of NL-addressing. Two main groups of systems we have selected are:

― DBMS based approaches (non-native RDF data storage):

Oracle [Oracle, 2013], 3Store [AKT Project, 2013], Jena [Jena, 2013], RDF Suite

[RDF Suite, 2013], Sesame [Sesame, 2012], 4store [4store, 2013];

― Multiple indexing frameworks (native RDF data storage):

YARS [YARS, 2013], Kowari [Kowari, 2004], Virtuoso [Virtuoso, 2013], RDF-3X

[Neumann & Weikum, 2008], Hexastore [Weiss et al, 2008], RDFCube [Matono et al,

2007], BitMat [Atre et al, 2009], Parliament [Kolas et al, 2009].

Taking in account our experiments with relational data base we may conclude that for group

of DBMS based approaches we will have similar proportions if we realize NL-addressing for more

qualitative hardware platforms, for instance cluster machines.

Our approach is analogous to multiple indexing frameworks. The main difference is in

reducing the information via NL-addressing and avoiding its duplicating in indexes. Again, if we

realize NL-addressing for more qualitative hardware platforms, we will receive results which will

outperform the analyzed systems.

What gain and loss using NL-Addressing for RDF storing?

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search trees or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to update and access the information immediately after storing without

recompilation the database and rebuilding the indexes. This is very important because

half or analyzed systems do not support updates (see Table 77).

Conclusion

234

The main conclusion is optimistic. The future realization of NL-addressing for cluster

machines and corresponded operation systems is well-founded.

In Chapter 8 some practical aspects of implementation and using of NL-addressing were

discussed in this chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models was outlined.

The implementations have to be done following corresponded methodologies for building

and using of ontologies. Such known methodology was discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we illustrated

following the known OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of NAS of

Ukraine.

In this chapter we briefly presented ICON and its structure. Attention was paid to the storing

of internal information resources of ICON realized on the base of NL-addressing and experimental

programs WordArM and OntoArM.

ICON is still under developing and, during solving concrete problems, new functions based

on NL-addressing and NL-ArM rise to be realized. For instance, such problems concern the

operations with ontologies; work with very large ontological structures; etc.

Finally, in the Conclusion, we presented shortly the next steps. Special attention was done

on the area of so called “Big Data” and possible implementation of NLA for processing of large

semi-structured data sets. New realization of the access method called BigArM and connected to it

Collect/Report Paradigm were outlined. Main advantages of Collect/Report Paradigm are (1)

Collecting information is done by all nodes independently in parallel. It is possible one node to send

information to another; (2) Reporting information is provided only by the nodes which really contain

information related to the request; the rest nodes do not react, they remain silent; (3) Results are in

RDF-triple or RDF-quadruple format.

Natural Language Addressing

235

Appendix A: Program Realizations

NL-addressing access method, presented in this research, has been implemented in several

experimental program systems. The main of them are:

― WordArM (): a system for storing dictionaries and thesauruses using NL-addressing;

― OntoArM (): a system for storing ontologies using NL-addressing and multi-layer

archive structures;

― RDFArM (): a system for storing RDF-graphs using NL-addressing.

For the purposes of this research, WordArM, OntoArM, and RDFArM are embedded as

components of the program complex INFOS ("INtelligence FOrmation System"). The front panel of

system INFOS is shown on Figure 86 below.

Figure 86. The front panel of system INFOS

Appendix A

236

A1. WordArM

WordArM is a system for storing dictionaries and thesauruses through natural language

addressing.

WordArM is upgrade over Natural Language Addressing Access Method and corresponded

Archive Manager called NL-ArM, realized in this research. WordArM is aimed to store libraries of

terms and their definitions. WordArM concepts are organized in multi-layer hash tables (information

spaces with variable size). The definition of each term is stored in a container located by appropriate

path - mapping of the natural language word or phrase, which presents the concept.

There is no limit on the number of terms in a WordArM archive, but their total length plus

internal hash indexes could not exceed the file length (4G, 8G, etc.) which is enough space for several

millions of concepts’ definitions. There is no limit on the number of files in the data base, as well as

their location, including the Internet. This permits to store unlimited number of concepts’ definitions.

WordArM has two modes of operation: Automated and Manual.

The automated mode supports reading the input information from file (concepts with

definitions to be stored in the archive or only list of concepts to receive their definitions from the

archive). The result is storing the definitions in the WordArM archive or exporting definitions from

the WordArM archive in the file.

The manual mode does the same but only for one concept which is entered manually from

the corresponded screen panel.

To support these modes, WordArM has two main operations – information storing (NLA-

Write) and information reading (NLA-Read), which have two variants – for automatic input and

output of data from and to files, and the for manually performing these operations.

 WordArM automated mode functions

The WordArM panel for working in automated mode is shown on Figure 87.

By “NLA-Write” button the function for storing definitions from a file can be activated.

Each concept and its definition occupy one record in the file. There is no limit for the

number of records in the file. After pressing the “NLA-Write” button, the system reads records

sequentially from the file and for each of them:

(1) Transform the concept into path;

(2) Store the definition of this concept in the container located by the path.

The input file is in CSV file format. Its records have the next format:

<word/words>;<definition><CR>.

After storing the concepts’ definitions, WordArM displays the contents of the input file in

the window near to the “NLA-Write” button. Before the information from the file, two informative

lines for time measurement in milliseconds are shown (Figure 88):

― Total time used for storing all instances from the file;

― Average time used for storing of one instance.

Natural Language Addressing

237

Figure 87. The WordArM panel for working in automated mode

Time used is highly dependent on the possibilities of operational environment and speed of

computer hardware.

In the case of the Figure 88, 23412 instances were stored for 22105 milliseconds and one

instance has been stored for average time of 0.94 milliseconds. In other words, one thousand instances

are processed for about one second.

Figure 88. Content of WordArM input file with two informative lines

Appendix A

238

In the same panel (Figure 87) corresponded button enables deleting the work archive of the

WordArM (ArmDict.dat, which in this version for test control is stored on the hard disk but not in the

computer memory). WordArM is completed with compressing program and after storing the

information prepares small archive for long time storage.

By “NLA-Read” button, the function for reading definitions from the WordArM archive can

be activated. In the automated mode, NLA-Read uses as input a file with concepts (each on a separate

line) and extract from the archive theirs definitions. If any definition does not exist, the output is

empty definition.

Each concept and its definition occupy one record in the output file. There is no limit to the

number of records in the file. After pressing the “NLA-Read” button, the system reads concepts

sequentially from the input file and for each of them:

(1) Transform the concept into path;

(2) Extract the definition of this concept from the container located by the path.

The output file is in CSV file format. Its records have the next format:

<sequential number><word/words>;<definition><CR>.

The content of the output file is displayed in the window next to the NLA-Read button.

Before the information from the file, two informative lines are shown (Figure 89):

― Total time used for extracting of all instances;

― Average time used for extracting of one instance,

in milliseconds.

Figure 89. Content of WordArM output file with two informative lines

Natural Language Addressing

239

The time used is highly dependent on possibilities of operational environment and speed of

computer hardware.

In the case of the Figure 89, 23412 instances were extracted for 22105 milliseconds and one

instance has been extracted for average time of 0.94 milliseconds. In other words, more than one

thousand instances are processed for about one second.

Finally, the form has three service buttons:

― The first () serves as a transition to the form for manual input and output of data

to/from the system archive;

― The second () is connected to the module for adjusting the environment of the system

– archives, input and output information, etc.;

― The third () activates the help text (user guide) of the system.

 WordArM manual mode functions

The WordArM panel for working in manual mode is shown on Figure 90.

Figure 90. The WordArM panel for working in manual mode

By “NLA-Write” button the function for storing definitions from the form can be activated.

Each concept and its definition can be given in corresponded fields on the screen form

(Figure 91).

After pressing the “NLA-Write” button, the system reads information from the fields and:

(1) Transform the concept into path;

(2) Store the definition of this concept in the container located by the path.

Appendix A

240

Figure 91. Manual input of the concept and its definition

By “NLA-Read” button the function for reading a definition from the WordArM archive can

be activated. In the manual mode, NLA-Read uses as input the concept given in the screen field and

extracts from the archive its definition (Figure 92). If the definition does not exist, the output is empty

definition.

Figure 92. Manual output of the concept and its definition

Natural Language Addressing

241

After pressing the “NLA-Read” button, the system reads concept from the screen field and:

(1) Transform the concept into path;

(2) Extract the definition of this concept from the container located by the path.

The NL-addressing supports multi-language work. In other words, in the same archive we

may have definitions of the concepts from different languages (Figure 93).

Figure 93. Simultaneous work with concepts defined in different languages.

The form for manual work has three service buttons.

― The first () serves as a return to the form for automatic input and output of data

to/from the system archive;

― The second () is connected to the module for adjusting the environment of the system

– archives, input and output information, etc.;

― The third () activates the help text (user guide) of the system.

The exit from the system can be done by the conventional way for Windows - by clicking on

the cross in the upper right corner of the form.

Appendix A

242

A2. OntoArM

OntoArM is a system for storing ontologies through natural language addressing.

OntoArM is upgrade over Natural Language Addressing Access Method and corresponded

Archive Manager called NL-ArM, realized in this research. OntoArM is aimed to store libraries of

ontologies in multi-layer hash tables (information spaces with variable size). Each ontological element

can be stored by appropriate path, which is set by a natural language word or phrase.

In OntoArM, the length of ontological element (string) can vary from 0 to 1G bytes. There is

no limit on the number of strings in an archive, but their total length plus internal hash indexes may

not exceed the capacity of the file system for one file (length of 4G, 8G, etc.). There is no limit on the

number of files in the data base, as well as their location, including the Internet.

The main idea for storing ontologies in OntoArM follows the idea of multi-lear ontology

representation. In other words, the ontology relations are assumed as layers and the ontology concepts

are assumed as paths valid for all layers.

The information about concepts as well information about the links of the concepts with

other concepts is stored in the corresponded containers located by the path in the corresponded layers.

OntoArM has two modes of operation: Automated and Manual.

 OntoArM automated mode functions

The OntoArM panel for working in automated mode is shown on Figure 94.

The main functions are Onto-Write and Onto-Read for which there are corresponded buttons.

By “Onto-Write” button the function for storing ontology definitions from a file can be

activated.

Each triple (subject, relation and object) occupy one record in the input file. There is no limit

to the number of records in the file. After pressing the “Onto-Write” button, the system reads records

sequentially from the file and for each of them:

(1) Transform the subject (concept) into path;

(2) Store the object (definition and links) of the subject (concept) in the container located by

the path in the file which corresponds to the layer given as relation in the triple.

The input file is in CSV file format. Its records have the next format:

<subject>;<relation>;<object><CR>.

After storing the triples, in the panel near to the “Onto-Write” button, OntoArM displays two

informative lines (Figure 94):

― Total time used for storing all instances from the file;

― Average time used for storing of one instance, in ticks (milliseconds).

The time used is highly dependent on possibilities of operational environment and speed of

computer hardware.

Natural Language Addressing

243

In the case of Figure 94, 117709 instances were stored for 96643 milliseconds and one

instance has been stored for average time of 0.82 milliseconds. In other words, one thousand instances

were processed for about less than one second.

Figure 94. Content of OntoArM Onto-Write panel with informative lines

By “Onto-Read” button the function for reading objects (definitions) from the OntoArM

archive can be activated. In the automated mode, Onto-Read uses as input a file with subjects

(concepts) and relations (each couple on a separate line) and extract from corresponded layer theirs

objects (definitions). If any object does not exist, the output is empty.

Each subject (concept), its relation and object (definition) occupy one record in the output

file. There is no limit to the number of records in the file. After pressing the “Onto-Read” button, the

system reads concepts sequentially from the input file and for each of them:

(1) Transform the subject (concept) into path;

(2) Extract the definition of this concept from relation layer using the path to locate it.

The output file is in CSV file format. Its records have the next format:

<subject>;<relation>;<object><CR>.

In the panel next to the Onto-Read button, two informative lines are shown (Figure 95):

― Total time used for extracting of all instances;

― Average time used for extracting of one instance, in ticks (milliseconds).

The time used is highly dependent on possibilities of operational environment and speed of

computer hardware.

In the case of the Figure 95, 112945 instances were extracted for 89950 milliseconds and one

instance has been extracted for average time of 0.80 milliseconds. In other words, more than one

thousand instances are processed for less than one second.

Appendix A

244

Figure 95. Content of OntoArM Onto-Read panel with informative lines

The form has three service buttons:

― The first () serves as a transition to the form for manual input and output of data

to/from the system archive;

― The second () is connected to the module for adjusting the environment of the system

– archives, input and output information, etc.;

― The third () activates the help text (user guide) of the system.

In the same panel, there is a button which enables deleting the work archives of the

OntoArM (for test control in this version, they are stored on the hard disk but not in the computer main

memory). OntoArM is completed with compressing program and after storing the information

prepares small archive for long time storage.

 OntoArM manual mode functions

The OntoArM panel for working in manual mode is shown on Figure 96.

By “Onto-Write” button the function for storing RDF-triples can be activated.

Each subject (concept) and its relation and object (definition) can be given in corresponded

fields on the screen form (Figure 96).

After pressing the “Onto-Write” button, the system reads information from the fields and:

(1) Transform the subject (concept) into path;

(2) Store the object (definition) of this subject (concept) in the container located by the path

in the layer pointed by the relation.

By “Onto-Read” button the function for reading RDF-objects (definitions) from the

OntoArM archive can be activated. In the manual mode, Onto-Read uses as input the subject (concept)

Natural Language Addressing

245

given in the screen field and extract from the archive its definition. If the definition does not exist, the

output is empty definition.

There are two possibilities:

(1) To extract object from concrete layer given by corresponded relation;

(2) To extract from all layers the objects which correspond to given subject.

After pressing the “Onto-Read” button, the system reads concept from the screen field and:

(1) Transform the concept into path;

(2) Extract the object (definition) of this concept from the container located by the path in

the given layer or from all layers (if the relation is replaced by an asterisk “*”; see the request in

Figure 97 and the result in Figure 98).

The form for manual work has three service buttons.

― The first () serves as a return to the form for automatic input and output of data

to/from the system archive;

― The second () is connected to the module for adjusting the environment of the system

– archives, input and output information, etc.;

― The third () activates the help text (user guide) of the system.

The exit from the system can be done by the conventional way for Windows - by clicking on

the cross in the upper right corner of the form.

Figure 96. Manual input of the RDF-triple

Appendix A

246

Figure 97. Manual reading the RDF-triple

Figure 98. A part from reading from all layers

Natural Language Addressing

247

A3. RDFArM

RDFArM is a system for storing large sets of RDF triples and quadruples through natural

language addressing.

RDFArM is upgrade over Natural Language Addressing Access Method and corresponded

Archive Manager called NL-ArM, realized in this research. RDFArM is aimed to store archives of

RDF triples and quadruples in multi-layer hash tables (information spaces with variable size). Each

RDF element can be stored by appropriate path, which is set by a natural language word or phrase.

In RDFArM, the length of RDF element (string) can vary from 0 to 1G bytes. There is no

limit on the number of strings in an archive, but their total length plus internal indexes may not exceed

the capacity of the file system for one file (length of 4G, 8G, etc.). There is no limit on the number of

files in the data base, as well as their location, including the Internet.

The data of RDFArM are encoded in N-Triples or N-Quads format.

The N-Quads is a format that extends N-Triples with context. Each triple in an N-Quads

document can have an optional context value [N-Quads, 2013]:

<subject> <predicate> <object> <context>.

as opposed to N-Triples, where each triple has the form:

<subject> <predicate> <object>.

The main idea for storing RDF-graphs in RDFArM follows the one of multi-layer

representation. In other words, the RDF-relations are assumed as layers and the RDF-subjects are

assumed as paths valid for all layers. The objects as well as contexts are stored in the containers

located by the path in the corresponded layers. Due to great number of relations – about several

thousand – using separated files for layers is not effective. In this research we have proposed special

algorithm for representing the layers.

For easy reading below we reproduce main algorithms of RDFArM.

 Algorithm for storing based on NL-addressing

1. Read a quadruple from input file.

2. Assign unique numbers to the <subject>, <predicate>, <object>, and <context>,

respectively denoted by NS, NP, NO, and NC. The algorithm of this step is given below.

3. Store the structures:

― {NO; NC} in the “object” index archive using the path (NS, NP);

― {NS; NC} in the “subject” index archive using the path (NP, NO);

― {NP; NC} in the “predicate” index archive using the path (NS, NO).

4. Repeat from 1 until there are new quadruples, i.e. till end of file.

5. Stop.

Appendix A

248

 Algorithm for assigning unique numbers

1. A separate counters for the <subject>, <predicate>, <object>, and <context> are used.

Counters start from 1.

2. A separate NL-archives for the <subject>, <predicate>, <object>, and <context> are

used.

3. In every NL-archive, using the values of respectively <subject>, <predicate>, <object>,

and <context> as paths:

IF no counter value exist at the corresponded path

THAN

― Store value of corresponded counter in the container located by the path;

― Store the content of <subject>, <predicate>, <object>, or <context> respectively in

corresponded data archive in hash table 1 (domain 1) using the value of the counter

as path;

― Increment the corresponded counter by 1.

ELSE assign the existing value of counter as number of NS, NP, NO, and NC,

respectively.

4. Return

 Algorithm for reading based on NL-addressing

1. Read the request from screen form or file. The request may contain a part of the

elements of the quadruple. Missing elements are requested to be found.

2. From every NL-archive, using the values of given respectively <subject>, <predicate>,

<object>, or <context> as NL-addresses read the values of corresponded counters NS,

NP, NO, or NC.

3. If the corresponded co-ordinate couple exist, read the structures:

― {NO; NC} from the “object” index archive using path (NS, NP);

― {NS; NC} from the “subject” index archive using path (NP, NO);

― {NP; NC} from the “predicate” index archive using path (NS, NO).

4. IF all elements of the set {NS, NP, NO, NC} are given:

THAN using the set {NS, NP, NO, NC} read the quadruple elements (from

corresponded data archives).

ELSE using given values of the elements of the set {NS, NP, NO, NC} scan all

possible values of the unknown elements to reconstruct the set {NS, NP, NO, NC}.

The result contains all possible quadruples for the requested values.

5. End.

No search indexes are needed and no recompilation of the data base is required after any

update or adding new information in the data base.

A screenshot from the RDFArM program is shown at Figure 99.

Natural Language Addressing

249

The main functions are RDF-Write and RDF-Read for which there are corresponded buttons.

By “RDF-Write” button the function for storing RDF triples or quadruples from a file can

be activated. The recognition of the case (triples or quadruples) is made automatically. The lines of

triples do not contain the fourth element, i.e. the context of the quadruples.

Each triple (subject, relation, and object) or quadruple (subject, relation, object, and context)

occupy one record in the input file. There is no limit to the number of records in the file. After

pressing the “RDF-Write” button, the system reads records sequentially from the file and for each of

them executes the algorithms given above.

The input file is in the next formats:

<subject> <relation> <object> .<CR>

or

<subject> <relation> <object> <context> .<CR>.

After storing the triples or quadruples, RDFArM displays two informative lines in the panel

near to the “RDF-Write” button (Figure 99):

― Total time used for storing all instances from the file;

― Average time used for storing of one instance, in milliseconds.

The time used is highly dependent on the possibilities of the operational environment and the

speed of the computer hardware.

In the case of the Figure 99, 15472624 quadruple instances were stored for 63437758

milliseconds and one instance has been stored for average time of 4.1 milliseconds. In other words,

about 250 quadruples were processed for about less than one second.

By “RDF-Read” button the function for reading RDF triples or quadruples from the

RDFArM archives can be activated. RDF-Read uses as input a file with requests similar to SPARQL

requests and extracts from the archives the requested information. For example, the same input file as

for RDF-Write may be used as file with request. The missing elements may be given by <?>.

In other words, if any of parameters are not given, i.e. any from <subject>, <predicate>,

<object>, or <context>, as in SPARQL requests, the rest are used as constant addresses and omitted

parameters scan all non empty co-ordinates for given position. This way all possible requests like

(?S-?P-?O), (S-P-?O), (S-?P-O), (?S-P-O), etc., are covered (S stands for subject, P for property, O for

object). For more information about SPARQL see [SPARQL, 2013] as well as short outline of it at the

end of Appendix B.

Each extracted triple or quadruple occupies one record in the output file. There is no limit to

the number of records in the file. After pressing the “RDF-Read” button, the system reads requests

sequentially from the input file and for each of them executes the algorithm given above.

The output file has the next formats:

― for quadruples:

<subject><relation><object><context> . <CR>

― for triples:

<subject><relation><object> . <CR>

Appendix A

250

In the window next to the RDF-Read button, two informative lines are shown (Figure 100):

― Total time used for extracting of all quadruple instances;

― Average time used for extracting of one instance in milliseconds.

Figure 99. Content of RDFArM

RDF-Write panel with informative lines

Figure 100. Content of RDFArM

RDF-Read panel with informative lines

The time used is highly dependent on possibilities of operational environment and speed of

computer hardware.

In the case of the Figure 100, 45595 quadruple instances were extracted for 151414

milliseconds and one instance has been extracted for average time of 3.3 milliseconds. In other words,

about 330 quadruple instances are processed for about one second.

The RDFArN form (Figure 99 or Figure 100) has three service buttons:

― The first () serves as a transition to the form for manual input and output of data to/from

the system archive (not realized in this version of RDFArM);

― The second () is connected to the module for adjusting the environment of the system –

archives, input and output information, etc.;

― The third () activates the help text (user guide) of the system.

In the same panel there is a button which enables deleting the work archives of the RDFArM

(for test control in this version, they are stored on the hard disk but not in the computer memory).

RDFArM is completed with compressing program and after storing the information prepares small

archive for long time storage.

Natural Language Addressing

251

A4. Results from experiment with simulating parallel processing

Table 70. RDFArM loading results for infoboxes-fixed.nt

check
point

triples

stored
ms

for all

ms
for
one

ms
for last
100000

ms
for
one

counted to the check point number of:
Subjects Relations Objects

Processor 1

1 100000 218011 2.2 218011 2.2 8420 4081 100000

2 200000 437848 2.2 219837 2.2 16803 5280 200000

3 300000 653457 2.2 215609 2.2 24675 6179 300000

4 400000 876008 2.2 222551 2.2 32383 6988 400000

5 500000 1103489 2.2 227481 2.3 40883 7569 500000

6 600000 1315541 2.2 212052 2.1 46320 7828 600000

7 700000 1526704 2.2 211163 2.1 51519 7998 700000

8 800000 1738694 2.2 211990 2.1 57213 8070 800000

9 900000 1954147 2.2 215453 2.2 62640 8104 900000

10 1000000 2185356 2.2 231209 2.3 68897 8152 1000000

11 1100000 2420652 2.2 235296 2.4 74653 8171 1100000

12 1200000 2699223 2.2 278571 2.8 82531 8459 1200000

13 1300000 2976328 2.3 277105 2.8 91373 8838 1300000

14 1400000 3235976 2.3 259648 2.6 99051 9245 1400000

15 1500000 3504266 2.3 268290 2.7 107697 9661 1500000

16 1600000 3782322 2.4 278056 2.8 116246 10018 1600000

17 1700000 4059848 2.4 277526 2.8 124483 10298 1700000

18 1800000 4334956 2.4 275108 2.8 133475 10559 1800000

19 1900000 4610547 2.4 275591 2.8 142046 10857 1900000

20 2000000 4886794 2.4 276247 2.8 150909 11132 2000000

21 2100000 5170326 2.5 283532 2.8 159404 11380 2100000

22 2200000 5461751 2.5 291425 2.9 168023 11566 2200000

23 2300000 5767841 2.5 306090 3.1 177475 11979 2300000

24 2400000 6073447 2.5 305606 3.1 185859 12313 2400000

25 2500000 6388803 2.6 315356 3.2 194303 12543 2500000

26 2600000 6692209 2.6 303406 3.0 202175 12740 2600000

27 2700000 6989734 2.6 297525 3.0 210116 12963 2700000

28 2800000 7276324 2.6 286590 2.9 218060 13165 2800000

29 2900000 7564520 2.6 288196 2.9 226962 13369 2900000

30 3000000 7824885 2.6 260365 2.6 236327 13511 3000000

31 3100000 8073052 2.6 248167 2.5 244449 13846 3100000

32 3200000 8343589 2.6 270537 2.7 251980 14103 3200000

Appendix A

252

check
point

triples

stored
ms

for all

ms
for
one

ms
for last
100000

ms
for
one

counted to the check point number of:
Subjects Relations Objects

33 3300000 8608697 2.6 265108 2.7 259160 14293 3300000

34 3400000 8883415 2.6 274718 2.7 267094 14440 3400000

35 3500000 9156884 2.6 273469 2.7 274781 14565 3500000

36 3600000 9432569 2.6 275685 2.8 282159 14721 3600000

37 3700000 9699503 2.6 266934 2.7 290531 14823 3700000

38 3800000 9983502 2.6 283999 2.8 298560 14947 3800000

39 3900000 10268516 2.6 285014 2.9 307578 15247 3900000

40 4000000 10551097 2.6 282581 2.8 317286 15427 4000000

41 4100000 10832382 2.6 281285 2.8 326106 15545 4100000

42 4200000 11112294 2.6 279912 2.8 334027 15651 4200000

43 4300000 11386591 2.6 274297 2.7 341882 15792 4300000

44 4400000 11668797 2.7 282206 2.8 349800 15901 4400000

45 4500000 11960940 2.7 292143 2.9 357571 16018 4500000

46 4600000 12250431 2.7 289491 2.9 365372 16120 4600000

47 4700000 12533791 2.7 283360 2.8 372637 16256 4700000

48 4800000 12824577 2.7 290786 2.9 380369 16456 4800000

49 4900000 13109404 2.7 284827 2.8 388418 16624 4900000

50 5000000 13394043 2.7 284639 2.8 396155 16714 5000000

Processor 2

51 5100000 13608873 2.7 214939 2.1 404619 20417 5100000

52 5200000 13845510 2.7 236637 2.4 412889 21532 5200000

53 5300000 14059700 2.7 214190 2.1 421384 22454 5300000

54 5400000 14277415 2.6 217715 2.2 430157 23178 5400000

55 5500000 14500028 2.6 222613 2.2 438947 23785 5500000

56 5600000 14722252 2.6 222224 2.2 447721 24271 5600000

57 5700000 14968702 2.6 246450 2.5 456764 24617 5700000

58 5800000 15225823 2.6 257121 2.6 465311 25118 5800000

59 5900000 15499511 2.6 273688 2.7 473764 25660 5900000

60 6000000 15785648 2.6 286137 2.9 482970 25993 6000000

61 6100000 16066840 2.6 281192 2.8 491804 26256 6100000

62 6200000 16351401 2.6 284561 2.8 500115 26527 6200000

63 6300000 16656602 2.6 305201 3.1 508784 26839 6300000

64 6400000 16952083 2.6 295481 3.0 519796 27093 6400000

65 6500000 17212028 2.6 259945 2.6 537865 27242 6500000

66 6600000 17519740 2.7 307712 3.1 546098 27462 6600000

Natural Language Addressing

253

check
point

triples

stored
ms

for all

ms
for
one

ms
for last
100000

ms
for
one

counted to the check point number of:
Subjects Relations Objects

67 6700000 17812850 2.7 293110 2.9 553493 27617 6700000

68 6800000 18116209 2.7 303359 3.0 565582 27722 6800000

69 6900000 18415076 2.7 298867 3.0 576688 27953 6900000

70 7000000 18694879 2.7 279803 2.8 591877 28139 7000000

71 7100000 18980658 2.7 285779 2.9 599777 28268 7100000

72 7200000 19291833 2.7 311175 3.1 607957 28428 7200000

73 7300000 19605442 2.7 313609 3.1 616114 28582 7300000

74 7400000 19915104 2.7 309662 3.1 624151 28872 7400000

75 7500000 20222457 2.7 307353 3.1 631947 29101 7500000

76 7600000 20539420 2.7 316963 3.2 639630 29275 7600000

77 7700000 20791190 2.7 251770 2.5 643433 29345 7700000

78 7800000 21049075 2.7 257885 2.6 648774 29464 7800000

79 7900000 21335774 2.7 286699 2.9 659720 29550 7900000

80 8000000 21680255 2.7 344481 3.4 668261 29814 8000000

81 8100000 22008590 2.7 328335 3.3 676543 29967 8100000

82 8200000 22324056 2.7 315466 3.2 683679 30111 8200000

83 8300000 22669426 2.7 345370 3.5 692084 30346 8300000

84 8400000 23015046 2.7 345620 3.5 700571 30829 8400000

85 8500000 23351587 2.7 336541 3.4 709278 30915 8500000

86 8600000 23682075 2.8 330488 3.3 717808 31150 8600000

87 8700000 23980349 2.8 298274 3.0 731008 31248 8700000

88 8800000 24315424 2.8 335075 3.4 739380 31336 8800000

89 8900000 24665412 2.8 349988 3.5 747578 31452 8900000

90 9000000 25012717 2.8 347305 3.5 755601 31627 9000000

91 9100000 25349087 2.8 336370 3.4 763840 31740 9100000

92 9200000 25689465 2.8 340378 3.4 771909 31818 9200000

93 9300000 26027160 2.8 337695 3.4 779697 31971 9300000

94 9400000 26381642 2.8 354482 3.5 788584 32073 9400000

95 9500000 26735904 2.8 354262 3.5 796082 32188 9500000

96 9600000 27075877 2.8 339973 3.4 804137 32282 9600000

97 9700000 27429313 2.8 353436 3.5 813123 32345 9700000

98 9800000 27785963 2.8 356650 3.6 821841 32493 9800000

Appendix A

254

check
point

triples

stored
ms

for all

ms
for
one

ms
for last
100000

ms
for
one

counted to the check point number of:
Subjects Relations Objects

99 9900000 28109571 2.8 323608 3.2 836180 32625 9900000

100 10000000 28449029 2.8 339458 3.4 847168 32681 10000000

Processor 3

101 10100000 28672907 2.8 223909 2.2 858184 35627 10100000

102 10200000 28891308 2.8 218401 2.2 865025 36877 10200000

103 10300000 29101176 2.8 209868 2.1 870357 37444 10300000

104 10400000 29323883 2.8 222707 2.2 879121 38221 10400000

105 10500000 29544703 2.8 220820 2.2 887773 38742 10500000

106 10600000 29766006 2.8 221303 2.2 896372 39170 10600000

107 10700000 30002581 2.8 236575 2.4 904348 39430 10700000

108 10800000 30251855 2.8 249274 2.5 912712 39720 10800000

109 10900000 30512704 2.8 260849 2.6 921471 40159 10900000

110 11000000 30782695 2.8 269991 2.7 930652 40430 11000000

111 11100000 31077740 2.8 295045 3.0 938759 40783 11100000

112 11200000 31364485 2.8 286745 2.9 947817 41214 11200000

113 11300000 31634523 2.8 270038 2.7 957333 41485 11300000

114 11400000 31924966 2.8 290443 2.9 966208 42005 11400000

115 11500000 32224893 2.8 299927 3.0 975275 42305 11500000

116 11600000 32534368 2.8 309475 3.1 984634 42584 11600000

117 11700000 32821644 2.8 287276 2.9 993400 43438 11700000

118 11800000 33111307 2.8 289663 2.9 1001889 43728 11800000

119 11900000 33410080 2.8 298773 3.0 1010671 44353 11900000

120 12000000 33723891 2.8 313811 3.1 1019361 44873 12000000

121 12100000 34040495 2.8 316604 3.2 1030942 45035 12100000

122 12200000 34291719 2.8 251224 2.5 1053185 45057 12200000

123 12300000 34570322 2.8 278603 2.8 1071104 45145 12300000

124 12400000 34831733 2.8 261411 2.6 1090954 45326 12400000

125 12500000 35155528 2.8 323795 3.2 1103013 45534 12500000

126 12600000 35515298 2.8 359770 3.6 1111404 45749 12600000

127 12700000 35838688 2.8 323390 3.2 1125568 45882 12700000

128 12800000 36174262 2.8 335574 3.4 1135662 46061 12800000

Natural Language Addressing

255

check
point

triples

stored
ms

for all

ms
for
one

ms
for last
100000

ms
for
one

counted to the check point number of:
Subjects Relations Objects

129 12900000 36516980 2.8 342718 3.4 1143829 46202 12900000

130 13000000 36851633 2.8 334653 3.3 1155053 46375 13000000

131 13100000 37190530 2.8 338897 3.4 1163060 46497 13100000

132 13200000 37513842 2.8 323312 3.2 1172871 46687 13200000

133 13300000 37818403 2.8 304561 3.0 1185111 46800 13300000

134 13400000 38167299 2.8 348896 3.5 1194422 46985 13400000

135 13500000 38429006 2.8 261707 2.6 1200001 47120 13500000

136 13600000 38641183 2.8 212177 2.1 1202148 47126 13600000

137 13700000 38849850 2.8 208667 2.1 1204022 47171 13700000

138 13800000 39066458 2.8 216608 2.2 1206950 47248 13800000

139 13900000 39290569 2.8 224111 2.2 1211272 47435 13900000

140 14000000 39561121 2.8 270552 2.7 1218686 47552 14000000

141 14100000 39861252 2.8 300131 3.0 1226371 47731 14100000

142 14200000 40182317 2.8 321065 3.2 1234818 47945 14200000

143 14300000 40496269 2.8 313952 3.1 1243563 48114 14300000

144 14400000 40821407 2.8 325138 3.3 1252499 48274 14400000

145 14500000 41137028 2.8 315621 3.2 1261448 48400 14500000

146 14600000 41448265 2.8 311237 3.1 1271270 48483 14600000

147 14700000 41747366 2.8 299101 3.0 1280957 48629 14700000

148 14800000 42012958 2.8 265592 2.7 1297124 48680 14800000

149 14900000 42321497 2.8 308539 3.1 1306316 48760 14900000

150 15000000 42631221 2.8 309724 3.1 1314612 48889 15000000

Processor 4

151 15100000 42852181 2.8 221038 2.2 1323411 52220 15100000

152 15200000 43071503 2.8 219322 2.2 1331462 54515 15200000

153 15300000 43284865 2.8 213362 2.1 1339737 55400 15300000

154 15400000 43499897 2.8 215032 2.2 1348229 56049 15400000

155 15472624 43652528 2.8 152631 2.1 1354298 56338 15472624

total 15472624 43652528 2.8 1354298 56338 15472624

Appendix A

256

A5. Results from experiment with 100 millions triples

Table 71 contains results from an experiment for loading 100 millions triples from BSBM

100M [BSBMv3, 2009].

The check points were on every 100000 triples.

For every check point, the average time in ms for writing one triple is shown. In third

column the corresponded value of log n is given.

Table 71. Comparison of NLArM storing time and log n for 100 millions triples

triples ms log n
100000 2.5 16.61
200000 2.6 17.61
300000 2.4 18.19
400000 2.2 18.61
500000 2.2 18.93
600000 2.3 19.19
700000 2.3 19.42
800000 2.3 19.61
900000 2.3 19.78

1000000 2.3 19.93
1100000 2.3 20.07
1200000 2.2 20.19
1300000 2.2 20.31
1400000 2.2 20.42
1500000 2.2 20.52
1600000 2.2 20.61
1700000 2.2 20.70
1800000 2.2 20.78
1900000 2.2 20.86
2000000 2.2 20.93
2100000 2.1 21.00
2200000 2.2 21.07
2300000 2.2 21.13
2400000 2.2 21.19
2500000 2.2 21.25
2600000 2.3 21.31
2700000 2.2 21.36
2800000 2.3 21.42
2900000 2.2 21.47
3000000 2.2 21.52
3100000 2.2 21.56
3200000 2.2 21.61
3300000 2.2 21.65
3400000 2.2 21.70
3500000 2.3 21.74

triples ms log n
3600000 2.3 21.78
3700000 2.3 21.82
3800000 2.2 21.86
3900000 2.3 21.90
4000000 2.3 21.93
4100000 2.2 21.97
4200000 2.3 22.00
4300000 2.3 22.04
4400000 2.3 22.07
4500000 2.2 22.10
4600000 2.3 22.13
4700000 2.2 22.16
4800000 2.3 22.19
4900000 2.3 22.22
5000000 2.3 22.25
5100000 2.3 22.28
5200000 2.3 22.31
5300000 2.2 22.34
5400000 2.2 22.36
5500000 2.3 22.39
5600000 2.2 22.42
5700000 2.2 22.44
5800000 2.3 22.47
5900000 2.2 22.49
6000000 2.3 22.52
6100000 2.3 22.54
6200000 2.2 22.56
6300000 2.3 22.59
6400000 2.2 22.61
6500000 2.2 22.63
6600000 2.2 22.65
6700000 2.3 22.68
6800000 2.2 22.70
6900000 2.2 22.72
7000000 2.2 22.74

triples ms log n
7100000 2.2 22.76
7200000 2.2 22.78
7300000 2.2 22.80
7400000 2.3 22.82
7500000 2.2 22.84
7600000 2.4 22.86
7700000 2.3 22.88
7800000 2.3 22.90
7900000 2.2 22.91
8000000 2.3 22.93
8100000 2.3 22.95
8200000 2.2 22.97
8300000 2.3 22.98
8400000 2.2 23.00
8500000 2.2 23.02
8600000 2.2 23.04
8700000 2.2 23.05
8800000 2.3 23.07
8900000 2.2 23.09
9000000 2.3 23.10
9100000 2.3 23.12
9200000 2.3 23.13
9300000 2.2 23.15
9400000 2.2 23.16
9500000 2.3 23.18
9600000 2.2 23.19
9700000 2.2 23.21
9800000 2.3 23.22
9900000 2.3 23.24

10000000 2.2 23.25
10100000 2.3 23.27
10200000 2.3 23.28
10300000 2.3 23.30
10400000 2.3 23.31
10500000 2.3 23.32

Natural Language Addressing

257

triples ms log n
10600000 2.3 23.34
10700000 2.2 23.35
10800000 2.3 23.36
10900000 2.2 23.38
11000000 2.3 23.39
11100000 2.2 23.40
11200000 2.2 23.42
11300000 2.2 23.43
11400000 2.2 23.44
11500000 2.4 23.46
11600000 2.3 23.47
11700000 2.4 23.48
11800000 2.4 23.49
11900000 2.3 23.50
12000000 2.3 23.52
12100000 2.4 23.53
12200000 2.3 23.54
12300000 2.4 23.55
12400000 2.3 23.56
12500000 2.3 23.58
12600000 2.3 23.59
12700000 2.3 23.60
12800000 2.4 23.61
12900000 2.3 23.62
13000000 2.4 23.63
13100000 2.3 23.64
13200000 2.4 23.65
13300000 2.3 23.66
13400000 2.3 23.68
13500000 2.3 23.69
13600000 2.3 23.70
13700000 2.4 23.71
13800000 2.3 23.72
13900000 2.4 23.73
14000000 2.3 23.74
14100000 2.3 23.75
14200000 2.3 23.76
14300000 2.3 23.77
14400000 2.3 23.78
14500000 2.3 23.79
14600000 2.2 23.80
14700000 2.2 23.81
14800000 2.3 23.82
14900000 2.3 23.83
15000000 2.3 23.84
15100000 2.4 23.85
15200000 2.3 23.86
15300000 2.3 23.87
15400000 2.3 23.88
15500000 2.3 23.89
15600000 2.3 23.90

triples ms log n
15700000 2.2 23.90
15800000 2.3 23.91
15900000 2.2 23.92
16000000 2.3 23.93
16100000 2.2 23.94
16200000 2.3 23.95
16300000 2.3 23.96
16400000 2.3 23.97
16500000 2.3 23.98
16600000 2.3 23.98
16700000 2.2 23.99
16800000 2.3 24.00
16900000 2.3 24.01
17000000 2.4 24.02
17100000 2.3 24.03
17200000 2.3 24.04
17300000 2.3 24.04
17400000 2.2 24.05
17500000 2.2 24.06
17600000 2.2 24.07
17700000 2.3 24.08
17800000 2.2 24.09
17900000 2.2 24.09
18000000 2.2 24.10
18100000 2.3 24.11
18200000 2.2 24.12
18300000 2.2 24.13
18400000 2.3 24.13
18500000 2.3 24.14
18600000 2.3 24.15
18700000 2.3 24.16
18800000 2.4 24.16
18900000 2.4 24.17
19000000 2.2 24.18
19100000 2.3 24.19
19200000 2.2 24.19
19300000 2.2 24.20
19400000 2.2 24.21
19500000 2.2 24.22
19600000 2.2 24.22
19700000 2.3 24.23
19800000 2.2 24.24
19900000 2.2 24.25
20000000 2.2 24.25
20100000 2.3 24.26
20200000 2.3 24.27
20300000 2.2 24.27
20400000 2.3 24.28
20500000 2.3 24.29
20600000 2.3 24.30
20700000 2.3 24.30

triples ms log n
20800000 2.3 24.31
20900000 2.4 24.32
21000000 2.3 24.32
21100000 2.2 24.33
21200000 2.2 24.34
21300000 2.2 24.34
21400000 2.2 24.35
21500000 2.3 24.36
21600000 2.3 24.36
21700000 2.4 24.37
21800000 2.3 24.38
21900000 2.3 24.38
22000000 2.3 24.39
22100000 2.4 24.40
22200000 2.2 24.40
22300000 2.2 24.41
22400000 2.3 24.42
22500000 2.3 24.42
22600000 2.2 24.43
22700000 2.3 24.44
22800000 2.4 24.44
22900000 2.3 24.45
23000000 2.3 24.46
23100000 2.4 24.46
23200000 2.3 24.47
23300000 2.4 24.47
23400000 2.2 24.48
23500000 2.2 24.49
23600000 2.3 24.49
23700000 2.3 24.50
23800000 2.3 24.50
23900000 2.4 24.51
24000000 2.4 24.52
24100000 2.2 24.52
24200000 2.3 24.53
24300000 2.4 24.53
24400000 2.4 24.54
24500000 2.3 24.55
24600000 2.3 24.55
24700000 2.3 24.56
24800000 2.3 24.56
24900000 2.4 24.57
25000000 2.4 24.58
25100000 2.3 24.58
25200000 2.4 24.59
25300000 2.4 24.59
25400000 2.4 24.60
25500000 2.4 24.60
25600000 2.3 24.61
25700000 2.4 24.62
25800000 2.3 24.62

Appendix A

258

triples ms log n
25900000 2.2 24.63
26000000 2.2 24.63
26100000 2.3 24.64
26200000 2.3 24.64
26300000 2.4 24.65
26400000 2.3 24.65
26500000 2.5 24.66
26600000 2.4 24.66
26700000 2.3 24.67
26800000 2.3 24.68
26900000 2.3 24.68
27000000 2.3 24.69
27100000 2.3 24.69
27200000 2.4 24.70
27300000 2.2 24.70
27400000 2.2 24.71
27500000 2.3 24.71
27600000 2.3 24.72
27700000 2.3 24.72
27800000 2.3 24.73
27900000 2.4 24.73
28000000 2.4 24.74
28100000 2.3 24.74
28200000 2.3 24.75
28300000 2.3 24.75
28400000 2.3 24.76
28500000 2.3 24.76
28600000 2.3 24.77
28700000 2.3 24.77
28800000 2.3 24.78
28900000 2.2 24.78
29000000 2.2 24.79
29100000 2.3 24.79
29200000 2.3 24.80
29300000 2.3 24.80
29400000 2.4 24.81
29500000 2.3 24.81
29600000 2.3 24.82
29700000 2.4 24.82
29800000 2.3 24.83
29900000 2.3 24.83
30000000 2.3 24.84
30100000 2.3 24.84
30200000 2.3 24.85
30300000 2.4 24.85
30400000 2.4 24.86
30500000 2.2 24.86
30600000 2.3 24.87
30700000 2.2 24.87
30800000 2.2 24.88
30900000 2.3 24.88

triples ms log n
31000000 2.3 24.89
31100000 2.3 24.89
31200000 2.4 24.90
31300000 2.4 24.90
31400000 2.3 24.90
31500000 2.3 24.91
31600000 2.4 24.91
31700000 2.3 24.92
31800000 2.3 24.92
31900000 2.4 24.93
32000000 2.3 24.93
32100000 2.3 24.94
32200000 2.3 24.94
32300000 2.3 24.95
32400000 2.3 24.95
32500000 2.4 24.95
32600000 2.3 24.96
32700000 2.3 24.96
32800000 2.3 24.97
32900000 2.3 24.97
33000000 2.3 24.98
33100000 2.3 24.98
33200000 2.3 24.98
33300000 2.2 24.99
33400000 2.3 24.99
33500000 2.4 25.00
33600000 2.3 25.00
33700000 2.3 25.01
33800000 2.4 25.01
33900000 2.3 25.01
34000000 2.3 25.02
34100000 2.4 25.02
34200000 2.3 25.03
34300000 2.3 25.03
34400000 2.3 25.04
34500000 2.3 25.04
34600000 2.3 25.04
34700000 2.2 25.05
34800000 2.3 25.05
34900000 2.2 25.06
35000000 2.3 25.06
35100000 2.3 25.06
35200000 2.3 25.07
35300000 2.3 25.07
35400000 2.3 25.08
35500000 2.3 25.08
35600000 2.3 25.09
35700000 2.4 25.09
35800000 2.3 25.09
35900000 2.4 25.10
36000000 2.3 25.10

triples ms log n
36100000 2.3 25.11
36200000 2.3 25.11
36300000 2.3 25.11
36400000 2.4 25.12
36500000 2.4 25.12
36600000 2.3 25.13
36700000 2.3 25.13
36800000 2.3 25.13
36900000 2.3 25.14
37000000 2.4 25.14
37100000 2.3 25.14
37200000 2.3 25.15
37300000 2.3 25.15
37400000 2.3 25.16
37500000 2.3 25.16
37600000 2.3 25.16
37700000 2.3 25.17
37800000 2.3 25.17
37900000 2.3 25.18
38000000 2.3 25.18
38100000 2.3 25.18
38200000 2.3 25.19
38300000 2.3 25.19
38400000 2.3 25.19
38500000 2.3 25.20
38600000 2.3 25.20
38700000 2.3 25.21
38800000 2.3 25.21
38900000 2.3 25.21
39000000 2.3 25.22
39100000 2.2 25.22
39200000 2.3 25.22
39300000 2.3 25.23
39400000 2.3 25.23
39500000 2.3 25.24
39600000 2.4 25.24
39700000 2.4 25.24
39800000 2.3 25.25
39900000 2.3 25.25
40000000 2.3 25.25
40100000 2.4 25.26
40200000 2.3 25.26
40300000 2.2 25.26
40400000 2.4 25.27
40500000 2.4 25.27
40600000 2.3 25.27
40700000 2.4 25.28
40800000 2.4 25.28
40900000 2.3 25.29
41000000 2.3 25.29
41100000 2.3 25.29

Natural Language Addressing

259

triples ms log n
41200000 2.3 25.30
41300000 2.4 25.30
41400000 2.3 25.30
41500000 2.3 25.31
41600000 2.4 25.31
41700000 2.3 25.31
41800000 2.3 25.32
41900000 2.4 25.32
42000000 2.3 25.32
42100000 2.4 25.33
42200000 2.3 25.33
42300000 2.3 25.33
42400000 2.3 25.34
42500000 2.3 25.34
42600000 2.4 25.34
42700000 2.4 25.35
42800000 2.3 25.35
42900000 2.3 25.35
43000000 2.3 25.36
43100000 2.3 25.36
43200000 2.3 25.36
43300000 2.3 25.37
43400000 2.2 25.37
43500000 2.3 25.37
43600000 2.3 25.38
43700000 2.3 25.38
43800000 2.3 25.38
43900000 2.3 25.39
44000000 2.3 25.39
44100000 2.3 25.39
44200000 2.2 25.40
44300000 2.3 25.40
44400000 2.3 25.40
44500000 2.2 25.41
44600000 2.3 25.41
44700000 2.3 25.41
44800000 2.3 25.42
44900000 2.3 25.42
45000000 2.3 25.42
45100000 2.3 25.43
45200000 2.4 25.43
45300000 2.4 25.43
45400000 2.3 25.44
45500000 2.3 25.44
45600000 2.3 25.44
45700000 2.3 25.45
45800000 2.3 25.45
45900000 2.3 25.45
46000000 2.3 25.46
46100000 2.3 25.46
46200000 2.3 25.46

triples ms log n
46300000 2.3 25.46
46400000 2.3 25.47
46500000 2.3 25.47
46600000 2.3 25.47
46700000 2.3 25.48
46800000 2.3 25.48
46900000 2.3 25.48
47000000 2.3 25.49
47100000 2.4 25.49
47200000 2.3 25.49
47300000 2.3 25.50
47400000 2.4 25.50
47500000 2.3 25.50
47600000 2.3 25.50
47700000 2.3 25.51
47800000 2.3 25.51
47900000 2.3 25.51
48000000 2.4 25.52
48100000 2.3 25.52
48200000 2.3 25.52
48300000 2.3 25.53
48400000 2.3 25.53
48500000 2.3 25.53
48600000 2.3 25.53
48700000 2.3 25.54
48800000 2.3 25.54
48900000 2.3 25.54
49000000 2.3 25.55
49100000 2.3 25.55
49200000 2.3 25.55
49300000 2.3 25.56
49400000 2.3 25.56
49500000 2.3 25.56
49600000 2.3 25.56
49700000 2.4 25.57
49800000 2.5 25.57
49900000 2.5 25.57
50000000 2.3 25.58
50100000 2.4 25.58
50200000 2.3 25.58
50300000 2.3 25.58
50400000 2.4 25.59
50500000 2.3 25.59
50600000 2.3 25.59
50700000 2.4 25.60
50800000 2.3 25.60
50900000 2.3 25.60
51000000 2.3 25.60
51100000 2.3 25.61
51200000 2.3 25.61
51300000 2.3 25.61

triples ms log n
51400000 2.3 25.62
51500000 2.4 25.62
51600000 2.3 25.62
51700000 2.3 25.62
51800000 2.3 25.63
51900000 2.3 25.63
52000000 2.3 25.63
52100000 2.3 25.63
52200000 2.3 25.64
52300000 2.3 25.64
52400000 2.3 25.64
52500000 2.2 25.65
52600000 2.3 25.65
52700000 2.3 25.65
52800000 2.3 25.65
52900000 2.3 25.66
53000000 2.2 25.66
53100000 2.3 25.66
53200000 2.3 25.66
53300000 2.3 25.67
53400000 2.2 25.67
53500000 2.3 25.67
53600000 2.2 25.68
53700000 2.3 25.68
53800000 2.3 25.68
53900000 2.3 25.68
54000000 2.3 25.69
54100000 2.3 25.69
54200000 2.3 25.69
54300000 2.1 25.69
54400000 2.2 25.70
54500000 2.3 25.70
54600000 2.2 25.70
54700000 2.3 25.71
54800000 2.2 25.71
54900000 2.3 25.71
55000000 2.3 25.71
55100000 2.2 25.72
55200000 2.4 25.72
55300000 2.3 25.72
55400000 2.3 25.72
55500000 2.3 25.73
55600000 2.3 25.73
55700000 2.3 25.73
55800000 2.3 25.73
55900000 2.3 25.74
56000000 2.3 25.74
56100000 2.4 25.74
56200000 2.3 25.74
56300000 2.3 25.75
56400000 2.3 25.75

Appendix A

260

triples ms log n
56500000 2.3 25.75
56600000 2.3 25.75
56700000 2.3 25.76
56800000 2.4 25.76
56900000 2.3 25.76
57000000 2.3 25.76
57100000 2.2 25.77
57200000 2.3 25.77
57300000 2.3 25.77
57400000 2.3 25.77
57500000 2.3 25.78
57600000 2.3 25.78
57700000 2.2 25.78
57800000 2.3 25.78
57900000 2.3 25.79
58000000 2.3 25.79
58100000 2.3 25.79
58200000 2.3 25.79
58300000 2.2 25.80
58400000 2.3 25.80
58500000 2.3 25.80
58600000 2.3 25.80
58700000 2.3 25.81
58800000 2.3 25.81
58900000 2.3 25.81
59000000 2.3 25.81
59100000 2.3 25.82
59200000 2.3 25.82
59300000 2.3 25.82
59400000 2.3 25.82
59500000 2.3 25.83
59600000 2.3 25.83
59700000 2.3 25.83
59800000 2.2 25.83
59900000 2.3 25.84
60000000 2.3 25.84
60100000 2.3 25.84
60200000 2.3 25.84
60300000 2.3 25.85
60400000 2.3 25.85
60500000 2.3 25.85
60600000 2.4 25.85
60700000 2.3 25.86
60800000 2.4 25.86
60900000 2.3 25.86
61000000 2.3 25.86
61100000 2.4 25.86
61200000 2.3 25.87
61300000 2.3 25.87
61400000 2.3 25.87
61500000 2.4 25.87

triples ms log n
61600000 2.3 25.88
61700000 2.3 25.88
61800000 2.3 25.88
61900000 2.4 25.88
62000000 2.3 25.89
62100000 2.4 25.89
62200000 2.3 25.89
62300000 2.3 25.89
62400000 2.3 25.90
62500000 2.3 25.90
62600000 2.3 25.90
62700000 2.3 25.90
62800000 2.3 25.90
62900000 2.3 25.91
63000000 2.4 25.91
63100000 2.4 25.91
63200000 2.3 25.91
63300000 2.3 25.92
63400000 2.3 25.92
63500000 2.4 25.92
63600000 2.3 25.92
63700000 2.3 25.92
63800000 2.3 25.93
63900000 2.3 25.93
64000000 2.3 25.93
64100000 2.3 25.93
64200000 2.3 25.94
64300000 2.3 25.94
64400000 2.3 25.94
64500000 2.3 25.94
64600000 2.3 25.95
64700000 2.3 25.95
64800000 2.3 25.95
64900000 2.3 25.95
65000000 2.2 25.95
65100000 2.3 25.96
65200000 2.3 25.96
65300000 2.3 25.96
65400000 2.3 25.96
65500000 2.2 25.96
65600000 2.3 25.97
65700000 2.3 25.97
65800000 2.3 25.97
65900000 2.3 25.97
66000000 2.3 25.98
66100000 2.3 25.98
66200000 2.4 25.98
66300000 2.3 25.98
66400000 2.3 25.98
66500000 2.3 25.99
66600000 2.3 25.99

triples ms log n
66700000 2.3 25.99
66800000 2.3 25.99
66900000 2.3 26.00
67000000 2.4 26.00
67100000 2.3 26.00
67200000 2.3 26.00
67300000 2.4 26.00
67400000 2.3 26.01
67500000 2.3 26.01
67600000 2.3 26.01
67700000 2.3 26.01
67800000 2.3 26.01
67900000 2.3 26.02
68000000 2.3 26.02
68100000 2.3 26.02
68200000 2.3 26.02
68300000 2.3 26.03
68400000 2.3 26.03
68500000 2.3 26.03
68600000 2.3 26.03
68700000 2.3 26.03
68800000 2.3 26.04
68900000 2.3 26.04
69000000 2.4 26.04
69100000 2.4 26.04
69200000 2.3 26.04
69300000 2.4 26.05
69400000 2.4 26.05
69500000 2.3 26.05
69600000 2.4 26.05
69700000 2.3 26.05
69800000 2.3 26.06
69900000 2.3 26.06
70000000 2.3 26.06
70100000 2.3 26.06
70200000 2.3 26.06
70300000 2.3 26.07
70400000 2.3 26.07
70500000 2.3 26.07
70600000 2.3 26.07
70700000 2.2 26.08
70800000 2.3 26.08
70900000 2.3 26.08
71000000 2.2 26.08
71100000 2.2 26.08
71200000 2.2 26.09
71300000 2.3 26.09
71400000 2.2 26.09
71500000 2.3 26.09
71600000 2.3 26.09
71700000 2.3 26.10

Natural Language Addressing

261

triples ms log n
71800000 2.2 26.10
71900000 2.2 26.10
72000000 2.3 26.10
72100000 2.2 26.10
72200000 2.3 26.11
72300000 2.3 26.11
72400000 2.3 26.11
72500000 2.3 26.11
72600000 2.2 26.11
72700000 2.3 26.12
72800000 2.2 26.12
72900000 2.3 26.12
73000000 2.3 26.12
73100000 2.3 26.12
73200000 2.4 26.13
73300000 2.3 26.13
73400000 2.3 26.13
73500000 2.4 26.13
73600000 2.4 26.13
73700000 2.4 26.14
73800000 2.3 26.14
73900000 2.3 26.14
74000000 2.4 26.14
74100000 2.4 26.14
74200000 2.4 26.14
74300000 2.4 26.15
74400000 2.4 26.15
74500000 2.4 26.15
74600000 2.5 26.15
74700000 2.4 26.15
74800000 2.5 26.16
74900000 2.4 26.16
75000000 2.4 26.16
75100000 2.4 26.16
75200000 2.4 26.16
75300000 2.5 26.17
75400000 2.4 26.17
75500000 2.4 26.17
75600000 2.4 26.17
75700000 2.4 26.17
75800000 2.5 26.18
75900000 2.4 26.18
76000000 2.3 26.18
76100000 2.3 26.18
76200000 2.3 26.18
76300000 2.3 26.19
76400000 2.2 26.19
76500000 2.2 26.19
76600000 2.2 26.19
76700000 2.2 26.19
76800000 2.2 26.19

triples ms log n
76900000 2.3 26.20
77000000 2.3 26.20
77100000 2.2 26.20
77200000 2.2 26.20
77300000 2.2 26.20
77400000 2.2 26.21
77500000 2.3 26.21
77600000 2.3 26.21
77700000 2.3 26.21
77800000 2.2 26.21
77900000 2.2 26.22
78000000 2.2 26.22
78100000 2.2 26.22
78200000 2.3 26.22
78300000 2.2 26.22
78400000 2.2 26.22
78500000 2.2 26.23
78600000 2.3 26.23
78700000 2.2 26.23
78800000 2.2 26.23
78900000 2.3 26.23
79000000 2.3 26.24
79100000 2.3 26.24
79200000 2.2 26.24
79300000 2.2 26.24
79400000 2.3 26.24
79500000 2.3 26.24
79600000 2.2 26.25
79700000 2.2 26.25
79800000 2.2 26.25
79900000 2.2 26.25
80000000 2.2 26.25
80100000 2.2 26.26
80200000 2.3 26.26
80300000 2.2 26.26
80400000 2.2 26.26
80500000 2.3 26.26
80600000 2.2 26.26
80700000 2.3 26.27
80800000 2.3 26.27
80900000 2.4 26.27
81000000 2.3 26.27
81100000 2.3 26.27
81200000 2.2 26.27
81300000 2.3 26.28
81400000 2.2 26.28
81500000 2.3 26.28
81600000 2.3 26.28
81700000 2.3 26.28
81800000 2.4 26.29
81900000 2.3 26.29

triples ms log n
82000000 2.2 26.29
82100000 2.3 26.29
82200000 2.3 26.29
82300000 2.2 26.29
82400000 2.2 26.30
82500000 2.3 26.30
82600000 2.2 26.30
82700000 2.3 26.30
82800000 2.3 26.30
82900000 2.3 26.30
83000000 2.3 26.31
83100000 2.2 26.31
83200000 2.3 26.31
83300000 2.3 26.31
83400000 2.3 26.31
83500000 2.3 26.32
83600000 2.3 26.32
83700000 2.3 26.32
83800000 2.2 26.32
83900000 2.2 26.32
84000000 2.2 26.32
84100000 2.3 26.33
84200000 2.3 26.33
84300000 2.3 26.33
84400000 2.3 26.33
84500000 2.3 26.33
84600000 2.2 26.33
84700000 2.3 26.34
84800000 2.3 26.34
84900000 2.4 26.34
85000000 2.3 26.34
85100000 2.3 26.34
85200000 2.3 26.34
85300000 2.2 26.35
85400000 2.2 26.35
85500000 2.2 26.35
85600000 2.3 26.35
85700000 2.3 26.35
85800000 2.3 26.35
85900000 2.2 26.36
86000000 2.3 26.36
86100000 2.3 26.36
86200000 2.2 26.36
86300000 2.3 26.36
86400000 2.2 26.36
86500000 2.2 26.37
86600000 2.3 26.37
86700000 2.3 26.37
86800000 2.2 26.37
86900000 2.2 26.37
87000000 2.2 26.37

Appendix A

262

triples ms log n
87100000 2.3 26.38
87200000 2.3 26.38
87300000 2.2 26.38
87400000 2.3 26.38
87500000 2.3 26.38
87600000 2.3 26.38
87700000 2.3 26.39
87800000 2.3 26.39
87900000 2.2 26.39
88000000 2.2 26.39
88100000 2.2 26.39
88200000 2.3 26.39
88300000 2.3 26.40
88400000 2.3 26.40
88500000 2.3 26.40
88600000 2.3 26.40
88700000 2.2 26.40
88800000 2.3 26.40
88900000 2.3 26.41
89000000 2.3 26.41
89100000 2.3 26.41
89200000 2.3 26.41
89300000 2.3 26.41
89400000 2.3 26.41
89500000 2.3 26.42
89600000 2.3 26.42
89700000 2.3 26.42
89800000 2.3 26.42
89900000 2.2 26.42
90000000 2.2 26.42
90100000 2.3 26.43
90200000 2.3 26.43
90300000 2.3 26.43
90400000 2.3 26.43
90500000 2.3 26.43
90600000 2.4 26.43
90700000 2.3 26.43
90800000 2.3 26.44
90900000 2.3 26.44
91000000 2.3 26.44
91100000 2.3 26.44
91200000 2.2 26.44
91300000 2.3 26.44
91400000 2.3 26.45

triples ms log n
91500000 2.2 26.45
91600000 2.3 26.45
91700000 2.3 26.45
91800000 2.3 26.45
91900000 2.3 26.45
92000000 2.4 26.46
92100000 2.3 26.46
92200000 2.3 26.46
92300000 2.3 26.46
92400000 2.2 26.46
92500000 2.3 26.46
92600000 2.2 26.46
92700000 2.3 26.47
92800000 2.3 26.47
92900000 2.3 26.47
93000000 2.2 26.47
93100000 2.3 26.47
93200000 2.2 26.47
93300000 2.3 26.48
93400000 2.3 26.48
93500000 2.3 26.48
93600000 2.3 26.48
93700000 2.3 26.48
93800000 2.3 26.48
93900000 2.2 26.48
94000000 2.3 26.49
94100000 2.3 26.49
94200000 2.3 26.49
94300000 2.3 26.49
94400000 2.3 26.49
94500000 2.4 26.49
94600000 2.2 26.50
94700000 2.3 26.50
94800000 2.3 26.50
94900000 2.3 26.50
95000000 2.3 26.50
95100000 2.4 26.50
95200000 2.3 26.50
95300000 2.4 26.51
95400000 2.3 26.51
95500000 2.3 26.51
95600000 2.3 26.51
95700000 2.3 26.51
95800000 2.2 26.51

triples ms log n
95900000 2.2 26.52
96000000 2.3 26.52
96100000 2.3 26.52
96200000 2.3 26.52
96300000 2.3 26.52
96400000 2.3 26.52
96500000 2.3 26.52
96600000 2.2 26.53
96700000 2.3 26.53
96800000 2.3 26.53
96900000 2.3 26.53
97000000 2.2 26.53
97100000 2.3 26.53
97200000 2.3 26.53
97300000 2.2 26.54
97400000 2.2 26.54
97500000 2.2 26.54
97600000 2.3 26.54
97700000 2.4 26.54
97800000 2.3 26.54
97900000 2.3 26.54
98000000 2.2 26.55
98100000 2.3 26.55
98200000 2.3 26.55
98300000 2.3 26.55
98400000 2.3 26.55
98500000 2.3 26.55
98600000 2.3 26.56
98700000 2.2 26.56
98800000 2.3 26.56
98900000 2.2 26.56
99000000 2.2 26.56
99100000 2.2 26.56
99200000 2.3 26.56
99300000 2.2 26.57
99400000 2.3 26.57
99500000 2.3 26.57
99600000 2.3 26.57
99700000 2.4 26.57
99800000 2.3 26.57
99900000 2.3 26.57

100000000 2.3 26.58
100000112 2.4 26.58

Natural Language Addressing

263

A6. Instruments for the programmers

Every access method is a brick in the whole program system building. Because of this it is

important to ensure apparatus for using its possibilities by the programmers.

For natural language addressing there are several functions which serve its main features.

At the first place this is the function for converting the natural language text in the path. The

sample code in Object Pascal is presented at Figure 101.

function string2coords(ssbeg : string) : TCoordArray;
var ss1 : string;
 ll, ll2, ii, kk, coord : cardinal;
begin
 result[0] := 0;
 ss1 := ssbeg;
 ll := length(ssbeg);
 if ll = 0 then exit;
 ll2 := ll mod 4; // 2; or 4; for UNICODE or ASCII
 if ll2 > 0
 then for ii:=1 to (4-ll2) do ss1 := ss1 + ' ';
 ll2 := length(ss1) div 4;
 result[0] := ll2;
 ii := 0;
 while ii < ll2 do
 begin
 inc(ii);
 coord := 0;
 kk := (ii-1) * 4 + 1;
 coord := coord + ord(ss1[kk]);
 coord := coord shl 8;
 coord := coord + ord(ss1[kk+1]);
 coord := coord shl 8;
 coord := coord + ord(ss1[kk+2]);
 coord := coord shl 8;
 coord := coord + ord(ss1[kk+3]);
 result[ii] := coord;
 end;
 end; {stgring2coords}

Figure 101. A sample function for converting the natural language text in path

The next step is procedure for writing information using NL-addressing. A sample code of

such procedure is presented in Figure 102. It is based on the ArM function for storing information

using a co-ordinate array (WriteA).

Appendix A

264

Procedure NLAWrite (const Name_arch_dat, Name_csv : shortstring);
 var ff : TextFile;
 ArmD : TArm;
 ss_line : string;
 concept, buffer, ss, ss1 : shortstring;
 xx, starttime, endtime, ii : cardinal;
 ccss : TCoordArray;

begin
 ArmD := TArm.Create(Name_arch_dat, false, 'wrkd');
 assignfile(ff, Name_csv);
 reset(ff);

 while not eof(ff) do
 begin
 readln(ff, buffer);
 inc (ii);
 xx := pos(';', buffer);
 if xx > 0
 then begin
 concept := shortstring(copy(buffer, 1, xx - 1));
 concept := del_sb(concept);
 delete(buffer, 1, xx);
 xx := length (buffer);
 if xx > 0 then
 begin
 ccss := string2coords(concept);
 ArmD.WriteA(@ccss, buffer, xx+1);
 end;
 end;
 end;
 closefile(ff);
 ArmD.Free;
end;

Figure 102. A sample code of procedure for storing information using NL-addressing

A sample code of the reverse procedure for reading information using NL-addressing is

presented in Figure 103. It is based on the ArM function for reading information using co-ordinate

array (ReadA).

Procedure NLARead (const Name_arch_dat, Name_words, Name_csv : shortstring);

var ffw, ffcsv : TextFile;
 concept, concept_work, buffer : shortstring;
 ArmD : TArm;
 ss, ss1, ssq, ss_line : string;
 xx, yy, starttime, endtime, ii : cardinal;
 ccss : TCoordArray;
 ind_doc : array of cardinal;

Natural Language Addressing

265

begin
 ArmD := TArm.Create(Name_arch_dat, false, 'rwrkd');
 assignfile(ffw, Name_words);
 reset(ffw);
 assignfile(ffcsv, Name_csv);
 rewrite(ffcsv);

 while not eof(ffw) do
 begin
 readln(ffw, concept);
 yy := length(concept);
 inc (ii);
 if yy > 0
 then begin
 concept_work := del_sb(concept);
 if concept_work <> '' then
 begin
 ccss := string2coords(concept_work);
 xx := 255;
 ArmD.ReadA (@ccss, buffer, xx, 0);
 writeln (ffcsv, concept, ' ; ', buffer);
 end;
 end;
 end;

 closefile(ffw);
 closefile(ffcsv);
 ArmD.Free;
end;

Figure 103. A sample code of procedure for reading information using NL-addressing

The main function for NL-storing and accessing are built in separate executive files. The

programmers need a function for executing these so-called “.exe” files. A sample such function is

presented in Figure 104.

function CreateProcessAndWait(AppPath, AppParams: string; Visibility: word): DWord;
var
 SI: TStartupInfo;
 PI: TProcessInformation;
 Proc: THandle;
begin
 FillChar(SI, SizeOf(SI), 0);
 SI.cb := SizeOf(SI);
 SI.wShowWindow := Visibility;
 SI.dwFlags := STARTF_USEPOSITION;
 SI.dwX := 30;
 SI.dwY := 500;
 if not CreateProcess(Nil, PChar(AppPath+' '+ AppParams), Nil, Nil, False,

Appendix A

266

 Normal_Priority_Class, Nil, Nil, SI, PI)
 then showmessage('Failed to execute program.' + inttostr(GetLastError));

 Proc := PI.hProcess;
 CloseHandle(PI.hThread);
 if WaitForSingleObject(Proc, Infinite) <> Wait_Failed then
 GetExitCodeProcess(Proc, Result);
 CloseHandle(Proc);
end;

Figure 104. A sample function for executing a program

At the end, the same function can be realized using other programming languages like C++,

Java, etc. For instance, in the Institute of Cybernetics V.M.Glushkov in Kiev, Ukraine were prepared

Java interface modules (see Figure 105, Figure 106, and Figure 107).

//NLA-Write

private void NLAWriteActionPerformed(java.awt.event.ActionEvent evt)
{
 this.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 try
 { // TODO add your handling code here:
 FileOutputStream fos1 = null;
 //CSVFileWrite = new File("write_doc.csv");
 try { fos1 = new FileOutputStream(CSVFileWrite); }
 catch (FileNotFoundException ex)
 { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 BufferedWriter writer1 = null;
 try { writer1 = new BufferedWriter(new OutputStreamWriter(fos1, "windows-1251")); }
 catch (UnsupportedEncodingException ex)
 { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 for (int k = 0; k < ArrayTermsForNLAWrite.size(); k++)
 { //System.out.println(model_.get(k).toString());
 try { writer1.append(SelectedFileCanonicalPath + ";" + ArrayTermsForNLAWrite.get(k).toString() + ";");
 writer1.append("\n"); }
 catch (IOException ex) {Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex);}
 }
 writer1.close();
 fos1.close();
 }
 catch (IOException ex) { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }

Figure 105. A sample JAVA interface for NLAWrite program)

 //NLA-Read

 private void NLAReadActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 String S_NLAread;

Natural Language Addressing

267

 ArrayList ArrayNLAread = new ArrayList<String>();
 this.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 Runtime r = Runtime.getRuntime();
 Process p = null;
 try {
 p = r.exec("NLAread.exe " + DataBaseFile.getAbsolutePath() + " rrr_doc.csv " + jTextField1.getText());
 // p = r.exec("wine NLAread.exe " + DataBaseFile.getAbsolutePath() + " rrr_doc.csv " +
jTextField1.getText());
 try { p.waitFor(); }
 catch (InterruptedException ex)
 { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 }
 catch (IOException ex)
 { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 CSVFileRead = new File("rrr_doc.csv");
 try { br_NLAred = new BufferedReader(new InputStreamReader(
 new FileInputStream(CSVFileRead.getAbsolutePath()), ENCODING_WIN1251)); }
 catch (IOException ex)
 { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 try { while ((S_NLAread = br_NLAred.readLine()) != null)
 { ArrayNLAread.add(S_NLAread); ArrayNLAread.add("\n"); } }
 catch (IOException ex) { Logger.getLogger(SemanticMapping.class.getName()).log(Level.SEVERE, null, ex); }
 jTextArea1.setText(ArrayNLAread.toString());
 ArrayNLAread.clear();
 this.setCursor(Cursor.getDefaultCursor());
 }

Figure 106. A sample JAVA interface for NLARead program

Runtime r = Runtime.getRuntime();
 Process p = null;
 try
 { // NLAwrite.exe
 p = r.exec("NLAwrite.exe ArmIndDoc.Dat write_doc.csv");
 //РІ Linux, Mac OS
 //p = r.exec("wine NLAwrite.exe ArmIndDoc.Dat write_doc.csv");
 StatusBar.setText("xxx ");
 try { p.waitFor(); this.setCursor(Cursor.getDefaultCursor()); }
 catch (InterruptedException ex) { Logger.getLogger(exe_run.class.getName()).log(Level.SEVERE, null, ex); }
 }
 catch (IOException ex) { Logger.getLogger(exe_run.class.getName()).log(Level.SEVERE, null, ex); }
}

 ==

String OSver = System.getProperty("os.name");
System.out.println("OS Version -->" + OSver);
if (OSver.startsWith("Win")) { p = r.exec("NLAwrite.exe ArmIndDoc.Dat write_doc.csv"); }
else { p = r.exec("wine NLAwrite.exe ArmIndDoc.Dat write_doc.csv"); }

Figure 107. A sample JAVA interface for executing a program

Appendix A

268

A7. ICON Ontological editor

Creating and editing domain ontologies in ICON is supported by its original ontological

editor [Velychko & Prihodnyuk, 2013]. It is able to read and store ontologies in OWL, XML and

NL-addressing formats.

Internal representation of ontologies in ICON ontological editor is based on Growing

pyramidal networks [Gladun, 2003]. A visualization of such network is given on Figure 108.

Figure 108. A visualization of a Growing pyramidal network

An example of the ontological graph generated by the ICON Ontological Editor is presented

on Figure 109. This visualization of our sample graph (Figure 18) is created by this editor.

In Table 72 the corresponded ICON XML description of sample graph is given. It is

generated automatically.

Natural Language Addressing

269

Figure 109. Screenshot from the ICON Ontological Editor

Table 72. XML description of the sample graph by ICON Ontological Editor

<Graph guid="31FFCF43-06A9-2F48-C2BC-CA5471D54392" >

 <datagroups>

 <datagroup>18</datagroup>

 <datagroup>age</datagroup>

 <datagroup>22</datagroup>

 <datagroup>Group</datagroup>

 <datagroup>2005/07/01</datagroup>

 <datagroup>2001/10/03</datagroup>

 <datagroup>2001/10/04</datagroup>

 <datagroup>2011/02/14</datagroup>

 </datagroups>

 <Nodes>

 <Node guid="CA5736C12F6A" nodeName="Alice" nclass="" shape="circle"

color="13421772" xPos="455" yPos="223" font="Verdana" fontsize="16">

 <data tclass="18" type="text">has_characteristics age</data>

 </Node>

 <Node guid="CA5E0ED51C35" nodeName="Bob" nclass="" shape="circle"

color="13421772" xPos="681" yPos="220" font="Verdana" fontsize="16">

 <data tclass="22" type="text">has_characteristics age</data>

Appendix A

270

 </Node>

 <Node guid="CA5F846D209F" nodeName="Chess" nclass="" shape="circle"

color="13421772" xPos="552" yPos="397" font="Times New Roman" fontsize="20">

 <data tclass="Group" type="text">has_characteristics Type</data>

 </Node>

 </Nodes>

 <Linkgroups>

 <Group name="is member" color="255"/>

 <Group name="Default" color="10066329"/>

 <Group name="members" color="255"/>

 <Group name="knows" color="10092441"/>

 </Linkgroups>

 <Edges>

 <Edge guid="CA6CEE826F6F" edgeName="Alice know" node1="Alice" node2="Bob"

group="knows" istwoway="true">

 <data tclass="2001/10/03" type="text">since</data>

 </Edge>

 <Edge guid="CA6E36B2C117" edgeName="Bob know" node1="Alice" node2="Bob"

group="knows" istwoway="false">

 <data tclass="2001/10/04" type="text">since</data>

 </Edge>

 <Edge guid="CB6FF08FA087" edgeName="is member" node1="Alice" node2="Chess"

group="is member" istwoway="false">

 <data tclass="2005/07/01" type="text">since :</data>

 </Edge>

 <Edge guid="CB70FD6BD805" edgeName="is member" node1="Bob" node2="Chess"

group="is member" istwoway="false">

 <data tclass="2011/02/14" type="text">since :</data>

 </Edge>

 </Edges>

</Graph>

Natural Language Addressing

271

A8. Sample layers in ICON

Storing model chosen in ICON is multi-layer storing of ontology graph based on Natural

Language Addressing. A sample list of layers used for storing common and local ontologies in ICON

is presented in Table 73. It permits a preliminary evaluation of the number of layers needed for ICON

at the project’s first stage (about 50 up to 100).

Table 73. List of sample layers in ICON

Types Layers (Relations)

Classification relations • Class - Subclass. (genus-species) ("Organic compound - alcohol")

 • Element - Class. (element-set) ("Pet - cow")

 • Part - Whole. ("The wheel of the tractor")

 • Above - Below. ("Rector - Dean")

Attributive relations • Object - Property

 • Object - Function

Comparison relations • Association (object-object)

 • Incomparable. ("The weight of the object and the object's color are
incomparable")

 • Comparable. ("The weight of the object and the weight of all parts of the
object")

 • Equal. (Synonyms) ("All sides of an equilateral triangle are equal")

 • Greater than ("Turkey is greater than chicken")

 • Less than ("The density of ice is less than that of water").

Arrangement relations • Be the following ("Ann came after John")

 • Be the next ("In the spring, it was the turn of the summer")

 • Be the nearest ("Zelenodolsk is the nearest town to the city of Kazan”)

Modal relations • Existence

 • Possibility ("The plane may take off ")

 • Necessity ("Five lorries are needed for the export of the crop")

 • Modifiers. ("It is desirable that you are not late for the start of the session")

Causal relations • Purpose ("We want to climb the mountain")

 • Reason ("He violated his oath")

Appendix A

272

Types Layers (Relations)

 • Cause - effect. ("Hot coal burned material")

Temporal relations • Be at the same time. ("Jane and Elan came to the beginning of classes")

 • Be earlier ("The building was finished a month early.")

 • Be later on ("He come to studio an hour later on usual")

 • During the time interval ("During your stay in London we will visit the
Royal Theater")

 • Start simultaneously. ("They start speaking at the same time")

 • Finish simultaneously. ("We finish our work at the same time you finish
yours")

 • Coincide in time. ("Time of departure of aircraft and the train to Brussels –
19:00")

 • Overlap in time. ("The conferences overlap each other in two days")

Spatial relations • Be on the left. ("The car stopped on the left of the tree")

 • Be on the right. ("On the right of the car there was a green tree")

 • Be in front. ("In front the teacher were two students")

 • Be at the back. ("The car stopped at the back of the house")

 • At the side. ("At the side of the road there is a lake.")

 • Touch. ("Clouds floated touching the roofs of houses")

 • To be on. ("The table is on the floor")

 • Be on top. ("They put the books on top of the bookshelf.")

 • Be below. ("Under the ice river flowed peacefully")

 • Be in. ("There were five people in the crew cabin.)

 • Intersect in space. ("The road intersects the forest.")

 • Coincide in space. ("Two conferences coincide in this building.")

Quantifiers • Universal quantifier. ("All first-year students passed the exam on the
programming.")

 • Existential quantifier. ("There exists at least one student who is able to solve
the quadratic equation.")

Information relations • Be sender. ("They submit the paper to the journal.”)

 • Be recipient. ("The editorial board received the paper.")

 • Be source of information. ("He told me that the order is ready.”)

Natural Language Addressing

273

Appendix B: Brief descriptions of the main mentioned tools

B1. Protégé 4.2

http://protege.stanford.edu/

Protégé was developed by the “Stanford Center for Biomedical Informatics Research” at the

Stanford University School of Medicine. This is a tool which allows a user to construct domain

ontology, customize data entry forms and enter data. The tool can be easily extended to access other

knowledge based embedded applications. For example, Graphical widgets can be added for tables and

diagrams. Protégé can also be used by other applications to access the data.

Protégé allows a user to simultaneously work on classes and instances. This is provided for

by a uniform GUI whose top level is composed of overlapping tabs for compact representation

[protégé, 2012; protégé-owl, 2012].

Protégé platform supports two main ways of modeling ontologies:

― Protégé-Frames editor: enables users to build and distribute ontologies, which are based

on frame structures corresponding to “Open Knowledge Base Connectivity” (OKBC)

protocol;

― Protégé-OWL editor: enables users to build ontologies on the Semantic Web, especially

the using W3C's Web Ontology Language (OWL) [OWL, 2004].

Protégé Basic features:

― Import format - XML, RDF(S) and XML Schema;

― Export format - XML, RDF(S), XML Schema, FLogic, CLIPS and Java HTML;

― Graph view - Via GraphViz plug-in (browsing of classes and global properties); Via

Jambalaya plug-in (nested graph view);

― Consistency check - Via plug-ins (PAL and FaCT);

― Limited multi-user support - Protégé has some multi-user capabilities added to it. It is

intended for experienced Protégé users. Multiple users can read the same database and

make incremental changes or changes that don't conflict with one another. However,

there's no support for multiple users trying to modify the same elements of a knowledge

base or notification of changes made by other users. Concurrent changes to the same

section will cause severe problems;

Appendix B

274

― Web support - Via Protégé-OWL plug-in; Protégé doesn't provide direct support for

accessing knowledge base from the web, but it can easily be done. A number of users

have communicated with Protégé knowledge bases from the Web via servlets. Protégé

can be run as an applet.

Additional features:

― Merging - Via Anchor-PROMPT plug-in;

― Not support to add a new basic type;

― Extensible plug-in architecture;

― Ontology storage - File and DBMS (JDBC).

There is an additional option in Protégé, which serves the storing of ontologies in various

relational databases, called OntoBase [Yabloko, 2011].

It should be noted that the same name “OntoBase” is used in [Pan & Pan, 2006], but without

any connection to Protégé.

Originally, Protégé has a single table that stores entire contents of the knowledge base which

is developed as a frame based one [protégé, 2012].

The frame table has a fixed number of columns which are listed below in

Table 74. It includes classes, slots, facets and instances. The Protégé meta-class architecture is used

explicitly in the table to simplify things: all classes, slots, and facets are treated as frames.

Each entry in the database corresponds to a frame in Protégé. Classes have slots such as

":DIRECT_SUPERCLASS" to maintain the inheritance hierarchy. All frames have a “:NAME” slot

which contains name of frame.

Table 74. Protégé database format

Column Description

frame - [integer]

frame id Frame ID's < 10000 are reserved for the system. The frame

ids for system frames are declared in the file:

edu.stanford.smi.protege.model.Model.java

frame_type - [smallint] same as "value_type" but for the frame column

slot - [integer] slot frame id

facet - [integer] facet frame id (0 if not a facet value)

is_template - [smallint] 0 => value is OKBC "own", 1 => value is OKBC "template"

value_index - [integer]
number used to maintain relative ordering of slot_or_facet_value

entries for a frame-slot(-facet) combination

value_type - [smallint]

number used to indicate the "type" of the value stored in

slot_or_facet_value. The number-to-type conversion is given in the

file: edu.stanford.smi.protege.storage.database.DatabaseUtils.java

slot_or_facet_value -

[varchar(N)]

facet value if facet is not 0, slot value otherwise. Holds values of

length that will fit in a varchar (typically <= 255)

long_slot_or_facet_value -

[longvarchar]

same as slot_or_facet_value but holds values too long to fit in

slot_or_facet_value

Natural Language Addressing

275

In the case of the superclass and subclass relations, Protégé stores duplicated information.

For example with class A it stores that its subclass is B and with B it stores that its superclass

is A.

Maintaining separate records for these relations is necessary to maintain the ordering of both

subclasses and superclasses. So while the "slot value" information is indeed duplicated in these

records, the "index" information is unique (Subclass ordering is a user-interface feature that a number

of users have requested. Protégé attaches no meaning to the ordering of superclasses or subclasses.)

[protégé, 2012].

To illustrate the using of Protégé we use our sample graph.

For easy reading, below we reproduce the description by triples of the sample graph.

Subject Relation Object

Alice has_characteristics Alice – Age : 18

Alice knows Bob – since : 2001/10/03

Alice is_member Chess – since : 2005/07/01

Bob has_characteristics Bob – Age : 22

Bob knows Alice – since : 2001/10/04

Bob is_member Chess – since : 2011/02/14

Chess has_characteristics Chess –Type : Group

Chess members Alice; Bob

The visualization is shown at Figure 110. Some information could not be viewed (like dates

and etc.). The corresponded OWL and RDF descriptions of the sample graph are given in Table 75

and Table 76.

Figure 110. Protégé graphical representation of the sample graph

Appendix B

276

Table 75. The Protégé QWL description of the sample graph

Prefix(owl:=<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2002/07/owl#>)

Prefix(rdf:=<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(xml:=<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/XML/1998/namespace>)

Prefix(xsd:=<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2000/01/rdf-schema#>)

Ontology(<http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-

18#http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-18>

Declaration(Class(<http://www.co-ode.org/ontologies/ont.owl#Club>))
Declaration(Class(<http://www.co-ode.org/ontologies/ont.owl#People>))
Declaration(ObjectProperty(<http://www.co-ode.org/ontologies/ont.owl#is_member>))
AnnotationAssertion(<http://www.co-ode.org/ontologies/ont.owl#since> <http://www.co-

ode.org/ontologies/ont.owl#is_member> "")
InverseObjectProperties(<http://www.co-ode.org/ontologies/ont.owl#members> <http://www.co-

ode.org/ontologies/ont.owl#is_member>)
InverseFunctionalObjectProperty(<http://www.co-ode.org/ontologies/ont.owl#is_member>)
Declaration(ObjectProperty(<http://www.co-ode.org/ontologies/ont.owl#knows>))
AnnotationAssertion(<http://www.co-ode.org/ontologies/ont.owl#since> <http://www.co-

ode.org/ontologies/ont.owl#knows> "")
Declaration(ObjectProperty(<http://www.co-ode.org/ontologies/ont.owl#members>))
AnnotationAssertion(<http://www.co-ode.org/ontologies/ont.owl#since> <http://www.co-

ode.org/ontologies/ont.owl#members> "")
InverseObjectProperties(<http://www.co-ode.org/ontologies/ont.owl#members> <http://www.co-

ode.org/ontologies/ont.owl#is_member>)
FunctionalObjectProperty(<http://www.co-ode.org/ontologies/ont.owl#members>)
Declaration(DataProperty(<http://www.co-ode.org/ontologies/ont.owl#Age>))
DataPropertyDomain(<http://www.co-ode.org/ontologies/ont.owl#Age> <http://www.co-

ode.org/ontologies/ont.owl#People>)
DataPropertyDomain(<http://www.co-ode.org/ontologies/ont.owl#Age>

DataAllValuesFrom(<http://www.co-ode.org/ontologies/ont.owl#Age>
<http://www.w3.org/2001/XMLSchema#decimal>))

Declaration(DataProperty(<http://www.co-ode.org/ontologies/ont.owl#type>))
DataPropertyDomain(<http://www.co-ode.org/ontologies/ont.owl#type>

DataAllValuesFrom(<http://www.co-ode.org/ontologies/ont.owl#type>
<http://www.w3.org/2000/01/rdf-schema#Literal>))

Declaration(NamedIndividual(<http://www.co-ode.org/ontologies/ont.owl#Alice>))
ClassAssertion(<http://www.co-ode.org/ontologies/ont.owl#People> <http://www.co-

ode.org/ontologies/ont.owl#Alice>)
ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>

"2005/07/01") <http://www.co-ode.org/ontologies/ont.owl#is_member> <http://www.co-
ode.org/ontologies/ont.owl#Alice> <http://www.co-ode.org/ontologies/ont.owl#Chess>)

ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>
"2001/10/03") <http://www.co-ode.org/ontologies/ont.owl#knows> <http://www.co-
ode.org/ontologies/ont.owl#Alice> <http://www.co-ode.org/ontologies/ont.owl#Bob>)

Natural Language Addressing

277

DataPropertyAssertion(<http://www.co-ode.org/ontologies/ont.owl#Age> <http://www.co-
ode.org/ontologies/ont.owl#Alice> "18")

Declaration(NamedIndividual(<http://www.co-ode.org/ontologies/ont.owl#Bob>))
ClassAssertion(<http://www.co-ode.org/ontologies/ont.owl#People> <http://www.co-

ode.org/ontologies/ont.owl#Bob>)
ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>

"2011/02/14") <http://www.co-ode.org/ontologies/ont.owl#is_member> <http://www.co-
ode.org/ontologies/ont.owl#Bob> <http://www.co-ode.org/ontologies/ont.owl#Chess>)

ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>
"2001/10/04") <http://www.co-ode.org/ontologies/ont.owl#knows> <http://www.co-
ode.org/ontologies/ont.owl#Bob> <http://www.co-ode.org/ontologies/ont.owl#Alice>)

DataPropertyAssertion(<http://www.co-ode.org/ontologies/ont.owl#Age> <http://www.co-
ode.org/ontologies/ont.owl#Bob> "22")

Declaration(NamedIndividual(<http://www.co-ode.org/ontologies/ont.owl#Chess>))
ClassAssertion(<http://www.co-ode.org/ontologies/ont.owl#Club> <http://www.co-

ode.org/ontologies/ont.owl#Chess>)
ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>

"2011/02/14") <http://www.co-ode.org/ontologies/ont.owl#members> <http://www.co-
ode.org/ontologies/ont.owl#Chess> <http://www.co-ode.org/ontologies/ont.owl#Bob>)

ObjectPropertyAssertion(Annotation(<http://www.co-ode.org/ontologies/ont.owl#since>
"2005/07/01") <http://www.co-ode.org/ontologies/ont.owl#members> <http://www.co-
ode.org/ontologies/ont.owl#Chess> <http://www.co-ode.org/ontologies/ont.owl#Alice>)

DataPropertyAssertion(<http://www.co-ode.org/ontologies/ont.owl#type> <http://www.co-
ode.org/ontologies/ont.owl#Chess> "group")

Declaration(AnnotationProperty(<http://www.co-ode.org/ontologies/ont.owl#since>))
)

Table 76. The Protégé RDF description of the sample graph

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY ont "http://www.co-ode.org/ontologies/ont.owl#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY owl "http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY xml "http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/XML/1998/namespace" >
 <!ENTITY rdfs "http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>

<rdf:RDF xmlns="http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-18#"

Appendix B

278

 xml:base="http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-18"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:ont="http://www.co-ode.org/ontologies/ont.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-18#&rdf;"
 xmlns:xml="http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.w3.org/XML/1998/namespace">
 <owl:Ontology rdf:about="http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-
18#http://www.semanticweb.org/wiki/ontologies/2013/2/untitled-ontology-18"/>

 <!--
 ///
 //
 // Annotation properties
 //
 ///
 -->

 <!-- http://www.co-ode.org/ontologies/ont.owl#since -->

 <owl:AnnotationProperty rdf:about="&ont;since"/>

 <!--
 ///
 //
 // Object Properties
 //
 ///
 -->

 <!-- http://www.co-ode.org/ontologies/ont.owl#is_member -->

 <owl:ObjectProperty rdf:about="&ont;is_member">
 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
 <ont:since></ont:since>
 </owl:ObjectProperty>

 <!-- http://www.co-ode.org/ontologies/ont.owl#knows -->

 <owl:ObjectProperty rdf:about="&ont;knows">
 <ont:since></ont:since>
 </owl:ObjectProperty>

 <!-- http://www.co-ode.org/ontologies/ont.owl#members -->

 <owl:ObjectProperty rdf:about="&ont;members">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <ont:since></ont:since>
 <owl:inverseOf rdf:resource="&ont;is_member"/>
 </owl:ObjectProperty>

Natural Language Addressing

279

 <!--
 ///
 //
 // Data properties
 //
 ///
 -->

 <!-- http://www.co-ode.org/ontologies/ont.owl#Age -->

 <owl:DatatypeProperty rdf:about="&ont;Age">
 <rdfs:domain rdf:resource="&ont;People"/>
 <rdfs:domain>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&ont;Age"/>
 <owl:allValuesFrom rdf:resource="&xsd;decimal"/>
 </owl:Restriction>
 </rdfs:domain>
 </owl:DatatypeProperty>

 <!-- http://www.co-ode.org/ontologies/ont.owl#type -->

 <owl:DatatypeProperty rdf:about="&ont;type">
 <rdfs:domain>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&ont;type"/>
 <owl:allValuesFrom rdf:resource="&rdfs;Literal"/>
 </owl:Restriction>
 </rdfs:domain>
 </owl:DatatypeProperty>

 <!--
 ///
 //
 // Classes
 //
 ///
 -->

 <!-- http://www.co-ode.org/ontologies/ont.owl#Club -->

 <owl:Class rdf:about="&ont;Club"/>

 <!-- http://www.co-ode.org/ontologies/ont.owl#People -->

 <owl:Class rdf:about="&ont;People"/>

 <!--
 ///
 //
 // Individuals
 //

Appendix B

280

 ///
 -->

 <!-- http://www.co-ode.org/ontologies/ont.owl#Alice -->

 <owl:NamedIndividual rdf:about="&ont;Alice">
 <rdf:type rdf:resource="&ont;People"/>
 <ont:Age>18</ont:Age>
 <ont:knows rdf:resource="&ont;Bob"/>
 <ont:is_member rdf:resource="&ont;Chess"/>
 </owl:NamedIndividual>
 <owl:Axiom>
 <ont:since>2001/10/03</ont:since>
 <owl:annotatedSource rdf:resource="&ont;Alice"/>
 <owl:annotatedTarget rdf:resource="&ont;Bob"/>
 <owl:annotatedProperty rdf:resource="&ont;knows"/>
 </owl:Axiom>
 <owl:Axiom>
 <ont:since>2005/07/01</ont:since>
 <owl:annotatedSource rdf:resource="&ont;Alice"/>
 <owl:annotatedTarget rdf:resource="&ont;Chess"/>
 <owl:annotatedProperty rdf:resource="&ont;is_member"/>
 </owl:Axiom>

 <!-- http://www.co-ode.org/ontologies/ont.owl#Bob -->

 <owl:NamedIndividual rdf:about="&ont;Bob">
 <rdf:type rdf:resource="&ont;People"/>
 <ont:Age>22</ont:Age>
 <ont:knows rdf:resource="&ont;Alice"/>
 <ont:is_member rdf:resource="&ont;Chess"/>
 </owl:NamedIndividual>
 <owl:Axiom>
 <ont:since>2011/02/14</ont:since>
 <owl:annotatedSource rdf:resource="&ont;Bob"/>
 <owl:annotatedTarget rdf:resource="&ont;Chess"/>
 <owl:annotatedProperty rdf:resource="&ont;is_member"/>
 </owl:Axiom>
 <owl:Axiom>
 <ont:since>2001/10/04</ont:since>
 <owl:annotatedTarget rdf:resource="&ont;Alice"/>
 <owl:annotatedSource rdf:resource="&ont;Bob"/>
 <owl:annotatedProperty rdf:resource="&ont;knows"/>
 </owl:Axiom>

 <!-- http://www.co-ode.org/ontologies/ont.owl#Chess -->

 <owl:NamedIndividual rdf:about="&ont;Chess">
 <rdf:type rdf:resource="&ont;Club"/>
 <ont:type>group</ont:type>
 <ont:members rdf:resource="&ont;Alice"/>
 <ont:members rdf:resource="&ont;Bob"/>
 </owl:NamedIndividual>

Natural Language Addressing

281

 <owl:Axiom>
 <ont:since>2005/07/01</ont:since>
 <owl:annotatedTarget rdf:resource="&ont;Alice"/>
 <owl:annotatedSource rdf:resource="&ont;Chess"/>
 <owl:annotatedProperty rdf:resource="&ont;members"/>
 </owl:Axiom>
 <owl:Axiom>
 <ont:since>2011/02/14</ont:since>
 <owl:annotatedTarget rdf:resource="&ont;Bob"/>
 <owl:annotatedSource rdf:resource="&ont;Chess"/>
 <owl:annotatedProperty rdf:resource="&ont;members"/>
 </owl:Axiom>
</rdf:RDF>

<!-- Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net -->

This example show that the sentence “OWL and RDF are easy readable by humans” is not

the all truth. Linearizing the information is suitable solution for telecommunication and computer

processing, but it is not easy understandable by humans.

Let remember multi-layer representation of the sample graph. What is presented in four rows

below is the same as one presented on two (OWL) or four and half pages (RDF) above.

 space addresses

file name Alice Bob Chess

has_characteristics Alice - Age: 18 Bob - Age: 22 Chess - Type: Group

knows
Bob - since :
2001/10/03

Alice - since:
2001/10/04

members

Alice - since:
2005/07/01;
Bob - since:
2011/02/14

is_member
Chess - since:

2005/07/01
Chess - since:

2011/02/14

The main conclusion is that we still need new approaches for representing the knowledge

which will correspond both to human and machine possibilities. Because of this, in addition to

Protégé, ICON implements the NL-addressing features for storing the dictionaries, thesauruses and

ontologies.

Appendix B

282

B2. SPARQL

The “Simple Protocol and RDF Query Language” (SPARQL) is a SQL-like language for

querying RDF data. SPARQL allows querying for triples from an RDF database (or triple store). RDF

doesn't use foreign and primary keys either. It uses URIs, the standard reference format for the World

Wide Web. By using URIs, a triple store immediately has the potential to link to any other data in any

triple store. That plays to the distributed strengths of the Web.

Because triple stores are large amorphous collections of triples, SPARQL queries by

defining a template for matching triples, called a Graph Pattern. To get data out of the triple store

using SPARQL, you need to define a pattern that matches the statements in the graph. Those will be

questions like this: find me the subjects of all the statements that say 'plays guitar'. Example below

shows a query over data defined using the ontology about music:

PREFIX : <http://aabs.purl.org/music#>

SELECT ?instrument

WHERE {:andrew :playsInstrument ?instrument }

The query says "find all the triples that have a subject of :andrew and a predicate of

:playsInstrument, then get the objects of the matching triples and return them" [SPARQL, 2013].

Another example of a SELECT query follows.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .

?x foaf:mbox ?mbox . }

The first line defines namespace prefix, the last two lines use the prefix to express a RDF

graph to be matched. Identifiers beginning with question mark ? identify variables. In this query, we

are looking for resource ?x participating in triples with predicates foaf:name and foaf:mbox and want

the subjects of these triples. Syntactic shortcuts of TURTLE can be used in the matching part.

In addition to specifying graph to be matched, constraints can be added for values using

FILTER construct. An example of string value restriction is FILTER regex(?mbox, "company") that

specifies regular expression query. An example of number value restriction is FILTER (?price < 20)

that specifies that ?price must be less than 20. A few special operators are defined for the FILTER

construct. They include isIRI for testing whether variable is IRI/URI, isLiteral for testing whether

variable is literal, bound to test whether variable was bound and others - see the specification.

The matching part of the query may include OPTIONAL triples. If the triple to be matched is

optional, it is evaluated when it is present, but the matching does not fail when it is not present.

Optional sections may be nested. It is possible to make UNION of multiple matching graphs - if any of

the graphs matches, the match will be returned as a result. The FROM part of the query is optional and

may specify the RDF dataset on which query is performed.

Natural Language Addressing

283

The sequence of result may be modified using the following keywords with the meaning

similar to SQL:

― ORDER BY - ordering by variable value;

― DISTINCT - unique results only;

― OFFSET - offset from which to show results;

― LIMIT - the maximum number of results.

There are four query result forms. In addition to the possibility of getting the list of values

found it is also possible to construct RDF graph or to confirm whether a match was found or not.

― SELECT - returns the list of values of variables bound in a query pattern;

― CONSTRUCT - returns an RDF graph constructed by substituting variables in the query

pattern;

― DESCRIBE - returns an RDF graph describing the resources that were found;

― ASK - returns a Boolean value indicating whether the query pattern matches or not.

The CONSTRUCT form specifies a graph to be returned with variables to be substituted

from the query pattern, such as in the following example that will return graph saying that Alice

knows last two people when ordered by alphabet from the given URI (the result in the RDF graph is

not ordered, it is a graph and so the order of triples is not important).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { <http://example.org/person#Alice> foaf:knows ?x }

FROM <http://example.org/foaf/people>

WHERE { ?x foaf:name ?name }

ORDER BY desc(?name)

LIMIT 2

The DESCRIBE form will return information about matched resources in a form of an RDF

graph. The exact form of this information is not standardized yet, but usually a blank node closure

like, for example, Concise Bounded Description (CBD) is expected. In short, all the triples that have

the matched resource in the object are returned; when a blank node is in the subject, then the triples in

which this node participates as object are recursively added as well.

The ASK form is intended for asking yes/no questions about matching - no information

about matched variables is returned, the result is only indicating whether matching exists or not

[Obitko, 2007a].

Appendix B

284

B3. Storage characteristics of analyzed RDF triple stores

 B3.1. DBMS based approaches

 3store

3Store is MySQL based triple store, currently holding over 30 million RDF triples used by a

range of Knowledgeable Services developed within the Advanced Knowledge Technologies project

(AKT) [AKT Project, 2013] led by Nigel Shadbolt from Southampton. It is concerned with the

management of the knowledge life cycle.

3store is a core C library that uses MySQL to store its raw RDF data and caches. The library

offers OKBC and RDQL query interfaces, over HTTP (via an Apache web server module), or directly

though the C library.

The server software itself does not expose any interfaces directly to the user, but it can be

queried by a number of services, including a column based view and a direct RDF browser.

3store is distributed under the Gnu General Public License, and is available from Source
forge [3storeSF, 2013].

 Jena

Jena is a Java toolkit for manipulating RDF models which has been developed by Hewlett-

Packard Labs [Jena, 2013]. It has excellent support for RDQL queries, but does not provide an OKBC

interface (however, given the level of RDQL support provided, the addition of an OKBC compatibility

layer would be straightforward for the portion of the OKBC API that was implemented in the previous

version of 3store).

Jena is a java framework for building semantic web applications. Jena implements APIs for

dealing with Semantic Web building blocks such as RDF and OWL. Jena's fundamental class for users

is the Model, an API for dealing with a set of RDF triples. A Model can be created from the file

system or from a remote file. Using JDBC, it can also be tied to an existing RDBMS such as MySQL

or PostgreSQL.

SDB is a component of Jena [CTS, 2012]. It provides for scalable storage and query of RDF

datasets using conventional SQL databases for use in standalone applications, J2EE, and other

application frameworks. The storage, as mentioned, is provided by an SQL database and many

databases are supported, both open source and proprietary. An SDB store can be accessed and

managed with the provided command line scripts and via the Jena API. In addition on the fine grain

access provided by the Jena API, SDB can be coupled with the web-server - ‘Joseki’ - which is

SPARQL query server. This enables an SDB store to be queried over HTTP. Jena recently introduced

a non-transactional native store called TDB [CTS, 2012].

Natural Language Addressing

285

The attempt to import one of hyphen's larger RDF files (comprising around 5% of the data)

into Jena, using its default MySQL back-end, had not completed after 24 hours it the import (the

preliminary indications are that it repeatedly refreshes its database indexes during the import). From

this experience, conclusion is that Jena is unsuitable for storing large volume of data [Harris &

Gibbins, 2003].

 RDFSuite

RDF Suite is a set of high-level and scalable services enabling the realization of the full

potential of the Semantic Web.

The RDF Suite is used by academics and software developers to produce scalable

applications that rely on validating RDF/S compatible data for the Semantic Web.

RDF Suite supports the storage, query and update of semantic conceptualizations and thus

can be used in order to store and better track and understand changes and evolution in the way users

create and understand knowledge [RDF Suite, 2013].

 Sesame

Sesame is a de-facto standard framework for processing RDF data. This includes parsing,

storing, inference and querying of/over such data. It offers an easy-to-use API that can be connected to

all leading RDF storage solutions [Sesame, 2012].

Sesame can be deployed on top of a variety of storage systems (relational databases, in-

memory, file systems, keyword indexers, etc.), and offers a large scale of tools to developers to

leverage the power of RDF and related standards. Sesame fully supports the SPARQL query language

for expressive querying and offers transparent access to remote RDF repositories using the exact same

API as for local access. Finally, Sesame supports all main stream RDF file formats, including

RDF/XML, Turtle, N-Triples, TriG and TriX.

Sesame is an open source framework for storage, inference and querying of RDF data.

Sesame matches the features of Jena with the availability of a connection API, inference support,

availability of a web server and SPARQL endpoint. Like Jena SDB it provides support for multiple

backends like MySQL and Postsgre.

 4store

4store is an RDF database that was designed by Steve Harris and developed at “Garlik” Co.

to underpin their Semantic Web applications. It has been used by Garlik as their primary RDF

platform for three years, and has proved itself to be robust and secure. 4store makes use of the Raptor

and Rasqal libraries that have been developed for Redland [4store, 2013].

4store is a database storage and query engine that holds RDF data. 4store's main strengths

are its performance, scalability and stability. It does not provide many features over and above RDF

Appendix B

286

storage and SPARQL queries, but if you are looking for a scalable, secure, fast and efficient RDF

store, then 4store should be on your shortlist.

 Oracle

Oracle Spatial and Graph RDF Semantic Graph (Formerly Oracle Database Semantic

Technologies) is an open, standards-based, scalable, secure, reliable, and performance RDF

management platform. Based on a graph data model, RDF data (triples) are persisted, indexed and

queried, like other object-relational data types [Oracle, 2013].

Application developers use the power of the Oracle Database to design and develop a wide

range of semantic-enhanced business applications in areas that include intelligence, law enforcement,

integrated bioinformatics and health care informatics, finance, web social network, and media, games,

and content management.

Oracle provides the industry’s leading spatial database management platform. Oracle Spatial

and Graph option includes advanced features for spatial data and analysis as well as for physical,

network and social graph applications. The geospatial data features support complex Geographic

Information Systems (GIS) applications, enterprise applications and location-based services

applications. The graph features include a network data model (NDM) graph to model and analyze

link-node graphs to represent physical and logical networks used in industries such as transportation

and utilities. In addition, Oracle Spatial and Graph includes support for RDF semantic graphs used in

social networks and social interactions.

The RDF semantic graph feature of Oracles Spatial and Graph provides a robust and

standards-based platform on which to build semantic solutions. Identifying the business requirements

and benefits, project requirements, application functionality, and design considerations helps in

planning and discussing the project with Oracle. This information can help Oracle provide

recommendations and best practices to facilitate a successful project.

Storing RDF data in a relational database requires an appropriate table design. There are

different approaches that can be classified in generic schemas, i.e. schemas that do not depend on the

ontology, and ontology specific schemas.

Current Object-oriented databases (ORDBMS) provide the suitable facility which allows for

a better modeling of the subclass and sub-property relationships [Broekstra, 2005; Alexaki et al,

2001].

DBMS “Oracle” offers another object-relational feature: an own data type to store RDF

based on a graph data model [oracledb, 2012; OSTI, 2009]. RDF triples can be persisted, indexed and

queried, similar to other object-relational data types.

Although the RDF model has several object-oriented characteristics and most RDF stores are

internally working with an object model, approaches to store RDF data and schema information using

object database management systems (ODBMS) are rarely known. (Object-) Relational databases are

still predominant, when large amounts of data have to be persisted on a server and object databases did

not and will most probably not replace them. However, new developments of ODBMS may show

Natural Language Addressing

287

some advantages over RDBMS in certain applications, e.g. for embeddable persistence solutions in

mobile devices [Hertel et al, 2009].

A special attention has to be paid to the Oracle “Berkeley DB” as a tool for storing RDF

information [Berkeley DB, 2012]. Oracle Berkeley DB is the industry-leading open source,

embeddable storage engine that provides developers a fast, reliable, local database with zero

administration. Oracle Berkeley DB is a library that links directly into your application. Your

application makes simple function calls, rather than sending messages to a remote server, eliminating

the performance penalty of client-server architectures.

Berkeley DB has a number of key advantages over comparable systems. It is simple to use,

supports concurrent access by multiple users, and provides industrial-strength transaction support,

including surviving system and disk crashes.

Berkeley DB supports three access methods: B+tree, Extended Linear Hashing (Hash), and

Fixed- or Variable- length Records (Recno). All three operate on records composed of a key and a data

value. In the B+tree and Hash access methods, keys can have arbitrary structure. In the Recno access

method, each record is assigned a record number, which serves as the key. In all the access methods,

the value can have arbitrary structure. The programmer can supply comparison or hashing functions

for keys, and Berkeley DB stores and retrieves values without interpreting them. All of the access

methods use the host file system as a backing store [Olson et al, 1999] (Figure 111).

Figure 111. Main features of Oracle Berkeley DB

Appendix B

288

 B3.2. Multiple indexing frameworks

 YARS

YARS (Yet Another RDF Store) [YARS, 2013] is a data store for RDF in Java and allows

for querying RDF based on a declarative query language, which offers a somewhat higher abstraction

layer than the APIs of RDF toolkits such as Jena or Redland. YARS uses Notation3 as a way of

encoding facts and queries.

The main requirement for YARS is to enable fast storage and retrieval of large amounts of

RDF (in the order of millions of triples) while keeping a small footprint and a lightweight architecture

approach.

There is a JDBC-like API for YARS available that can be used to issue calls either locally or

via HTTP within Java programs. Active RDF is a library for accessing RDF data from within Ruby

programs by addressing RDF resources, classes, properties, etc. programmatically, without queries.

RDF2Go is an abstraction over triple (and quad) stores and has support for YARS as a backend store.

The YARS system combines methods from Information Retrieval and Databases to allow for

better query answering performance over RDF data. It stores RDF data persistently by using six B+

tree indices. It not only stores the subject, the predicate and the object, but also the context information

about the origin of the data. Each element of the corresponding quad (i.e., 4-uplet) is encoded in a

dictionary storing mappings from literals and URIs to object IDs (OIDs-stored as number identifiers

for compactness). To speed up keyword queries, the lexicon keeps an inverted index on string literals

to allow fast full-text searches. In each B+ tree, the key is a concatenation of the subject, predicate,

object and context. The six indices constructed cover all the possible access patterns of quads in the

form (s, p, o, c) where c is the context of the triple (s, p, o). This representation allows fast retrieval of

all triple access patterns. Thus, it is also oriented towards simple statement-based queries and has

limitations for efficient processing of more complex queries. The proposal sacrifices space and

insertion speed for query performance since, to retrieve any access pattern with a single index lookup,

each triple is encoded in the dictionary six times, in different sorting order. Inference is not supported.

 Kowari

KowariTM is an Open Source, massively scalable, transaction-safe, purpose-built database for

the storage and retrieval of metadata [Kowari, 2004].

Much like a relational database, one stores information in Kowari and retrieves it via a query

language. Unlike a relational database, Kowari is optimized for the storage and retrieval of many short

statements (in the form of subject-predicate-object, like "Kowari is fun" or "Kowari imports RDF").

Kowari is not based on a relational database due to the large numbers of table joins encountered by

relational systems when dealing with metadata. Instead, Kowari is a completely new database

optimized for metadata management.

Natural Language Addressing

289

Kowari is implemented in the Java programming language and is 100% Java. It depends on

standard Java packages available from Sun MicrosystemsTM. Kowari also includes Java code from

other projects. Details may be found on the Legal page [Kowari, 2004].

The Kowari system uses an approach similar to YARS. Indeed, the RDF statements are also

stored as quads in which the first three items form a standard RDF triple and the fourth describes in

which model the statement appears. The approach also uses six different orderings of quad elements

acting as a compound index, and independently contains all the statements of the RDF store. In this

ordering, the four quad elements can be arranged such that any collection of one to four elements can

be used to find any matching statement or group of statements. However, Kowari uses a hybrid of

AVL and B trees instead of B+ trees for multiple indexing purposes. Kowari solution also envisions

simple statement-based queries like YARS.

 Virtuoso

OpenLink Virtuoso is the first CROSS PLATFORM Universal Server to implement Web,

File, and Database server functionality alongside Native XML Storage, and Universal Data Access

Middleware, as a single server solution [Virtuoso, 2013]. Virtuoso is a native triple store available in

both open source and commercial licenses. It provides command line loaders, a connection API, and

support for SPARQL and web server to perform SPARQL queries and uploading of data over HTTP.

A number of evaluations have tested virtuoso and found it to be scalable to the region of 1B+ triples.

The commercial system Virtuoso stores quads combining a graph to each triple (s, p, o). It,

thus, conceptually stores the quads in a triples table expanded by one column. The columns are g for

graph, p for predicate, s for subject and o for object. While technically rooted in an RDBMS, it closely

follows the model of YARS but with fewer indices. The quads are stored in two covering indices, (g,

s, p, o) and (o, g, p, s), where the URI’s are dictionary encoded. Several further optimizations are

added, including bitmap indexing. In this approach, the use of fewer indices tips the balance slightly

towards insertion performance from query performance, but still favors query one.

 RDF-3X

RDF-3X (RDF Triple eXpress) is the experimental RDF storage and retrieval system

[Neumann & Weikum, 2008]. RDF-3X can import N-Triples/Turtle RDF data. RDF-3X is an RDF

storage system with advanced indexes and query optimization that eliminates the need of physical

database design by the use of exhaustive indexes for all permutations of subject-property-object

triples.

RDF-3X uses a potentially huge triples table, with own storage implementation underneath

(as opposed to using an RDBMS). It overcomes the problem of expensive self-joins by creating a

suitable set of indexes. All the triples are stored in a compressed clustered B+ tree. The triples are

sorted lexicographically in the B+ tree. The triple store is compressed by replacing long string literals

Appendix B

290

in the triples IDs using a mapping dictionary. The system supports both individual update operations

and entire batches updates.

 Hexastore

Hexastore [Weiss et al, 2008] takes also a similar approach to YARS. The framework is

based on the idea of main-memory indexing of RDF data in a multiple-index framework. The RDF

data is indexed in six possible ways, one for each possible ordering of the three RDF elements by

individual columns. The representation is based on any order of significance of RDF resources and

properties and can be seen as a combination of vertical partitioning and multiple indexing approaches.

Two vectors are associated with each RDF element, one for each of the others two RDF elements

(e.g., [subject, property] and [subject, object]). Moreover, lists of the third RDF element are appended

to the elements in these vectors. Hence, a sextuple indexing schema is created. As [Weiss et al, 2008]

point out in, the values for O in PSO and SPO are the same. So in reality, even though six tables are

created only five copies of the data are really computed, since the object columns are duplicated. To

limit the amount of storage needed for the URIs, Hexastore uses the typical dictionary encoding of the

URIs and the literals, i.e. every URI and literal is assigned a unique numerical identifier. Hexastore

provides efficient single triple pattern lookups, and also allows fast merge-joins for any pair of two

triple patterns. However, space requirement of Hexastore is five times the space required for storing

statement in a triples table. Hexastore favors query performance over insertion time passing over

applications that requires efficient statement insertion. Updates and insertions operations affect all six

indices, hence can be slow. Hexastore does not provide inference support. [Weiss et al, 2008]

proposed an on-disk index structure/storage layout so that Hexastore performance advantages can be

preserved. Additionally to their experimental evaluations, they show empirically that, in the context of

RDF storage, their vector storage schema provides significantly lower data retrieval times compared

to B trees.

 RDFCube

The system RDFCube [Matono et al, 2007] is a three-dimensional hash index designed for

RDFPeers [Cai & Frank, 2004] which is a distributed RDF repository that efficiently search RDF

triples. Each triple is stored by specifying its subject, predicate, or object as a key. The RDFCube

storage schema consists of set of cubes of the same size called cells. Each of these cells contains a bit

called existence flag indicating the presence or absence of triples mapped into the cell. During the

processing of a query, by checking the existence flags of cells into which candidate answer triples are

mapped, it is possible to know the existence of the triples before actually accessing remote nodes

where the candidate answer triples are stored. This information helps reducing the amount of data that

is transferred among nodes when processing a join query since it is possible to narrow down the

candidate triples by using AND operator between existence flags bits and transfer only the actual

Natural Language Addressing

291

present candidate triples. However, using a DHT (Distributed Hash Table) for the indexation suffers

from some problems such as freshness of data and security [Faye et al, 2012].

 BitMat

BitMat [Atre et al, 2009] is a main-memory based bit-matrix structure for representing a

large set of RDF triples with the idea to make the representation compact. Each RDF triple is

considered as a 3-dimensional entity which conceptually gives rise to a single universal table holding

all RDF triples. This last can be horizontally partitioned into multiple fragments based on the usage

requirements. BitMat can be viewed as a 3-dimensional bit-cube, in which each cell is a bit

representing a unique triple and denoting the presence or absence of that triple. For representing the

bit-cube in memory, it is flattened in a 2-dimensional bit matrix. There are six ways of flattening a bit-

cube into a BitMat. Each structure contributes to more efficient particular set of single-join queries. To

deal with the inherent sparsity of BitMat, this latter is maintained as an array of bit-rows, where each

row is a collection of all the triples having the same subject. The underlying goal is to represent large

RDF triple-sets with a compact in-memory representation and supporting a scalable multi-join query

execution. These queries are processed using bitwise AND, OR operations on the BitMat rows and the

resulting triples are returned as another BitMat. BitMat is designed to be mainly a read-only RDF

triple storing system. Dynamic insertion or deletion of RDF triples is not supported at present.

 Parliament

Parliament [Kolas et al, 2009] is an open source triple store that is an improved version of

DAMLDB. Parliament takes linked list style of approach. It uses BerkeleyDB for storing the URI

values and then stores the triple of references in a linked list.

Parliament describes storage and indexing schema based on linked lists and memory-mapped

files with a storage structure composed of three parts: the resource table, the statement table, and the

resource dictionary.

The resource table is a single file of fixed-length records (sequentially numbered with

numbers serving as ID of the corresponding resources), each of which representing a single resource

or literal. This allows direct access to a record given its ID via simple array indexing. Each record has

eight components:

 Three statement ID fields representing the first statements that contain this resource as a

subject, predicate, and object, respectively;

 Three count fields containing the number of statements using this resource as a subject,

predicate, and object, respectively;

 An offset used to retrieve the string representation of the resource;

 Bit-field flags encoding various attributes of the resource.

Appendix B

292

 B3.3. Storage characteristics of outlined RDF triple stores

Storage characteristics of outlined RDF triple stores are presented in Table 77.

Table 77. Storage characteristics of outlined RDF triple stores

Store
Triple
Table

Property
Table

Multi-
indexing

DBMS File RAM
Update
Support

3store
[Harris & Gibbins, 2003] √ √

Jena
[Jena2, 2012; Wilkinson et al, 2003] √ √ √ √

RDFSuite
[Alexaki et al, 2001] √ √ √

Sesame
[Sesame, 2012; Broekstra et al, 2002] √ √ √ √ √

4store
[Harris et al, 2009] √ √ √

Oracle
[Oracle, 2013] √

YARS
[YARS, 2013] √ √ √ √

Kowari
[Wood et al, 2005] √ √

Virtuoso
[Erling & Mikhailov, 2007] √ √ √

RDF-3X
[Neumann & Weikum, 2008] √ √ √

Hexastore
[Weiss et al, 2008] √ √ √

RDFCube
[Matono et al, 2007] √

BitMat
[Atre et al, 2009] √ √

Parliament
[Kolas et al, 2009] √ √ √

Natural Language Addressing

293

References

[3storeSF, 2013] 3store on Source forge, http://threestore.sourceforge.net/links.php (accessed:

23.03.2013).

[4store, 2013] 4store, http://4store.org/ (accessed: 23.03.2013).

[Aasman, 2011] Jans Aasman, “Will Triple Stores Replace Relational Databases?”, Information

Management and SourceMedia, Inc. APR 18, 2011 http://www.information-

management.com/newsletters/database_metadata_unstructured_data_triple_store-10020158-

1.html?zkPrintable=true (accessed: 11.01.2013).

[Abiteboul et al, 1997] Abiteboul S., Quass D., McHugh J., Widom J., and Wiener J. L “The Lorel

query language for semistructured data”, International Journal on Digital Libraries (JODL)

1, 1, 1997, pp. 68–88.

[Agrawal et al, 2001] Agrawal R., Somani A, Xu Y., “Storage and querying of e-commerce data”, In:

Proceedings of the 27th Conference on Very Large Data Bases, VLDB 2001, and Roma,

Italy.

[AHD, 2009] The American Heritage® “Dictionary of the English Language” Fourth Edition

copyright© 2000 by Houghton Mifflin Company, Updated in 2009; Published by Houghton

Mifflin Company. All rights reserved.

[AKT Project, 2013] Advanced Knowledge Technologies project,

http://www.aktors.org/technologies/3store/ (accessed: 23.03.2013).

[AlegroGraph, 2012] AllegroGraph® 4.8, http://www.franz.com/agraph/allegrograph/ (accessed:

25.08.2012).

[Alexaki et al, 2001] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris

Plexousakis, Karsten Tolle “The ICS-FORTH RDFSuite: Managing Voluminous RDF

Description Bases”, 2nd International Workshop on the Semantic Web (SemWeb’01),

Hongkong, 2001.

[Alexaki et al, 2001a] Alexaki S., V. Christophides, G. Karvounarakis, D. Plexousakis, “On Storing

Voluminous RDF Descriptions: The case of Web Portal Catalogs”, In Proceedings of the 4th

International Workshop on the Web and Databases (WebDB'01) - In conjunction with ACM

SIGMOD/PODS, Santa Barbara, CA. May 24-25, 2001.

[Amann & Scholl, 1992] Amann B. and Scholl, M. “Gram: A Graph Data Model and Query

Language”, In European Conference on Hypertext Technology (ECHT), ACM, 1992, pp.

201–211.

[Amardeilh, 2006] Florence Amardeilh, “OntoPop or how to annotate documents and populate

ontologies from texts”, In Proceedings of the Workshop on Mastering the Gap: From

References

294

Information Extraction to Semantic Representation (ESWC-06), Budva, Montenegro, 2006

http://hal.archives-ouvertes.fr/docs/00/11/52/55/PDF/amardeilh_ESWC06.pdf (accessed:

31.07.2013)

[Andries et al, 1992] Andries M., Gemis M., Paredaens J., Thyssens I., and den Bussche, J. V.

“Concepts for Graph-Oriented Object Manipulation”, In Proc. of the 3rd Int. Conf. on

Extending Database Technology (EDBT) LNCS, vol. 580, Springer, 1992, pp. 21–38.

[Angelov, 2012] St. Angelov. SA Dictionary http://www.thediction.com/ (accessed: 11.01.2013)

[Angles & Gutierrez, 2005] Angles, R. and Gutierrez, C, “Querying RDF Data from a Graph

Database Perspective”, In Proc. 2nd European Semantic Web Conference (ESWC), Number

3532 in LNCS. 2005, pp. 346–360.

[Angles & Gutierrez, 2008] Angles R., C. Gutierrez, “Survey of Graph Database Models”, ACM

Computing Surveys, Vol. 40, No. 1, Article 1, Publication date: February 2008, DOI

10.1145/1322432.1322433, http://doi.acm.org/10.1145/1322432.1322433, pp. 1-39

[Apollo, 2012] http://apollo.open.ac.uk/index.html (accessed: 25.08.2012)

[Arge, 2002] Arge, L., “External memory data structures”, In: Handbook of Massive Datasets, Part 4,

ch. 9. Kluwer Academic Publishers, 2002. pp. 313-357.

[Arpírez et al, 2001] Arpirez J., O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez, “WebODE: a

Scalable Workbench for Ontological Engineering”, First International Conference on

Knowledge Capture (KCAP'01). ACM Press (1-58113-380-4), pp. 6-13. October 2001.

[Arrouse, 1999] Arrouye Y. The RealNames System - an International Human-Friendly Web

Navigation System http://www.unicode.org/iuc/iuc16/a333.html (accessed: 16.11.2012).

[Artemieva & Reshtanenko, 2008] Artemieva L. I. and N. V. Reshtanenko, “Intellectuallized system

based on multi-layer chemical ontologies”, (Артемьева Л. И. Н. В. Рештаненко,

Интеллектуальная система, основанная на многоуровневой онтологии

химии/Программные продукты и системы, 2008. № 1, pp. 84-87),

http://www.swsys.ru/print/article_print.php?id=113, (accessed: 17.07.2013), (in Russian)

[Atre et al, 2009] Medha Atre, Jagannathan Srinivasan, James A. Hendler, “BitMat: A Main Memory

RDF Triple Store”, Technical Report, Tetherless World Constellation, Rensselaer

Polytechnic Institute, Troy NY, USA, 2009.

[Auge, 1909] Claude Auge (ed.) „Petit Larouse Illustré”, Librarie Larouse, Paris, 1909.

[Bachimon et al, 2002] Bachimont B., Isaac A. and Troncy R., “Semantic Commitment for Designing

Ontologies: A Proposal”, In Asuncion Gomez-Pérez and V. Richard Benjamins, editors,

13th International Conference on Knowledge Engineering and Knowledge Management,

EKAW'2002, volume LNAI 2473, pp. 114-121, Sigüenza, Spain, October, 1-4, 2002.

Springer Verlag. Paper, Slides

[Bachimont, 2000] Bachimont B., "Engagement sémantique et engagement ontologique: conception et

réalisation d'ontologies en ingénierie des connaissances"; In "Ingénierie des connaissances

Evolutions récentes et nouveaux défis", Jean Charlet, Manuel Zacklad, Gilles Kassel, Didier

Bourigault; Eyrolles 2000, ISBN 2-212-09110-9

[Baidu, 2013] http://hi.baidu.com/huyangtree/item/5993ece1c094e1bc2f140b86 (accessed:

16.12.2013)

Natural Language Addressing

295

[Baker et al, 1998] Baker F. C., C. J. Fillmore, J. B. Lowe, “The Berkeley FrameNet Project”,

COLING–ACL, Montreal, Canada, 1998, pp. 86-90, http://acl.ldc.upenn.edu/C/C98/C98-

1013.pdf (accessed: 21.07.2012)

[Bashmakov, 2005] Bashmakov A.I., “Intellectual Information Technologies” (Башмаков А. И.

Интеллектуальные информационные технологии: Учеб. Пособие. М.: Изд.-во МГТУ

им. Н. Э. Баумана, 2005, с.304) (in Russian)

[Bayer, 1971] Rudolf Bayer. „Binary B-Trees for Virtual Memory”, ACM-SIGFIDET Workshop

1971, San Diego, California, Session 5B, pp. 219 - 235.

[Beale et al, 1996] Beale S., S. Nirenburg and K. Mahesh, „Semantic Analysis in the Mikrokosmos

Machine Translation Project”, 1996, pp. 1-11,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9053 (accessed: 21.07.2012)

[Bechhofer et al, 2001] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R., “OILEd: a reasonable

ontology editor for the semantic web”, In: KI2001, Joint German/Austrian conference on

Artificial Intelligence, volume LNAI Vol. 2174, 2001, pp. 396-408, Vienna

[Becker, 2008] Christian Becker, “RDF Store Benchmarks with Dbpedia”, Freie Universität Berlin,

2008, http://wifo5-03.informatik.uni-mannheim.de/benchmarks-200801/ (accessed:

05.04.2013)

[Beckett, 2001] Beckett David, “The design and implementation of the Redland RDF Application

Framework”, WWW10, 2001, Hong Kong, ACM 1-58113-348-0/01/0005, Redland - URL:

http://www.redland.opensource.ac.uk/ (accessed: 15.10.2012).

[Beeri, 1988] Beeri, C., “Data models and languages for databases”, In Proceedings of the 2nd

International Conference on Database Theory (ICDT), LNCS, vol. 326, Springer, 1988, pp.

19–40.

[Belazzougui et al, 2009] Djamal Belazzougui, Fabiano C. Botelho, Martin Dietzfelbinger, “Hash,

Displace, and Compress”, In: Algorithms - ESA 2009 - 17th Annual European Symposium,

Copenhagen, Denmark, September 7-9, 2009, Proceedings. Lecture Notes in Computer

Science Volume 5757, Springer, 2009, pp 682-693. DOI 10.1007/978-3-642-04128-0_61

Print ISBN: 978-3-642-04127-3 Online ISBN: 978-3-642-04128-0.

http://link.springer.com/chapter/10.1007%2F978-3-642-04128-0_61 (accessed: 20.07.2013).

[Berkeley DB, 2012] ORACLE Berkeley DB Products

http://www.oracle.com/technetwork/products/berkeleydb/learnmore/berkeley-db-family-

datasheet-132751.pdf;

http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html (accessed:

15.10.2012)

[Bhadkamkar et al, 2009] Medha Bhadkamkar, Fernando Farfan, Vagelis Hristidis, and Raju

Rangaswami, “Storing Semi-structured Data on Disk Drives”, ACM Transactions on

Storage, Vol. 5, No. 2, Article 6, Publication date: June 2009, pp. 6.1–6.35, ACM New

York, NY, USA ISSN: 1553-3077 EISSN: 1553-3093 doi>10.1145/1534912.1534915

(accessed: 20.07.2013)

[BIG DATA INITIATIVE, 2012] Obama Administration univels “BIG DATA” INITIATIVE:

Announces $200 Million in New R&D Investments, Office of Science and Technology

References

296

Policy | Executive Office of the President. March 29, 2012.

http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_

2.pdf (accessed 09.04.13)

[Big data, 2012] Fact Sheet: Big Data across the Federal Government, March 29, 2012, Office of

Science and Technology Policy | Executive Office of the President,

http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final.pdf

(accessed 09.04.13)

[Bizer & Schultz, 2008] Christian Bizer, Andreas Schultz, “Benchmarking the Performance of Storage

Systems that expose SPARQL Endpoints”, In: Proc. of the 4th International Workshop on

Scalable Semantic Web knowledge Base Systems (SSWS2008), http://www4.wiwiss.fu-

berlin.de/bizer/pub/BizerSchulz-BerlinSPARQLBenchmark.pdf (accessed: 31.07.2013)

[Bizer & Schultz, 2009] Christian Bizer, Andreas Schultz, “The Berlin SPARQL Benchmark”, In:

International Journal on Semantic Web & Information Systems, Vol. 5, Issue 2, Pages 1-24,

2009, http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/Bizer-Schultz-Berlin-

SPARQL-Benchmark-IJSWIS.pdf;

see also http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

(accessed: 31.07.2013)

[Borrie, 2004] H. Borrie, “The Firebird Book: a Reference for Database Developers”, Apress, 2004,

ISBN: 1-59059-279-4

[Bourbaki, 1960] Bourbaki, N., “Theorie des Ensembles”, Hermann, Paris, 1960, English version:

Bourbaki, N. Theory of Sets, Volume package: Elements of Mathematics. Springer, 1st ed.

1968, 2nd printing 2004, ISBN 978-3-540-22525-6. 414 p.

[Bray et al, 1998] Bray, T., Paoli, J., and Sperberg-Mcqueen, C. M., “Extensible Markup Language

(XML) 1.0”, W3C Recommendation 10, (February), 1998.

http://www.w3.org/TR/1998/REC-xml-19980210 (accessed: 20.07.2013).

[Briggs, 2012] Mario Briggs, “DB2 NoSQL Graph Store”, What, Why & Overview, A presentation,

Information Management software IBM, 2012,

https://www.ibm.com/developerworks/mydeveloperworks/blogs/nlp/resource/DB2_NoSQL

GraphStore.pdf?lang=en (accessed: 01.12.2012)

[Broekstra et al, 2002] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen, “Sesame: A

Generic Architecture for Storing and Querying RDF and RDF”, 2002.

[Broekstra, 2005] Broekstra J., “Storage, querying and inferencing for Semantic Web languages”, PhD

Thesis, Vrije Universiteit, Amsterdam (2005)

[Brookshear, 2012] J. Glenn Brookshear, “Computer science – an overview (11-th edition)”,

Copyright© 2012, 2009, 2007, 2005, 2003, Pearson Education, Inc., publishing as Addison-

Wesley, 2012 ISBN 10: 0-13-256903-5; ISBN 13: 978-0-13-256903-3. pp. 19-72

[Brusa et al, 2006] Graciela Brusa, Ma. Laura Caliusco, Omar Chiotti, “A Process for Building a

Domain Ontology: an Experience in Developing a Government Budgetary Ontology”, In: M.

A. Orgun and T. Meyer, Eds. Proceedings of the second Australasian Workshop on

Advances in ontologies (AOW 2006), Hobart, Australia; Conferences in Research and

Practice in Information Technology, Vol. 72, pages 7-15; Australian Computer Society, Inc.

Natural Language Addressing

297

Darlinghurst, Australia, 2006. ISBN: 1-920-68253-8

http://dl.acm.org/citation.cfm?id=1273661 (accessed: 31.07.2013)

[BSBM DG, 2013] Data Generator and Test Driver, In: Berlin SPARQL Benchmark (BSBM) -

Benchmark Rules, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules/index.html#datagenerator

(accessed: 31.07.2013)

[BSBM, 2012] Berlin SPARQL Benchmark, http://www4.wiwiss.fu-

berlin.de/bizer/BerlinSPARQLBenchmark/ (accessed 09.04.13).

[BSBMv1, 2008] Berlin SPARQL Benchmark Results, V1, 2008, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/V1/results/index.html (accessed: 31.07.2013)

[BSBMv2, 2008] Berlin SPARQL Benchmark Results, V2 2008, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/results/V2/index.html (accessed: 31.07.2013)

[BSBMv3, 2009] Berlin SPARQL Benchmark Results, V3, 2009, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/results/V3/index.html (accessed: 31.07.2013)

[BSBMv5, 2009] BSBM Results (V5) for Virtuoso, Jena TDB, BigOWLIM, 2009, http://wifo5-

03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V5/index.html

(accessed: 31.07.2013)

[BSBMv6, 2011] Berlin SPARQL Benchmark Results, V6, 2011, http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html (accessed: 31.07.2013)

[BTC, 2012] Billion Triple Challenge 2012 Dataset http://km.aifb.kit.edu/projects/btc-2012/

(accessed: 16.03.2013)

[Buneman et al, 1996] Buneman, P., Davidson, S., Hillebrand, G., and Suciu, D., “A Query Language

and Optimization Techniques for Unstructured Data”, SIGMOD Record. 25, 2, 1996,

pp. 505-516.

[Buneman, 1997] Buneman, P, “Semistructured data”, In Proceedings of the 16th Symposium on

Principles of Database Systems (PODS), ACM Press, 1997, pp. 117-121.

[Buneman, 2001] Peter Buneman, “Semistructured Data”, Department of Computer and Information

Science, University of Pennsylvania

http://homepages.inf.ed.ac.uk/opb/papers/PODS1997a.pdf (accessed: 20.07.2013)

[Burgin & Gladun, 1989] Mark Burgin, Victor Gladun, “Mathematical Foundations of Semantic

Networks Theory”, In: LNCS No.: 364, Springer, 1989. pp. 117-135.

[Burgin, 2010] Mark Burgin, “Theory of Information - Fundamentality, Diversity and Unification”,

World Scientific Publishing Co. Pte. Ltd. Singapore, 2010, ISBN-13 978-981-283-548-2,

pp. 672.

[Cai & Frank, 2004] Min Cai & Martin Frank, “RDFPeers: a scalable distributed RDF repository

based on a structured peer-to-peer network”, WWW ’04: Proceedings of the 13th

international conference on World Wide Web, New York, NY, USA, 2004.

[Calvanese et al, 2007] Calvanese D., Cuenca B. Grau, Franconi E., “Software Tools for Ontology”,

Design and Maintenance FP6-7603 – Thinking ONtologiES (TONES) 2007, pp. 1–57,

http://www.sts.tu-harburg.de/tech-reports/2007/TonesD15.pdf (accessed: 21.07.2012)

References

298

[Cantu, 2012] C.H. Cantu. Get to know Firebird in 2 minutes. March/2006

http://www.firebirdnews.org/imgs/firebird_in_2_minutes.pdf (accessed: 11.01.2013)

[Caroll et al, 2004] Caroll J, Bizer C, Hayes P, Stickler P., “Semantic Web publishing using named

graphs”, In: Proceedings of Workshop on Trust, Security, and Reputation on the

SemanticWeb, at the 3rd International SemanticWeb Conference, ISWC 2004, Hiroshima,

Japan.

[Čech, 2012] Pavel Čech, “Multi-dimensional Data Model of Textual Information”,

In: V. M. Marques, A. Dmitriev (Eds.): Advances in Data Networks, Communications,

Computers and Materials. WSEAS Press, ISBN: 978-1-61804-118-0, 2012; pp.197–202,

http://www.wseas.org/wseas/cms.action?id=2514 (accessed: 20.07.2013)

[Chakrabarti, 2001] Chakrabarti, K., “Managing Large Multidimensional Datasets Inside a Database

System”, Phd Thesis, University of Illinois at Urbana-Champaign. Urbana, Illinois, 2001.

[Chavez et al, 2001] Chavez, E., Navarro, G., Baeza-Yates, & R., Marroquin, J., “Searching in metric

spaces”, ACM Computing Surveys, 33/3, 2001, pp.273-321

[Chen, 1976] Chen, P. P. S, “The entity-relationship model—toward a unified view of data”, ACM

Trans. Database Syst., 1, 1, 1976, pp. 9–36

[Chimaera, 2012] http://www-ksl.stanford.edu/software/chimaera/ (accessed: 09.08.2012).

[Chong et al, 2005] Eugene Inseok Chong, Souripriya Das, George Eadon, Jagannathan Srinivasan,

“An efficient SQL-based RDF querying scheme”, VLDB ’05: Proceedings of the

31stinternational conference on Very large data bases, Trondheim, Norway, 2005.

[CODASYL, 1971] Codasyl Systems Committee, “Feature Analysis of Generalized Data Base

Management Systems”, Technical Report, May, 1971.

[Codd, 1970] Codd, E., “A relation model of data for large shared data banks”, Magazine

Communications of the ACM, 13/6, 1970, pp. 377-387

[Codd, 1980] Codd, E. F., “Data Models in Database Management”, In Proc. of the 1980 Workshop

on Data abstraction, Databases and Conceptual Modeling. ACM Press, 1980, pp. 112–114.

[Collins, 2003] “Collins English Dictionary – Complete and Unabridged”, HarperCollins Publishers,

1991, 1994, 1998, 2000, 2003

[Connolly & Begg, 2002] T.M. Connolly, C.E.Begg, “Database Systems”, A Practical Approach to

Design, Implementation, and Management, Third Edition, Addison-Wesley Longman, Inc. –

Pearson Education Ltd., 1995, 2002

[Corcho et al, 2005] Oscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez, Angel López-

Cima, “Building Legal Ontologies with METHONTOLOGY and WebODE”, In: Law and the

Semantic Web, Lecture Notes in Computer Science Volume 3369, 2005, pp. 142-157,

http://link.springer.com/chapter/10.1007%2F978-3-540-32253-5_9 (accessed: 31.07.2013)

[Costello & Jacobs, 2003] Roger L. Costello, David B. Jacobs, “XML Design”, (A Gentle Transition

from XML to RDF), The MITRE Corporation, 2003,

http://www.csee.umbc.edu/courses/771/current/presentations/rdf.ppt

(accessed: 16.12.2013)

[CTS, 2012] Comparison of Triple Stores

http://www.bioontology.org/wiki/images/6/6a/Triple_Stores.pdf (accessed: 11.01.2013).

Natural Language Addressing

299

[Daintith, 2004] John Daintith, "Storage Schema", A Dictionary of Computing, and 2004, Retrieved

November 18, 2012, from Encyclopedia.com: http://www.encyclopedia.com/doc/1O11-

storageschema.html (accessed: 26.11.2012)

[datahub_data0, 2012] BTC data set from Datahub, http://km.aifb.kit.edu/projects/btc-

2012/datahub/data-0.nq.gz (accessed: 16.03.2013).

[Date, 1977] Date C. J., “An Introduction to Database Systems”, Addison-Wesley Inc., 1975.

[Date, 2004] Date C. J., “An Introduction to Database Systems”, 8th Edition, Pearson Education, Inc,

ISBN 0-324-18956-6, 2004.

[DBpedia, 2007a] DBpedia dataset “homepages.nt” dated 2007-08-30, http://wifo5-03.informatik.uni-

mannheim.de/benchmarks-200801/homepages-fixed.nt.gz (accessed: 31.07.2013)

[DBpedia, 2007b] DBpedia dataset “geocoordinates.nt” dated 2007-08-30, http://wifo5-

03.informatik.uni-mannheim.de/benchmarks-200801/geocoordinates-fixed.nt.gz (accessed:

31.07.2013)

[DBpedia, 2007c] DBpedia dataset “infoboxes.nt” dated 2007-08-30, http://wifo5-03.informatik.uni-

mannheim.de/benchmarks-200801/infoboxes-fixed.nt.gz (accessed: 31.07.2013)

[Dean & Ghemawat, 2008] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on

large clusters," Commun ACM, 51(1), 2008, pp. 107-113.

[Demsar, 2006] Demsar J, ”Statistical comparisons of classifiers over multiple data sets”, J. Mach.

Learn. Res., 7, 2006, pp. 1-30

[Deray & Verheyden, 2003] Deray T., P. Verheyden, “Towards a Semantic Integration of Medical

Relational Databases by Using Ontologies: A Case Study”, OTM Workshops, 2003,

pp. 137-150.

[Dietzfelbinger et al, 1994] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf

der Heide, Hans Rohnert, and Robert E. Tarjan, “Dynamic Perfect Hashing: Upper and

Lower Bounds”, SIAM J. Comput, 23, 4, 1994, ISSN: 0097-5397, pp. 738-761,

http://portal.acm.org/citation.cfm?id=182370# (accessed: 20.07.2013).

[Dobrov et al, 2009] Dobrov B.V., Ivanov V.V., Lukashevich N.V., Soloviev V.D., “Ontologies and

Tesauruses: models, instruments, applications”, (Добров Б. В., Иванов В. В., Лукашевич

Н. В., Соловьев В. Д. Онтологии и тезаурусы: модели, инструменты, приложения.

Интернет-университет информационных технологий – ИНТУИТ.ру, БИНОМ.

Лаборатория знаний, 2009, с. 176), (in Russian).

[DOE, 2012] http://www.eurecom.fr/~troncy/DOE (accessed: 15.10.2012).

[Dujmovi'c, 1996] Jozo Dujmovi'c, “A Method for Evaluation and Selection of Complex Hardware

and Software Systems”, In: CMG 96 Proceedings, 1996, pp. 368-378

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4388 (accessed: 31.07.2013)

[Dumbill, 2000] Dumbill E., “Putting RDF to Work”, Article on XML.com, 09.08.2000.

(http://www.xml.com/pub/a/2000/08/09/rdfdb/); rdfDB URL: http://guha.com/rdfdb/

(accessed: 15.10.2012).

[ebxml, 2012] http://www.ebxml.org (accessed: 25.05.2012).

[Erling & Mikhailov, 2007] Orri Erling, Ivan Mikhailov, “RDF Support in the Virtuoso DBMS”,

Conference on Social Semantic Web, 2007.

References

300

[Euler, 1736] Leonhard Euler, “Solutio Problematis a geometriam situs pertinentis”, Commentarii

Academiae Scientiarum Imperialis Petropolitanae 8, 1736, pp. 128-140,

http://www.math.dartmouth.edu/~euler/docs/originals/E053.pdf (accessed: 21.02.2013)

[Farquhar et al, 1996] Farquhar, A., Fikes, R., Rice, J., “The Ontolingua server: a tool for

collaborative ontology construction”, In: Tenth Knowledge Acquisition for Knowledge-

Based Systems Workshop, Banff, Canada, 1996.

[Faye et al, 2012] David C. Faye, Olivier Cure, Guillaume Blin, “A survey of RDF storage

approaches”, Received, December 12, 2011, Accepted, February 7, 2012, ARIMA Journal,

vol. 15, 2012, pp. 11-35.

[Fellbaum et al, 1998] Fellbaum, Christiane, ed., “WordNet: An Electronic Lexical Database”, MIT

Press, Cambridge, MA, 1998, pp. 422

[Fellbaum, 1998] Fellbaum Christiane (ed.) WordNet, “An Electronic Lexical Database”,

ISBN: 978026206197, MA: MIT Press, 1998, pp. 422

[Fernández et al, 1997] Mariano Fernández, Asunción Gómez-Pérez, Natalia Juristo,

“METHONTOLOGY: From Ontological Art towards Ontological Engineering”, Spring

Symposium on Ontological Engineering of AAAI; Stanford University, California, AAAI

TR SS-97-06, 1997, pp 33–40. http://oa.upm.es/5484/1/METHONTOLOGY_.pdf (accessed:

31.07.2013)

[Filatov et al, 2007] Filatov V.A., Shcherbak S.S, Hairova A.A., “Development effective tools for

creating and processing of ontological knowledge”, (Филатов В. А., Щербак С. С.,

Хайрова А. А. Разработка высокоэффективных средств создания и обработки

онтологических баз знаний/ Системи обробки інформації, випуск 8 (66), 2007,

pp. 120-124), www.nbuv.gov.ua/portal/natural/soi/2007_8/Filatov.pdf

(accessed:21.07.2012), (in Russian).

[Fillmore, 1976] Fillmore C. J., “Frame semantics and the nature of language”, Annals of the New

York Academy of Sciences, Volume 280, 1976, pp. 20–32.

[Firebird, 2013] Firebird Project Firebird Foundation Incorporated. Copyright© 2000-2013,

http://www.firebirdsql.org/en/about-firebird/ (accessed: 16.03.2013).

[Fisher, 1973] R. A. Fisher, “Statistical methods and scientific inference”, (3rd edition) Hafner Press,

New York, 1973, ISBN 978-002-844740-7.

[Fletcher & Beck, 2009] George H. L. Fletcher, Peter W. Beck, “Scalable indexing of RDF graphs for

efficient joins processing”, CIKM ’09: Proceeding of the 18th ACM conference on

Information and knowledge management, New York, NY, USA, 2009.

[FrameNet, 2012] FrameNet II FrameGrapher. http://framenet.icsi.berkeley.edu/FrameGrapher

(accessed: 21.07.2012)

[Franz Inc., 2013] Semantic Web Technologies http://www.franz.com/ (accessed: 16.05.2013).

[Frege, 1980] Frege G., “An extract from an undated letter”, published in Frege's Philosophical and

Mathematical Correspondence (ed.) Gottfried Gabriel, Hans Hermes. Friedrich Kanbartel.

Christian Thiel, and Albert Veraart, Abridged for the English (edn.), by Brian MeGuinness,

and Trans. Hans Kaal (Oxford: Blackwell. 1980), http://mind.ucsd.edu/syllabi/00-

01/phil235/a_readings/frege_jourdain.html (accessed: 15.11.2012).

Natural Language Addressing

301

[Friedman, 1940] Friedman, M., “A comparison of alternative tests of significance for the problem of

m rankings”, Annals of Mathematical Statistics, Vol. 11, 1940, pp.86-92

[Gabel et al, 2004] Gabel T, Sure Y, Voelker J., “KAON – An overview”, Insititute AIFB, University

of Karlsruhe, 2004, http://www.aifb.kit.edu/web/KAON/en (accessed: 11.08.2012).

[Gaede & Günther, 1998] Gaede V. and Günther O, “Multidimensional access methods”, ACM

Computing Surveys, 30(2), 1998

[Gallian, 2011] Joseph A. Gallian, “A Dynamic Survey of Graph Labeling”, The electronic journal of

combinatorics 18, 2011, #DS6; pp. 1 – 256,

http://emis.matem.unam.mx/journals/EJC/Surveys/ds6.pdf (accessed: 21.02.2013)

[Gandon, 2002] Gandon F., “Ontology Engineering: a survey and a return on experience”, ACACIA

Team, Thème 3: Interaction homme-machine, images données, connaissances, INRIA:

Rapport de recherche n° 4396 - March 2002, pp. 181.

[Gavrilova, 2001] Gavrilova T.A., “Knowledge bases of intellectual systems”, (Гаврилова Т. А. Базы

знаний интеллектуальных систем/Т. А. Гаврилова, В. Ф. Хорошев-ский. СПб.: Питер,

2001. С. 384), (in Russian)

[Gemis & Paredaens, 1993] Gemis, M. and Paredaens, J., “An Object-Oriented Pattern Matching

Language”, In Proc. of the First JSSST Int. Symposium on Object Technologies for

Advanced Software, Springer- Verlag, 1993, pp. 339–355.

[Giuglea & Moschitti, 2004] Giuglea A, A. Moschitti, “Knowledge Discovering using FrameNet”,

VerbNet and PropBank, 2004, pp. 6, http://olp.dfki.de/pkdd04/giuglea-final.pdf (accessed:

21.07.2012)

[Gladun, 2003] Gladun, V. P, “Intelligent systems memory structuring”, International Journal

Information Theories and Applications, 10(1), 2003, pp. 10–14.

[GraphDB, 2012] http://www.smartlab.at/tag/graphdb/ (accessed: 01.12.2012)

[Graves & Gutierrez, 2006] Graves Alvaro and Caludio Gutierrez, “Data representations for

WordNet: A case for RDF”, In Petr Sojka, Key-Sun Choi, Christiane Fellbaum, and Piek

Vossen, editors, GWC 2006 – Proceedings of the 3rd International WordNet Conference,

South Jeju Island, Korea, January 22-26, 2006, pp. 165–169.

[Graves et al, 1994] Graves, M., Bergeman, E. R., and Lawrence, C. B., “Querying a Genome

Database using Graphs”, In In Proc. of the 3th Int. Conf. on Bioinformatics and Genome

Research, 1994.

[Graves et al, 1995a] Graves, M., Bergeman, E. R., and Lawrence, C. B., “A Graph-Theoretic Data

Model for Genome Mapping Databases”, In Proc. of the 28th Hawaii Int. Conf. on System

Sciences (HICSS), IEEE Computer Society, 32, 1995a.

[Graves et al, 1995b] Graves, M., Bergeman, E. R., and Lawrence, C. B., “Graph Database Systems

for Genomics”, IEEE Engineering in Medicine and Biology, Special issue on Managing Data

for the Human Genome Project 11, 6, 1995b.

[Graves, 1993] Graves, M, “Theories and Tools for Designing Application-Specific Knowledge Base

Data Models”, PhD thesis - University of Michigan, 1993

References

302

[Greenwood, 2012] Eric Greenwood, “Storage Models and their Most Glaring Vulnerabilities”,

Tweak and Trick, http://www.tweakandtrick.com/2011/08/data-storage-model-risk.html

(accessed: 26.11.2012)

[Grolinger et al, 2014] K. Grolinger, M. Hayes, W. Higashino, A. L'Heureux, D. S. Allison, M. A. M.

Capretz, “Challenges for MapReduce in Big Data”, Proc. of the IEEE 10th 2014 World

Congress on Services (SERVICES 2014), Alaska, USA, June 27-July 2, 2014

[Gruber, 1993] Gruber R. T., “A translation approach to portable ontologies”, Knowledge Acquisiton

5(2), 1993, pp. 199-220, http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

(accessed: 15.08.2012)

[Gruber, 1993а] Gruber R. T., “Toward principles for the design of ontologies used for knowledge

sharing”, Presented at the Padua workshop on Formal Ontology, March 1993, later

published in International Journal of Human-Computer Studies, Vol. 43, Issues 4-5,

November 1995, pp. 907-928, Available online.

[Guarino & Giaretta, 1995] Guarino N., Giaretta P., “Ontologies and Knowledge Bases: Towards a

Terminological Clarification”, In N. J. I. Mars (ed.), Towards Very Large Knowledge Bases,

IOS Press 1995.

[Guarino, 1998] Guarino N., “Formal Ontology and Information Systems”, N. Guarino In N. Guarino

(ed.) Formal Ontology and Information Systems/FOIS’98, 6–8 June 1998, Trento, Italy: IOS

Press, Amsterdam, 1998, pp. 3–15.

[Guha, 2013] R. V. Guha, “rdfDB: An RDF Database”, http://www.guha.com/rdfdb/ (accessed:

16.03.2013).

[Guinn & Aasman, 2010] Guinn B., J. Aasman, “Semantic Real Time Intelligent Decision

Automation”, STIDS 2010 Proceedings, pp. 125-128. http://ceur-ws.org/Vol-

713/STIDS_P1_GuinnAasman.pdf (accessed: 15.08.2012)

[Gunther, 1998] Gunther O., “Environment Information Systems”, Springer, Berlin, New Work, 1998,

pp. 244.

[Guting, 1994] Guting, R. H., “GraphDB: Modeling and Querying Graphs in Databases”, in: Proc. of

20th, Int. Conf. on Very Large Data Bases (VLDB). Morgan Kaufmann, 1994, pp. 297–308.

[Gyssens et al, 1990] Gyssens, M., Paredaens, J., den Bussche, J. V., and Gucht, D. V. A, “Graph-

Oriented Object Database Model”, in: Proc. of the 9th Symposium on Principles of Database

Systems (PODS), ACM Press, 1990, pp. 417–424.

[Hadoop, 2014] Apache Hadoop, http://hadoop.apache.org . (accessed 22.12.14)

[Harris & Gibbins, 2003] Harris S, Gibbins N., “3store: Efficient bulk RDF storage”, in: Proceedings

of the 1st International Workshop on Practical and Scalable Semantic Systems, PSSS 2003,

Sanibel, and Island, FL, USA, 2003.

[Harris et al, 2009] Steve Harris, Nick Lamb, and Nigel Shadbolt, “4store: The design and

implementation of a clustered RDF store”, In SSWS2009: Proceedings of the 5th

International Workshop on Scalable Semantic Web Knowledge Base Systems, 2009.

[Hayes & Gutierrez, 2004] Hayes, J. and Gutierrez, C., “Bipartite Graphs as Intermediate Model for

RDF”, in: Proc. of the 3th Int. Semantic Web Conference (ISWC), Number 3298 in LNCS,

Springer-Verlag, 2004, pp. 47–61.

Natural Language Addressing

303

[Hayes et al, 2005] Hayes, P., Eskridge, C. T., Reichherzer, T., Saavedra, R., Mehrotra, M.,

Bobrovnikoff, D., “COE: Tools for Collaborative Ontology Development and Reuse”, In:

Knowledge Capture Conference (K-CAP), 2005.

[Hayes, 2004] Hayes P., “RDF Semantics”, W3C Recommendation, ed., 10 February 2004,

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/; Latest version available at

http://www.w3.org/TR/rdf-mt/ (accessed: 28.08.2012)

[Heinz et al, 2002] Steffen Heinz, Justin Zobel, Hugh E. Williams, “Burst Tries: A Fast, Efficient Data

Structure for String Keys”, ACM Transactions on Information Systems (TOIS), Volume 20,

Issue 2, April 2002, pp. 192 – 223, ACM New York, NY, USA,

doi>10.1145/506309.506312, http://dl.acm.org/citation.cfm?id=506312 (accessed:

20.07.2013)

[Hertel et al, 2009] Hertel A., J. Broekstra, and H. Stuckenschmidt, “RDF Storage and Retrieval

Systems”, In: S. Staab and R. Studer (eds.), Handbook on Ontologies, International

Handbooks on Information Systems, DOI 10.1007/978-3-540-92673-3, Springer-Verlag

Berlin Heidelberg 2009. pp 489-508.

[Hidders & Paredaens, 1993] Hidders, J. and Paredaens, J., “GOAL A Graph-Based Object and

Association Language”, Advances in Database Systems: Implementations and Applications,

CISM, 1993, pp. 247–265.

[Hidders, 2001] Hidders, J., “A Graph-based Update Language for Object-Oriented Data Models”,

PhD thesis in Technische Universiteit, Eindhoven, 2001

[Hidders, 2002] Hidders, J., “Typing Graph-Manipulation Operations”, In: Proc. of the 9th Int. Conf.

on Database Theory (ICDT), Springer-Verlag, 2002, pp. 394–409.

[HORIZON 2020, 2013] HORIZON 2020 – WORK PROGRAMME 2014-2015.

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-

leit-ict_en.pdf (accessed: 29.12.2013)

[i7 950, 2009] Intel i7 950 @ 3.07GHz (quadcore); CPU Launched: 2009;

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7+950+%40+3.07GHz&id=837

(accessed: 31.07.2013)

[IBL, 2012] Internet Business Logic http://www.semanticweb.org/wiki/Internet_Business_Logic

(accessed: 21.07.2012)

[IBM, 1965-68] IBM System/360 (1965-68): Disk Operating System, Data Management Concepts.

IBM System Reference Library, IBM Corp. 1965, Major Revision, Feb.1968.

[ibphoenix, 2012] Latest Firebird and Interbase Related News and Information

http://www.ibphoenix.com (accessed: 11.01.2013)

[ICOM, 2012] http://www.inf.unibz.it/~franconi/icom (accessed: 21.08.2012)

[Inseok et al, 2005] Eugene Inseok Chong, Souripriya Das, George Eadon, Jagannathan Srinivasan,

“An efficient SQL-based RDF querying scheme”, VLDB ’05: Proceedings of the

31stinternational conference on Very large data bases, Trondheim, Norway, 2005.

[InterBase, 2012] Borland InterBase http://www.ibprovider.com/eng/documentation/interbase.html

(accessed: 11.01.2013)

[ISI, 2012] http://www.isi.edu (accessed: 21.07.2012)

References

304

[ISP2.0, 2012] Intellidimension Inc., Semantics Platform 2.0.

http://www.intellidimension.com/products/semantics-platform/ (accessed: 15.10.2012)

[Ivanova et al, 2012a] Krassimira Ivanova, Vitalii Velychko, Krassimir Markov, “About NL-

addressing”, (К вопросу о естествено-языконой адрессации) In: V. Velychko et al (ed.),

Problems of Computer in Intellectualization. ITHEA® 2012, Kiev, Ukraine - Sofia,

Bulgaria, ISBN: 978-954-16-0061-0 (printed), ISBN: 978-954-16-0062-7 (online), pp. 77-83

(in Russian).

[Ivanova et al, 2012b] Krassimira Ivanova, Vitalii Velychko, Krassimir Markov, “Storing RDF

Graphs using NL-addressing”, In: G. Setlak, M. Alexandrov, K. Markov (ed.), Artificial

Intelligence Methods and Techniques for Business and Engineering Applications. ITHEA®

2012, Rzeszow, Poland; Sofia, Bulgaria, ISBN: 978-954-16-0057-3 (printed), ISBN: 978-

954-16-0058-0 (online), pp. 84 – 98.

[Ivanova et al, 2013a] Krassimira B. Ivanova, Koen Vanhoof, Krassimir Markov, Vitalii Velychko,

“Introduction to the Natural Language Addressing”, International Journal "Information

Technologies & Knowledge" Vol.7, Number 2, 2013, ISSN 1313-0455 (printed), 1313-048X

(online), pp. 139–146.

[Ivanova et al, 2013b] Krassimira B. Ivanova, Koen Vanhoof, Krassimir Markov, Vitalii Velychko,

“Introduction to Storing Graphs by NL-Addressing”, International Journal “Information

Theories and Applications”, Vol. 20, Number 3, 2013, ISSN 1310-0513 (printed), 1313-0463

(online), pp. 263 – 284.

[Ivanova et al, 2013c] Krassimira B. Ivanova, Koen Vanhoof, Krassimir Markov, Vitalii Velychko,

“Storing Dictionaries and Thesauruses Using NL-Addressing”, International Journal

"Information Models and Analyses" Vol.2, Number 3, 2013, ISSN 1314-6416 (printed),

1314-6432(online), pp. 239 - 251.

[Ivanova et al, 2013d] Krassimira B. Ivanova, Koen Vanhoof, Krassimir Markov, Vitalii Velychko,

“The Natural Language Addressing Approach”, International Scientific Conference “Modern

Informatics: Problems, Achievements, and Prospects of Development”, devoted to the 90th

anniversary of academician V. M. Glushkov. Kiev, Ukraine, 2013, ISBN 978-966-02-6928-

6, pp. 214 - 215.

[Ivanova et al, 2013e] Krassimira B. Ivanova, Koen Vanhoof, Krassimir Markov, Vitalii Velychko,

“Storing Ontologies by NL-Addressing”, IVth All–Russian Conference “Knowledge-

Ontology-Theory” (KONT-13), Novosibirsk, Russia, 2013, ISSN 0568-661X, pp. 175 - 184.

[Ivanova, 2013] Krassimira Ivanova, “Informational and Information models”, In Proceedings of 3rd

International conference “Knowledge Management and Competitive Intelligence” in the

frame of 17th International Forum of Young Scientists “Radio Electronics and Youth in the

XXI Century”, Kharkov National University of Radio Electronics (KNURE), Kharkov,

Ukraine, Vol.9, 2013, pp 6-7.

[Janik & Kochut, 2005] Maciej Janik and Krys Kochut, “BRAHMS: A WorkBench RDF Store and

High Performance Memory System for Semantic Association Discovery”, In Fourth

International Semantic Web Conference, 2005.

[Jena, 2013] Apache Jena, http://jena.apache.org/about_jena/about.html (accessed: 23.03.2013)

Natural Language Addressing

305

[Jena2, 2012] Jena2 database interface – database layout, http://jena.sourceforge.net/DB/layout.html

(accessed: 22.08.2012)

[Jording & Andreasen, 1994] Nick Jording and Flemming Andreasen, “A Distributed Wide Area Name

Service for an Object Oriented Programming System”, DIKU, Department of Computer

Science, University of Copenhagen, Denmark, 1994.

[Kalfoglou & Schorlemmer, 2003] Yannis Kalfoglou, Marco Schorlemmer, “Ontology mapping: the

state of the art”, The Knowledge Engineering Review, Vol. 18:1, pp. 1–31, Cambridge

University Press, United Kingdom, USA, 2003. ISSN = 0269-8889,

DOI: 10.1017/S0269888903000651 http://dl.acm.org/citation.cfm?id=975028 (accessed:

31.07.2013)

[Kalyanpur et al, 2005] Kalyanpur, A., Parsia, B., Hendler, J., “A Tool for Working with Web

Ontologies”, in: Proceedings of the International Journal on Semantic Web and Information

Systems, Vol.1, No.1, Jan-Mar (2005)

[Kaon, 2012] http://www.aifb.kit.edu/web/KAON/en (accessed: 22.08.2012).

[Kerschberg et al, 1976] Kerschberg, L., Klug, A. C., and Tsichritzis, D, “A Taxonomy of Data

Models”, In: Proc. of Systems for Large Data Bases (VLDB), North Holland and IFIP, 1976,

pp. 43–64.

[Kim, 1990] Kim, W, “Object-oriented databases: definition and research directions”, IEEE Trans,

Knowl. Data Eng. 2, 3, 1990, pp. 327–341.

[Kingsbury & Palmer, 2003] P. Kingsbury, M. Palmer, “PropBank: the Next Level of the TreeBank”,

University of Pennsylvania, Department of Computer and Information Science, 2003, pp. 12,

http://w3.msi.vxu.se/~rics/TLT2003/doc/kingsbury_palmer.pdf (accessed: 21.07.2012)

[Klyne & Carroll, 2004] G. Klyne and J. J. Carroll Editors, “Resource Description Framework (RDF):

Concepts and Abstract Syntax”, W3C Recommendation, 10 February 2004,

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ Latest version available at

http://www.w3.org/TR/rdf-concepts/ (accessed: 22.08.2012)

[Knuth, 1997] Donald Knuth, “The art of computer programming”, Vol. 1: Fundamental Algorithms,

Third Edition, Addison-Wesley, 1997, ISBN 0-201-89683-4, Section 2.3, especially

subsections 2.3.1–2.3.2, pp. 318–348.

[Knuth, 1998] Knuth, Donald E., “The Art of Computer Programming”, Vol. 2: Seminumerical

Algorithms (3rd edition ed.), Addison Wesley, ISBN 0-201-89684-2, 1998

[Kolas et al, 2009] Dave Kolas, Ian Emmons, Mike Dean, “E_cient Linked-List RDF Indexing”, in

Parliament. http://parliament.semwebcentral.org/ISWC2009ParliamentPaper.pdf. See also:

http://parliament.semwebcentral.org/ (accessed: 23.03.2013)

[Kolosovskiy, 2009] Kolosovskiy M., “Simple implementation of deletion from open-address hash

table”, Cornell University Library, ArXiv e-prints, 2009,

http://adsabs.harvard.edu/abs/2009arXiv0909.2547K (accessed: 20.07.2013)

[Kowari, 2004] Kowari Metastore, http://kowari.sourceforge.net/oldsite/1061.htm#o1068 (accessed:

23.03.2013)

[Kumar & Crowley, 2005] Sailesh Kumar, Patrick Crowley, “Segmented Hash: An Efficient Hash

Table Implementation for High Performance Networking Subsystems”, In: ANCS '05

References

306

Proceedings of the 2005 ACM symposium on Architecture for networking and

communications systems. ACM New York, NY, USA ©2005, ISBN:1-59593-082-5 doi:

10.1145/1095890.1095904, pp 91-103

[Kunii, 1987] Kunii, H. S., “DBMS with Graph Data Model for Knowledge Handling”, In Proc. of the

1987 Fall Joint Computer Conference on exploring technology: today and tomorrow, IEEE

Computer Society Press, 1987, pp. 138–142.

[Kuper & Vardi, 1984] Kuper, G. M. and Vardi, M. Y., “A New Approach to Database Logic”, In:

Proc. of the 3th Symposium on Principles of Database Systems (PODS), ACM Press, 1984,

pp. 86 96.

[Kuper & Vardi, 1993] Kuper, G. M. and Vardi, M. Y., “The Logical Data Model”, ACM

Transactions on Database Systems (TODS) 18, 3, 1993, pp. 379–413.

[LDIF Benchmarks, 2013] LDIF - Benchmark Results, http://ldif.wbsg.de/benchmark.html (accessed:

31.07.2013)

[LDIF, 2013] LDIF – Linked Data Integration Framework, http://ldif.wbsg.de/ (accessed 09.04.13).

[Lee, 1999] Y. Tina Lee. Information Modeling: From Design to Implementation. Proceedings of the

Second World Manufacturing Congress: Manifacturing Systems, Technology, Management.

ICSC 1999, ISBN: 9783906454191, pp 315—321.

[Levene & Loizou, 1995] Levene, M. and Loizou, G., “A Graph-Based Data Model and its

Ramifications”, IEEE Transactions on Knowledge and Data Engineering (TKDE) 7, 5, 1995,

pp. 809–823.

[Levene & Poulovassilis, 1990] Levene, M. and Poulovassilis, A., “The Hypernode Model and its

Associated Query Language”, In: Proc. of the 5th Jerusalem Conf. on Information

technology. IEEE Computer Society Press, 1990, pp. 520–530.

[Levene & Poulovassilis, 1991] Levene, M. and Poulovassilis, A., “An Object-Oriented Data Model

Formalised Through Hypergraphs”, Data & Knowledge Engineering, (DKE) 6, 3, 1991,

pp. 205 - 224.

[Liang, 1983] Franklin Mark Liang, “Word Hy-phen-a-tion by Com-put-er”, PhD thesis, Department

of Computer Science, Stanford University, Stanford, California 94305, Report No STAN-

CS-83-977, August 1983, http://www.tug.org/docs/liang/liang-thesis.pdf (accessed:

20.07.2013).

[Liebig & Noppens, 2003] Liebig, T., Noppens, O., “OntoTrack: Fast Browsing and Easy Editing of

Large Ontologies”, In: Proceedings of the 2nd International Workshop on Evaluation of

Ontologybased Tools (EON-2003) Sanibel Island, Florida, USA (2003), pp. 47-56

[LTS, 2012] LargeTripleStores http://www.w3.org/wiki/LargeTripleStores (accessed: 29.08.2012)

[Lungen et al, 2007] Lungen Harald, Claudia Kunze, Lothar Lemnitzer, and Angelika Storrer,

“Towards an integrated OWL model for domain-specific and general language WordNets”,

In Attila Tanacs, Dora Csendes, Veronika Vincze, Christiane Fellbaum, and Piek Vossen,

editors, GWC 2008 – Proceedings of the 4th Global WordNet Conference, 2007, pp.

281-296, Szeged, Hungary, January 22-25, 2008.

Natural Language Addressing

307

[Macris, 2004] Macris A., “CULTOS: Cultural Units of Learning Tools and Services”, 3rd Hellenic

Conference on Artificial Intelligence, Samos, Greece, Proceedings, 5-8 May 2004,

pp. 248-259

[Magkanaraki et al, 2002] Magkanaraki A., G. Karvounarakis, Ta Tuan Anh, V. Christophides, D.

Plexousakis, “Ontology Storage And Querying, Technical Report”, No 308, Foundation for

Research and Technology, Hellas Institute of Computer Science, Information Systems

Laboratory, April 2002. http://xml.coverpages.org/MagkanarakiOnt.pdf (accessed:

15.10.2012)

[Mainguenaud, 1992] Mainguenaud, M., “Simatic XT: A Data Model to Deal with Multi-scaled

Networks”, Computer, Environment and Urban Systems 16, 1992, pp. 281–288

[Mano, 1993] M. Morris Mano, “Computer System Architecture”, Third edition. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, USA, ISBN 0-13-175563-3, 1993, 530 p.

[Markov et al, 1990] K. Markov, T. Todorov, V. Nikolov, “Multidomain Access Method for the IBM

PC”, Research in Informatics, Vol. 3, Academie-Verlag Berlin, 1990, pp. 218-230.

[Markov et al, 2008] Markov, K., Ivanova, K., Mitov, I., & Karastanev, S., “Advance of the access

methods”, International Journal of Information Technologies and Knowledge, 2(2), 2008,

pp. 123–135.

[Markov et al, 2013] Markov, Krassimir, Koen Vanhoof, Iliya Mitov, Benoit Depaire, Krassimira

Ivanova, Vitalii Velychko and Victor Gladun, "Intelligent Data Processing Based on Multi-

Dimensional Numbered Memory Structures", Diagnostic Test Approaches to Machine

Learning and Commonsense Reasoning Systems, IGI Global, 2013, pp. 156-184,

doi:10.4018/978-1-4666-1900-5.ch007, ISBN: 978 1-4666-1900-5, EISBN: 978-1-4666-

1901-2

 Reprinted in: Markov, Krassimir, Koen Vanhoof, Iliya Mitov, Benoit Depaire,

Krassimira Ivanova, Vitalii Velychko and Victor Gladun, "Intelligent Data Processing

Based on Multi-Dimensional Numbered Memory Structures", Data Mining: Concepts,

Methodologies, Tools, and Applications, IGI Global, 2013, pp. 445-473, doi:10.4018/978-1-

4666-2455-9.ch022, ISBN13: 978-1-4666-2455-9, EISBN13: 978-1-4666-2456-6

[Markov et al, 2014] Kr. Markov, Kr. Ivanova, K. Vanhoof, B. Depaire, V. Velychko, J. Castellanos,

L. Aslanyan, St. Karastanev, “Storing Big Data Using Natural Language Addressing”, In: N.

Lyutov (ed.), Int. Sc. Conference “Informatics in the Scientific Knowledge”, VFU, Varna,

Bulgaria, 2014, ISSN: 1313-4345, pp. 147-164.

[Markov, 1984] Markov Кr., “А Multi-domain Access Method”, Proceedings of the International

Conference on Computer Based Scientific Research, Plovdiv, 1984, pp. 558-563.

[Markov, 2004] Markov, K., “Multi-domain information model”, Int. J. Information Theories and

Applications, 11/4, 2004, pp. 303-308

[Markov, 2005] Markov, K., “Building data warehouses using numbered multidimensional

information spaces”, International Journal of Information Theories and Applications, 12(2),

2005, pp. 193–199.

[Markov, 2006] Kr. Markov, “Multidimensional Context-free Access Method”, PhD Thesis, Intitute of

Mathematics and Informatics, Sofia, Bulgaria. 2006. (in Bulgarian)

References

308

[Martin, 1975] J. Martin, „Computer Data-Base Organization”, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1975.

[Masolo et al, 2003] Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari A., “WonderWeb

Deliverable D18: Ontology Library (final)”, Laboratory for Applied Ontology – ISTC–CNR,

2003, pp. 349, http://www.loa-cnr.it/Papers/D18.pdf (accessed: 21.07.2012)

[Matono et al, 2007] Akiyoshi Matono, Said Mirza Pahlevi, Isao Kojima, “RDFCube: A P2P-Based

Three- Dimensional Index for Structural Joins on Distributed Triple Stores”, SpringerLink –

Book Chapter Databases, Information Systems, and Peer-to-Peer Computing, 2007.

[McBride, 2001] McBride B., “Jena: Implementing the RDF Model and Syntax Specification”, In:

Steffen Staab et al (eds.), Proc. of the Second International Workshop on the Semantic Web-

SemWeb2001, May 2001, http://ceur-ws.org/Vol-40/mcbride.pdf, Jena

URL:http://www.hpl.hp.com/semweb/jena-top.html (accessed: 15.10.2012)

[McGlothlin & Khan, 2009] James P. McGlothlin, Latifur R. Khan “RDFJoin: A Scalable of Data

Model for Persistence and Efficient Querying of RDF Datasets”, UTDCS-08-09, 2009.

[McGlothlin & Khan, 2009a] James P. McGlothlin, Latifur R. Khan, “RDFKB: efficient support for

RDF inference queries and knowledge management”, IDEAS ’09: Proceedings of the 2009

International Database Engineering, Applications Symposium, Cetraro - Calabria, Italy,

2009.

[Mell & Grance, 2011] Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing”,

NIST Special Publication 800-145, Computer Security Division, Information Technology

Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930,

September 2011.

[Mendelzon et al, 2001] Alberto Mendelzon, Thomas Schwentick, Dan Suciu, “Foundations of

Semistructured Data”, 2001, http://www.dagstuhl.de/Reports/01/01361.pdf (accessed:

20.07.2013).

[Mikr, 2012] Mikrokosmos http://www.ilc.cnr.it/EAGLES96/rep2/node23.html (accessed:

21.07.2012).

[Miller, 1995] Miller G. A., “WordNet: a lexical database for English”, G. A. Miller –

Communications of the ACM 38: 11, 1995, pp. 39–41

[Minack, 2010] Enrico Minack, “RDF2RDF converter”, http://www.l3s.de/~minack/rdf2rdf/ 2010,

(accessed: 31.07.2013).

[Mitov, 2011] Iliya Mitov, “Class Association RuleMining UsingMulti-Dimensional Numbered

Information Spaces”, PhD Thesis, Hasselt University, Belgium, 2011.

[Moënne-Loccoz, 2005] Moënne-Loccoz, N., “High-dimensional access methods for efficient

similarity queries”, Technical Report N: 0505, University of Geneva, Computer Vision and

Multimedia Laboratory, 2005.

[Mokbel et al, 2003] Mokbel, M., Ghanem, T., & Aref, “Spatio-temporal access methods”, A

Quarterly Bulletin of the Computer Society of the IEEE Technical Committee on Data

Engineering, 26(2), 2003, pp. 40–49.

Natural Language Addressing

309

[Morin, 2005] Pat Morin, “Hash tables”, Chapter 9, of “Handbook of data structures and applications”

/edited by Dinesh P. Mehta and Sartaj Sahni, Chapman & Hall/CRC computer & information

science, 2005, 1321 pages, ISBN 1-58488-435-5.

[Muys, 2007] Andrae Muys, “Building an Enterprise Scale Database for RDF Data”, Seminar,

Netymon, 2007.

[Naur, 1963] Peter Naur (ed.), “Revised Report on the Algorithmic Language Algol 60”,

Communications of the ACM, Vol. 6, Number 1, Jan. 1963.

[Navathe, 1992] Navathe, S. B., “Evolution of Data Modeling for Databases”, Communications of the

ACM 35, 9, 1992, pp. 112–123.

[Neave & Worthington, 1992] Neave, H., Worthington, P., “Distribution Free Tests”, Routledge, 1992

[Nemenyi, 1963] Peter Nemenyi, “Distribution-free multiple comparisons Unpublished”, PhD thesis;

Princeton University Princeton, NJ, 1963

[Neumann & Weikum, 2008] Thomas Neumann, Gerhard Weikum, “RDF-3X: a RISC-style Engine

for RDF”, JDMR (formely Proc. VLDB) 2008, Auckland, New Zealand, http://www.mpi-

inf.mpg.de/~neumann/rdf3x/, https://domino.mpi-

inf.mpg.de/intranet/ag5/ag5publ.nsf/AuthorEditorIndividualView/ad3dbafa6fb90dd2c12575

93002ff3df/$FILE/rdf3x.pdf?OpenElement (accessed: 23.03.2013).

[Nevzorova & Nevzorov, 2009] Nevzorova O., Nevzorov V., “Ontological analysis of the domain:

Automated methods of term extraction in “OntoIntegrator” system”, in “Modelling

methods” symposium, Kazan, 2009, pp.196-208, (in Russian)

[Nevzorova & Nevzorov, 2011] O. Nevzorova, V. Nevzorov, “Terminological annotation of the

document in a retrieval context on the basis of technologies of system

“ONTOINTEGRATOR"”, International Journal "Information Technologies & Knowledge"

Vol. 5, Number 2, 2011. pp. 110-118

[Nevzorova et al, 2004] Nevzorova O.A., Nevzorov V.N., “The Analysis of the Structural Features of

the Ontology by the Development support system “OntoEditor””, (Система визуального

проектирования онтологий "OntoEditor": функциональные возможности и применение

//IX национальная конференция по искусственному интеллекту с международным

участием) КII-2004. Т. 3. pp. 176-183, (In Russian)

[Nevzorova et al, 2007] Nevzorova O.A., Nevzorov V.N., Zinkina U.V., Pyatkin N.B., “Integral

Technology of Homonymy Disambiguation in the Text Mining System "LoTA"”, Int. Conf.

“Dialog 2007”, Мoscow: ИПИ РАН, 2007, pp. 422–427, http://www.dialog-

21.ru/digests/dialog2007/materials/html/64.htm, (accessed: 16.03.2013), (in Russian)

[Noy & Musen, 1999] Noy N, M. Musen, “SMART: Automated Support for Ontology Merging and

Alignment”, Stanford Medical Informatics, Stanford Univ, 1999, pp. 24

[Noy & Musen, 2002] Noy, N. F., Musen, M. A., “Evaluating ontology-mapping tools: Requirements

and experience”, In: Proceeding of OntoWeb-SIG3 Workshop, 2002, pp. 1-14

[N-Quads, 2013] N-Quads: Extending N-Triples with Context http://sw.deri.org/2008/07/n-quads/

(accessed: 16.03.2013).

References

310

[NRC, 2013] National Research Council, “The Mathematical Sciences in 2025”, Washington, DC: The

National Academies Press, USA, 2013. ISBN-13: 978-0-309-28457-8.

http://www.nap.edu/catalog.php?record_id=15269 (accessed 09.04.13).

[Obitko, 2007] Obitko M., “Ontologies and Semantic Web”, 2007

http://www.obitko.com/tutorials/ontologies-semantic-web/operations-on-ontologies.html

(accessed: 09.08.2012)

[Obitko, 2007a] Obitko M., “RDF Query Language SPARQL”, 2007

http://www.obitko.com/tutorials/ontologies-semantic-web/rdf-query-language-sparql.html

(accessed: 06.04.2013).

[Oldakowski et al, 2005] Oldakowski R, Bizer C, Westphal D., “RAP RDF API for PHP”, In:

Proceedings of Workshop on Scripting for the Semantic Web, SFSW 2005, at 2nd European

Semantic Web Conference, ESWC 2005, Heraklion, Greece.

[Olson et al, 1999] Michael A. Olson, Keith Bostic, and Margo Seltzer, “Berkeley DB”, Proceedings

of the FREENIX Track: 1999 USENIX Annual Technical Conference; Monterey, California,

USA. USENIX Association, 1999

[OntoLex, 2012] Alexa Melina, Bernd Kreissig, Martina Liepert, Klaus Reichenberger, Lothar Rostek,

Karin Rautmann, Werner Scholze-Stubenrecht, Sabine Stoye, “The Duden Ontology: An

Integrated Representation of Lexical and Ontological Information”,

http://www.bultreebank.org/OntoLex02/OntoLex02Paper01.pdf (accessed: 15.10.2012)

[Ontopia, 2012] “The Ontopia Knowledge Suite: An introduction”, White Paper (V. 1.3), 2002

http://www.regnet.org/members/demo/ontopia/doc/misc/atlas-tech.html; URL:

http://www.ontopia.net/solutions/products.html (accessed: 15.10.2012)

[ontoprise, 2012] http://www.ontoprise.de/products/index_html_en; http://help.semafora-systems.com/

(accessed: 15.10.2012)

[OntoTools, 2012] A List of Ontology Engineering Tools (Ontology Editors) -

http://www.hozo.jp/OntoTools/; Mizoguchi Lab., The Institute of Scientific and Industrial

Research, Osaka University: http://www.ei.sanken.osaka-u.ac.jp/ (accessed: 22.07.2012)

[Ooi et al, 1993] Ooi B., Sacks-Davis R., Han J, “Indexing in spatial databases”, Technical Report,

1993

[OpenCyc, 2012] OpenCyc Documentation http://www.opencyc.org/doc (accessed: 21.07.2012)

[Oracle, 2013] ORACLE, http://www.oracle.com/technetwork/ (accessed: 23.03.2013).

[oracledb, 2012] http://www.oracle.com/technetwork/database/options/semantic-tech/index.html

(accessed: 11.08.2012)

[OSTI, 2009] Oracle Semantic Technologies Inference Best Practices with RDFS/OWL 2009

http://download.oracle.com//otndocs/tech/semantic_web/pdf/semantic_infer_bestprac_wp.pd

f (accessed: 11.08.2012)

[Ovdei & Proskudina, 2004] Ovdei M .O., Proskudina G.U., “Survey of ontology engineering tools”,

(Овдей М. О, Г. Ю. Проскудина “Обзор инструментов инженерии онтологий”,

Российский научный электронный журнал, «Электронные библиотеки», 2004, т. 7,

Вып. 4, ISSN 1562-5419),

Natural Language Addressing

311

http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2004/part4/op (accessed:

21.07.2012), (in Russian).

[Owens, 2009] Alisdair Owens, “An Investigation into Improving RDF Store Performance an

Investigation into Improving RDF Store Performance”, Ph.D. Thesis - University of

Southampton, 2009.

[OWL, 2004] OWL Web Ontology Language Guide W3C, 2004. http://www.w3.org/TR/owl-guide/

(accessed: 21.07.2012)

[Palagin & Yakovlev, 2005] Palagin A.V., Yakovlev U.S., “System integration of computer

technique”, (Палагин А. В, Ю. С. Яковлев. Системная интеграция средств

компьютерной техники/ А. В. Палагин. Винница: УНІВЕРСУМ, 2005, pp. 680, pp. 677-

678, ISBN 966-641-140-7), (in Russian)

[Palagin et al, 2011] Palagin A.V., Krivii S.L., Petrenko N.G., “Ontological methods and instruments

for processing domain knowledge”, (А. В. Палагин, С. Л. Крывый, Н. Г. Петренко.

Онтологические методы и средства обработки предметных знаний:

монография/Луганск: изд-во ВНУ им. В. Даля, 2011. – 300 с.), (in Russian)

[Palagin, 2006] Palagin A.V., “Architecture of ontologicaly controled computer systems”, (Палагин

А. В. Архитектура онтолого-управляемых компьютерных систем /Kибернетика и

системный анализ, 2006, №2, pp. 111 – 124), (in Russian).

[Pan & Heflin, 2004] Pan Z, Heflin J., “DLDB: Extending relational databases to support Semantic

Web queries”, Technical Report LU-CSE-04-006, Department of Computer Science and

Engineering, Lehigh University, 2004.

[Pan & Pan, 2006] Pan D. and Y. Pan, “Using Ontology Repository to Support Data Mining”,

Proceedings of the 6th, World Congress on Intelligent Control and Automation, June 21 - 23,

2006, Dalian, China, pp. 5947 – 5951.

[Papakonstantinou et al, 1995] Papakonstantinou, Y., Garcia-Molina, H., and Widom, J., “Object

Exchange across Heterogeneous Information Sources”, In Proc. of the 11th Int. Conf. on

Data Engineering (ICDE). IEEE Computer Society, 1995, pp. 251–260.

[Paredaens et al, 1995] Paredaens, J., Peelman, P., and Tanca, L., “G-Log: A Graph-Based Query

Language”, IEEE Transactions on Knowledge and Data Engineering (TKDE) 7, 3, 1995,

pp. 436–453.

[PC mag, 2013] PC Magazine Enciclopedia

http://www.pcmag.com/encyclopedia_term/0,1237,t=indexing&i=44896,00.asp (accessed:

23.01.2013)

[Peckham & Maryanski, 1988] Peckham, J. and Maryanski, F. J, “Semantic data models”, ACM

Comput. Surv., 20, 3, 1988, pp. 153–189

[Pentium Dual, 2008] Intel Pentium Dual Core CPU @ 2.8 GHz; CPU Launched: 2008;

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Pentium+D+2.80GHz&id=1126

(accessed: 31.07.2013)

[Pfenning, 2012] Frank Pfenning, “Lecture Notes on Tries”, Lecture 21, In 15-122: Principles of

Imperative Computation November 8, 2012. http://www.cs.cmu.edu/~fp/courses/15122-

f12/lectures/21-tries.pdf (accessed: 20.07.2013).

References

312

[Philpot et al, 2005] Philpot A., E. Hovy, P. Pantel, “The Omega Ontology”, Information Sciences

Institute of University of Southern California, 2005. pp. 8 http://omega.isi.edu/doc/

(accessed: 21.07.2012)

[Pidcock & Uschold, 2012] Woody Pidcock, Michael Uschold, “What are the differences between a

vocabulary, taxonomy, a thesaurus, ontology, and a meta-model?”, InfoGrid - the Web

Graph Database http://infogrid.org/trac/wiki/Reference/PidcockArticle, Retrieved November

18, 2012 (accessed: 26.11.2012).

[Polikoff, 2003] Polikoff I., “Ontology Tool Support”, In: TopQuadrant Technology Briefing, 2003.

[Poprat et al, 2008] Poprat Michael, Elena Beisswanger, Udo Hahn, “Building a BioWordNet by Using

WordNet’s Data Formats and WordNet’s Software Infrastructure — A Failure Story”,

Software Engineering, Testing, and Quality Assurance for Natural Language Processing,

Columbus, Ohio, USA, June 2008. Association for Computational Linguistics, 2008,

pp. 31-39.

[Poulovassilis & Levene, 1994] Poulovassilis, A. and Levene, M., “A Nested-Graph Model for the

Representation and Manipulation of Complex Objects”, ACM Transactions on Information

Systems (TOIS) 12, 1, 1994, pp. 35–68.

[Promt, 2012] http://protege.stanford.edu/plugins/prompt/prompt.html (accessed: 09.08.2012)

[protégé, 2012] http://protege.stanford.edu (accessed: 25.05.2012)

[protege-owl, 2012] http://protege.stanford.edu/overview/protege-owl.html (accessed: 25.05.2012)

[Q9450, 2008] Intel Core 2 Quad Q9450 @ 2.66GHz, CPU Launched: 2008;

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Quad+Q9450+%40+2.66GHz&id

=1046 (accessed: 31.07.2013)

[Ravenbrook, 2010] Ravenbrook, Software engineering consultancy, 2010 Retrieved from

http://www.ravenbrook.com/ (accessed: 16.11.2012)

[RDF Suite, 2013] RDF Suite http://www.kp-lab.org/tools/rdfsuit (accessed: 23.03.2013).

[RDF, 2013] http://www.w3.org/RDF/#specs (accessed: 21.02.2013).

[rdfedit, 2012] http://www.magnesiummedia.com/pcutilities/details15041.html (accessed: 21.02.2013)

[RDFStore, 2012] RDFStore URL: http://rdfstore.sourceforge.net/documentation/api.html (accessed:

15.10.2012)

[Sahni, 2005] Sartaj Sahni, “Tries”, Chapter 28, of “Handbook of data structures and applications”

/edited by Dinesh P. Mehta and Sartaj Sahni, Chapman & Hall/CRC computer & information

science, 2005, 1321 pages, ISBN 1-58488-435-5.

[sandsoft, 2012] http://www.sandsoft.com/products.html (accessed: 15.10.2012)

[Sesame, 2012] Sesame, OpenRDF, http://www.openrdf.org/index.jsp

http://www.openrdf.org/doc/sesame2/2.3.2/users/userguide.html#chapter-sesame2-whats-

new (accessed: 01.12.2012)

[Sharoff, 2001] Serge Sharoff, “The Frequency Dictionary For Russian”, Russian Scientific Research

Institute of Artificial Intellect (Russri AI), 2001, http://www.artint.ru/projects/frqlist/frqlist-

en.php (С.А.Шаров. Частотный Словарь. РосНИИ ИИ, 2001.

http://www.artint.ru/projects/frqlist.php) (accessed: 22.07.2013)

Natural Language Addressing

313

[Shoch, 1978a] John F. Shoch, “A note on Inter-Network Naming, Addressing and Routing”, Xerox,

Palo Alto, Research Center, Palo Alto - California 94305, USA, January 1978.

http://www.postel.org/ien/pdf/ien019.pdf (accessed: 21.02.2013)

[Shoch, 1978b] John F. Shoch, “Inter-Network Naming, Addressing, and Routing”, In Proc. of the

Seventeenth IEEE Conference on Computer Communication Networks, pp. 72–79,

Washington, D.C., 1978.

[Sigurd et al, 2004] Bengt Sigurd, Mats Eeg-Olofsson, Joost van de Weijer Word Length, “Sentence

Length and Frequency – Zipf Revisited”, Studia Linguistica 58(1), Blackwell Publishing

Ltd., Oxford, UK, 2004, pp. 37-52.

[Silberschatz et al, 1996] Silberschatz, A., Korth, H. F., and Sudarshan, S. “Data Models”, ACM

Computing Surveys 28, 1, 1996, pp. 105–108.

[Sintek & Decker, 2001] Sintek M., S. Decker, “TRIPLE-An RDF Query, Inference, and

Transformation Language”, In: Proceedings of the Deductive Databases and Knowledge

Management Workshop (DDLP' 2001), Japan, October 2001, TRIPLE URL:

http://triple.semanticweb.org/ (accessed: 15.10.2012)

[Sowa, 2000] Sowa John F., “Ontology, Metadata, and Semiotics”, Proceedings of ICCS'2000 in

Darmstadt, Germany, on August 14, 2000. Published in: B. Ganter & G. W. Mineau, eds.,

Conceptual Structures: Logical, Linguistic, and Computational Issues, Lecture Notes in AI

#1867, Springer-Verlag, Berlin, 2000, pp. 55-81.

http://users.bestweb.net/~sowa/peirce/ontometa.htm (accessed: 10.10.2012)

[Sowa, 2000a] Sowa John F., “Guided Tour of Ontology”,

http://www.jfsowa.com/ontology/guided.htm (accessed: 28.08.2012)

[SPARQL, 2013] “SPARQL Query Language for RDF”, W3C Recommendation, 2008,

http://www.w3.org/TR/rdf-sparql-query/ (accessed: 23.03.2013).

[Stably, 1970] Stably D., “Logical Programming with System 360”, New York, 1970

[SUMO, 2012] Suggested Upper Merged Ontology (SUMO). http://www.ontologyportal.org/

(accessed: 23.07.2012)

[Sure et al, 2002] Sure Y., J. Angele, S. Staab, “OntoEdit: Guiding Ontology Development by

Methodology and Inferencing”, CoopIS/DOA/ODBASE, 2002, pp 1205-1222.

[Sure et al, 2003] Sure Y., J. Angele, S. Staab “OntoEdit: Multifaceted Inferencing for Ontology

Engineering”, J. Data Semantics I, 2003, pp 128-152.

[T9550, 2009] Intel® Core2 Duo CPU T9550 @ 2.66GHz; CPU Launched: 2009,

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T9550+%40+2.66GHz&id=

1011 (accessed: 31.07.2013)

[Taylor & Frank, 1976] Taylor, R. W. and Frank, R. L., “CODASYL data-base management systems”,

ACM Comput. Surv., 8, 1, 1976, pp. 67–103

[TBC, 2012] Top Braid Composer http://www.topbraidcomposer.com (accessed: 21.07.2012)

[Tran et al, 2009] Thanh Tran, Gunter Ladwig, Sebastian Rudolph “iStore: Efficient RDF Data

Management Using Structure Indexes for General graph Structured Data”, Institute AIFB,

Karlsruhe Institute of Technology, 2009.

References

314

[Troncy & Isaac, 2002] Troncy R. and Isaac A., “Semantic Commitment for Designing Ontologies: A

Tool Proposal”, Poster Session at: 1st International Conference on the Semantic Web,

ISWC'2002, Sardinia, Italia, June, pp. 9-12, 2002, Poster

[Tsichritzis & Lochovsky, 1976] Tsichritzis, D. C. and Lochovsky, F. H., “Hierarchical data-base

management: A survey”, ACMComput. Surv. 8, 1, 1976, pp. 105–123.

[TSRD, 2012] Triple Stores vs Relational Databases

http://stackoverflow.com/questions/9159168/triple-stores-vs-relational-databases (accessed:

11.01.2013).

[Uschold & Gruninger, 1996] Uschold M. and Gruninger M., “Ontologies: Principles, methods and

applications”, Knowledge Engineering Review, Vol. 11:2, 93-136, 1996, Also available as

AIAITR-191 from AIAI the University of Edinburgh.

[van Assem et al, 2006] van Assem Mark, Aldo Gangemi, and Guus Schreiber, “Conversion of

WordNet to a standard RDF/OWL representation”, In: LREC 2006 – Proceedings of the 5th

International Conference on Language Resources and Evaluation. Genoa, Italy, May 22-28,

2006. Paris: European Language Resources Association (ELRA), available on CD.

[Velychko & Prihodnyuk, 2013] Velychko V.U., Prihodnyuk V.V., “Technological tool for graphical

design of computer ontologies”, (Величко В. Ю., Приходнюк В. В. Технологическое

средство графического проектирования компьютерных онтологий.) In: Troitzsch K. G.,

Debicki R., Chernyshenko S. V., Romaniuk V.V., Kyrychenko K. I. (eds.) Conference

Proceedings “Actual problems of training specialists in ICT”, Part 2; Sumy State University,

Sumy 2013, pp. 38-43 (in Russian).

[Virtuoso, 2013] OpenLink Virtuoso Universal Server: Documentation

http://docs.openlinksw.com/pdf/virtdocs.pdf, http://virtuoso.openlinksw.com/ (accessed:

23.03.2013)

[Webonto, 2012] http://www.aktors.org/technologies/webonto (accessed: 02.09.2012)

[Webopedia, 2013] Webopedia QuinStreet, Inc. http://www.webopedia.com/TERM/I/index.html

(accessed: 23.01.2013)

[Weibel et al, 1998] Weibel S., J. Kunze, C. Lagoze and M. Wolf, “Dublin Core Metadata for

Resource Discovery”, IETF #2413, The Internet Society, September 1998,

http://dublincore.org/documents/1998/09/dces/ (accessed: 02.09.2012)

[Weiss et al, 2008] Weiss, C, Karras, P., Bernstein, A., “Hexastore: Sextuple Indexing for Semantic

Web Data Management”, In: 34th Intl Conf. on Very Large Data Bases (VLDB), Auckland,

New Zealand, 28 August 2008, http://www.zora.uzh.ch/8938/2/hexastore.pdf (accessed:

23.03.2013).

[Weisstein, 2013] Eric W., “Weisstein Labeled Graph”, From MathWorld - A Wolfram Web

Resource, http://mathworld.wolfram.com/LabeledGraph.html (accessed: 21.02.2013)

[Wilkinson et al, 2003] Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds, “Efficient RDF

Storage and Retrieval in Jena2”, SWDB, 2003.

[Wilkinson, 2006] Kevin Wilkinson, “Jena Property Table Implementation”, HP Labs, 2006.

[Witte et al, 2010] René Witte, Ninus Khamis, Juergen Rilling, “Flexible Ontology Population from

Text: The OwlExporter”, International Conference on Language Resources and Evaluation

Natural Language Addressing

315

(LREC), Valletta, Malta: ELRA, pp. 3845--3850, 2010 http://www.lrec-

conf.org/proceedings/lrec2010/pdf/932_Paper.pdf (accessed: 31.07.2013)

[Wood et al, 2005] David Wood, Paul Gearon, Tom Adams, “Kowari: A Platform for Semantic Web

Storage and Analysis”, WWW 2005, May 10--14, 2005, Chiba, Japan

[WordNet, 2012] Princeton University, "About WordNet", WordNet, Princeton University, 2010

http://WordNet.princeton.edu (accessed: 23.07.2012)

[Yabloko, 2011] Yabloko L., “OntoBase”, Protégé 2011,

http://protegewiki.stanford.edu/wiki/OntoBase (accessed: 02.08.2012)

[YARS, 2013] Andreas Harth, Stefan Decker, “Optimized Index Structures for Querying RDF from

the Web”, Digital Enterprise Research Institute (DERI), National University of Galway,

Ireland, http://sw.deri.org/2005/02/dexa/yars.pdf (accessed: 23.03.2013).

[Yongming et al, 2012] Yongming L., F. Picalausa, G.H.L. Fletcher, J. Hidders, Stijn Vansummeren,

“Chapter 2. Storing and Indexing Massive RDF Data Sets”, In: R. De Virgilio, F. Guerra, Y.

Velegrakis (eds), “Semantic Search over the Web”. ISBN 978-3-642-25007-1 ISBN 978-3-

642-25008-8 (eBook), DOI 10.1007/978-3-642-25008-8. Springer Heidelberg New York

Dordrecht London, 2012.

[Youn & McLeod, 2006] Seongwook Youn, Dennis McLeod, “Ontology Development Tools for

Ontology-Based Knowledge Management”, In Encyclopedia of E-Commerce, E-

Government, and Mobile Commerce, ed. Mehdi Khosrow-Pour, ch138, pp. 858-864 (2006),

http://www.igi-global.com/chapter/ontology-development-tools-ontology-based/12642 doi:

10.4018/978-1-59140-799-7 (accessed: 20.07.2013).

[YourDictionary, 2013] YourDictionary, “LoveToKnow”, http://www.yourdictionary.com (accessed:

20.07.2013).

[Zikopoulos et al, 2012] Paul C. Zikopoulos, Chris Eaton, Dirk de Roos, Thomas Deutsch, George

Lapis, “Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming

Data”, Copyright© 2012 by The McGraw-Hill Companies, ISBN 978-0-07-179053-6, MHID

0-07-179053-5, 2012, 166 p.

[Zoho sheet, 2012]

https://public.sheet.zoho.com/public.do?docurl=Natural+Language+Formulas&name=m7fa

ALWlvQLgtPUoKu5%2FAA%3D%3D (accessed: 26.11.2012)

Natural Language Addressing

316

Authors’ Informtion

Krassimir Markov - PhD, Professor associate at the Institute of Mathematics and
Informatics at the Bulgarian Academy of Sciences, Sofia, Bulgaria. His scientific
interests are in the field of Intelligent Systems, Multidimensional Information Bases,
Business informatics, Management Information Systems, Software Engineering, and
General Information Theory. He is Editor in chief of four international journals (since
1993) and more than 50 scientific collections. He was Chairman of more than 110
international conferences and member of program committees of more than 60
international conferences all over the world. He is co-author of 5 monographs and has
more than 120 peer-reviewed journal and conference papers.

e-mail: markov@foibg.com

Krassimira Ivanova – PhD, Professor assistant of mathematics at University of
National and World Economy, Sofia, Bulgaria. Her research interests are in business
informatics, association rules, data mining, multi-variant clustering and analysis high-
dimensional data based on multi-dimensional pyramidal multi-layer structures in self-
structured systems. She is co-author of two monographs and has 28 peer-reviewed
journal and conference papers.

e-mail: krasy78@mail.bg

Vitalii Velychko - PhD, Professor associate at V.M.Glushkov Institute of Cybernetics
of National Academy of Sciences of Ukraine. He is a specialist in the field of the
development of systems of artificial intelligence. His research interests are in the area
of machine learning; knowledge discovery; natural language processing; knowledge
base reasoning; inductive and analogical inference. He is co-author of 2 monographs
and he has more than 45 international peer-reviewed journal and conference papers.

e-mail: Velychko.Vitalii@gmail.com

Koen Vanhoof - PhD, Professor (Business Informatics) at Hasselt University,
Belgium. His research interests focus on business intelligence, business process
modeling, e-business strategy, ERP-systems, knowledge discovery management. He is
co-author of 7 monographs, and he has more than 160 peer-reviewed journal and
conference papers. He has been appointed as a guest professor at the University of
Antwerp (Antwerp, Belgium), University of Maastricht (Maastricht, Netherland) and
Erasmus University (Rotterdam, Netherlands). Currently he is vice-dean research at the
Faculty of Applied Economics and project leader of the Business Informatics research
group at Hasselt University.

e-mail: koen.vanhoof@uhasselt.be

Juan Castellanos - PhD, Professor associate at the Universidad Politécnica de Madrid,
Facultad de Informática; Campus de Montegancedo s.n., 28660 Boadilla del Monte,
Madrid, Spain; Head of Natural Computing Group.

e-mail: jcastellanos@fi.upm.es

