
International Journal "Information Content and Processing", Volume 1, Number 2, 2014 

 

115

 

SPREADING THE MOORE - PENROSE PSEUDO INVERSE ON MATRICES 
EUCLIDEAN SPACES: THEORY AND APPLICATIONS 

Volodymyr Donchenko, Fedir Skotarenko 

 

Abstract: In the paper the development of operating technique for matrices Euclidean spaces is represented. 
Particularly, within such development transfer of linear operators’ technique with preserving properties of closely 
correspondence to natural subspaces is represented. Also - spectral results, SVD – and Moore – Penrose 
Pseudo Inverse – technique, theory of orthogonal projectors and grouping operators. Besides, solution of the 
linear discrimination problem in Euclidean spaces of matrices is represented in the paper. Realization the 
program of empowering the operating technique in matrices Euclidean space made possible on the basis of 
putting in circulation of so-called "cortege operators” and, correspondingly - "cortege operations”.  
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Introduction 

Grouping information problem (GIP), which is fundamental one in applications, appears in two main forms 
namely: the problem of recovering the function, represented by their observations, and the problem of clustering, 
classification and pattern recognition. Examples of approaches in the field are represented perfectly in [Kohonen, 
2001], [Vapnik, 1998], [Haykin, 2001], [Friedman, Kandel, 2000], [Berry, 2004]. It is opportune to notice, that math 
modeling is the representation of an object structure by the means of mathematical structuring. A math structure 
after Georg Cantor is a set plus “ties” between its elements. Only four fundamental types of “ties” (with its 
combination as fifth one) exist: relations, operations, functions and collections of subsets. Thus, the mathematical 
description of the object (mathematical modeling) cannot be anything other than representing the object structure 
by the means of mathematical structuring. It refers fully to so call “complex system”. A “complex system” should 
be understanding and, correspondingly, determined, as an objects with complex structure (complex “ties”). When 
reading attentively manuals by the theme (see, for example, [Yeates, Wakefield, 2004], [Forster, Hölzl, 2004]) 
one could find correspondent allusions. “Structure” understanding of the object is reasonable in determining of a 
“complex systems” instead of defining it as the “objects, consisting of numerous parts, functioning as an organic 
whole”. 

In the essence, math modeling is representing by math “parts plus ties” “parts plus ties” of the object in applied 
field. 

It is commonly used approach for designing objects - representative to construct them as an finite ordered 
collection of characteristics: quantitative (numerical) or qualitative (non numerical). Such ordered collection of 
characteristics is determined by term cortege in math. Cortege is called vector when its components are 
numerical. In the function recovering problem objects - representatives are vectors and functions are used as a 
rule to design correspond mathematical “ties”. In clustering and classification problem the collection may be both 
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qualitative and quantitative. In last case correspond collection is called feature vector. It is reasonable to note that 
term “vector” means more, than simply ordered numerical collection. It means that curtain standard math “ties” 

are applicable to them. These “ties” are adjectives of the math structure called Euclidean space denoted by nR .  

Euclidean spaces, namely nR , are the first among math structures rich on ties. Already in the very definition 
Euclidean spaces offer a range of structural links: from operations to scalar product, norms and limit transitions in 
various form. Besides, these ones possess highly developed technique of linear operators: with spectral theory, 
Singular Valued Decomposition (SVD) and Moore – Penrose technique in Euclidean spaces of real valued 

vectors (in nR ). Regarding uses of nR we recall linear regression and classification or clasterization problem with 
necessity of designing an appropriate feature vectors. But there is an urgent need in the application to expand the 
range of "representatives" of real objects with preserving the wealth structural relationships inherent Euclidean 
spaces. Matrices Euclidean spaces are a natural extension of the class of Euclidean spaces. Speech recognition 
with the spectrograms as the representatives and the images in the problem of image processing and recognition 
are the natural object areas with “matrices representatives”. So, of utmost importance is developing mathematical 
modeling tools and, in particular, the problems of grouping information problem is the transfer on matrices 

Euclidean spaces the wealth of technical capabilities of nR . As to technique designing for the spreading of 

Euclidean spaces as “environmental” math structure first steps have been made for example, by 
[Donchenko, 2011], [Donchenko, Zinko, Skotarenko, 2012]. 

Just the belonging to the base math structure (Euclidean space) determines advantages of the “vectors” against 
“corteges” as ordered finite collection of elements. It is noteworthy to say, that real-valued vectors as a variant of 
Euclidean space is not unique. A space of all matrixes of a fixed dimension is alternative example. As it was 

mentioned above, the choice of nR  as “environmental” space is determined by perfect technique developed for 

manipulation with vectors. These include classical matrix methods and classical linear algebra methods. SVD-
technique and methods of Generalized or Pseudo Inverse according Moore – Penrose are comparatively new 
elements of linear matrix algebra technique [Nashed, 1978] (see, also, [Albert, 1972], [Ben-Israel, Greville, 
2002]). Outstanding impacts and achievements in this area are due to N. F. Kirichenko (especially, [Kirichenko, 
1997], [Kirichenko, 1997], see also [Kirichenko, Lepeha, 2002]). Greville’s formulas: forward and inverse - for 
pseudo inverse matrixes, formulas of analytical representation for disturbances of pseudo inverse, - are among 
them. Additional results in the theme as to further development of the technique and correspondent applications 
one can find in [Kirichenko, Lepeha, 2001], [Donchenko, Kirichenko, Serbaev, 2004], [Kirichenko, Crak, Polishuk, 
2004], [Kirichenko, Donchenko, Serbaev,2005], [Kirichenko, Donchenko, 2005] [Donchenko, Kirichenko, 
Krivonos, 2007], [Kirichenko, Donchenko, 2007], [Kirichenko, Krivonos, Lepeha, 2007], [Kirichenko, Donchenko, 
Krivonos, Crak, Kulyas, 2009]. 

As to the choice of the collection (design of cortege or vector) it is necessary to note, that good “feature” selection 
(components for feature vector or cortege or an arguments for correspond functions) determines largely the 
efficiency of the problem solution. 

In the paper the development of operating technique for matrices of Euclidean spaces is represented. 
Particularly, transfer on these spaces linear operators technique with preserving of close correspondence with 
“natural subspaces”; spectral results; SVD – and Moore – Penrose Pseudo Inverse – technique M-P PdI); the 
theory of orthogonal projection and grouping operators. Also, solution of the linear discrimination problem in 
Euclidean spaces of matrices is represented below in the paper. Realization the program of empowering the 
operating technique in matrices Euclidean space made possible on the basis of putting in circulation of so-called 
"cortege operators” and, correspondingly - "cortege operations”. 
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Matrixes spaces and cortege operators 

Theorem 1. (Enhanced spectral theorem) For an arbitrary linear operator between a pair of Euclidean spaces

( ,(,) ), 1,2i iE i  : E E E 1 2: , the collection of singularities i l i l Ev u i r r rank    2 2( , ),  ( , ) 1, ,   exists for 

the operators     1 1 2 2: ,   :E EE E E E  correspondingly, with a common for both operators 

  ,     E E  set of Eigen values      2
1, 1, :  0,  2,l i ii r i r  such that 

 

 

    1 2
1 1

( , ) ,     ( , ) .
r r

E i i i E i i i
i i

x u v x y v u y  

Besides, the following relations take place: 

  1 , 1,i i iu v i r ,    1 , 1,i l E iv u i r . 

Matrixes spaces and SVD – technique for cortege operator 

We denote by ( ),m n KR   - Euclidean space of all matrixes K-corteges from m n  matrixes: 
( ),

1( ... ) m n K
KA A R     with a "natural" component wise trace inner product: 

 
 

  
1 1

( , ) ( , )
K K

T
cort k k tr k k

k k

A B trA B ,         ( ),
1 1( ... ), ( ... ) m n K

K KA A B B R . 

1. We also denote by K m nR R
 : a linear operator between the Euclidean space determined by the 

relation: 

  



 
       
 
 

   
1

( ),
1

1

, ( ... ) ,
K

m n K K
k k K

k
K

y

y y A A A R y R

y

 (1) 

2. Theorem 2. Range ( ) L
   , which is linear subspace of m nR  , is the subspace spanned on the 

components of cortege ( ),
1( ... ) m n K

KA A R    , that determines  : 1( ) ( , , )
     KL L A A . 

3. Theorem 3. Conjugate for the operator, determined by (1) is a linear operator, which, obviously, acts in the 

opposite direction: : m n KR R
   , and defined as: 




  
       

      

 
1 1( , )

( , )

T

T
K K

A X trX A

X

A X trX A

 (2) 

4. Theorem 4. A product of two operators : K KR R 
  is a linear operator, defined in the standard way by 

the matrix from the next equality: 

T T
K

T T
K K K

trA A trA A

trA A trA A

1 1 1

1

,...,

,...,



 
 

    
 
 

   (3) 
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Remark. Matrix defined by (3) is the Gram’ matrix for the matrixes - cortege components  , 1,kA k K of 

Euclidean space m nR .  

5. Singular value decomposition (SVD) for a matrix (3) is obvious. That matrix is a classical K K matrix: 

symmetric and positively semi-definite. This SVD is defined by a collection of singularities 2( , ), , 1, :i iv i j r   

1 2|| || 1, , ; , 1, ; ... 0i i j rv v v i j i j r           , 2 , 1,i i iv v i r      . 

The operator  
  by itself is determined by the relation 

r r
T

i i i i i i
i i

v v v v   

 
     2 2

1 1
( ,   ) . 

Each of the row - vectors T
iv i r, 1,  will be written by their components: 

T
i i iKv v v i r 1( ,..., ), 1, , r - is the rank of , 1,kA k K  in linear space is m nR . 

6. Theorem 5. Matrices
K

m n
i i i k ik

ki i
U R U v A v i r 




    

1

1 1
: , 1, , defined by the singularities 

2( , ), 1,i iv i r   of the operator  
  are elements of a complete collection of singularities 2( , ), 1,i iU i r   of 

the operator. 
  : .K m nR R  

Proof. The result directly follows from the Theorem 1 and standard relationships between singularities of the 

   
  ,   operators. 

7. Theorem 6. (Singular Value Decomposition (SVD) for cortege operator) Singularity of two operators 

,   
   , obviously determine the singular value decomposition of operators  

 ,  : 

r r r
T K m n

i i i i i i i i i tr
i i i

y U v y U v y R X v U X X R
1 1 1

( , ) , ( , ) , . 

  

             

8. Corollary. A variant is a SVD for the operator   is represented by the next relation: 

 
r r

T T
k k k k k

k k

U v v v 
 

    
1 1

. 

Pseudo Inverse Technique for matrixes Euclidean spaces 

Fundamental operator of Moore - Penrose Pseudo Inverse (M-P PdI) theory is PdI operator: for in the case under 
consideration. This operator is proposed to be determined by SVD-representation. 

Theorem 7. The PdI operators for  
 ,  are determined, correspondingly, by the relations 

     
r r r r

m n T K
k k k k i i i itr tr

k k i i

X v U X v v X X R y Uv y U v y y R1 2 1 1

1 1 1 1

, , , , ( ), .
      

   

                    

9. Principal operators PdI theory for a cortege operators: basic OP-operators. 

Two pairs of operators are principal importance in classical M-P PdI theory namely, these are: a) two pares of 

orthogonal projector operators(OP-operators):  on the ranges of operators  ,    correspondingly and on the 

kernels of these operators; b)  grouping operators(G-operators) [Kirichenko, Lepeha, 2002]. 
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As it was mentioned above OP – operators project on the subspaces 

L L L
,

( ) , ( ) Ker ( ) ,Ker( ) ( ) 
     

  
          

  
      - are determined, in the 

essence, by the orthogonal projections on two ranges:  
 ,  correspondingly. These orthogonal projections 

will be designated in one of two equivalent ways: 

K

m n K
L L A A L LP P P L R P P L R

1( ,..., )( ) , , ( ) , .
  

 


      
  

   

Two OP- operators: on the kernels of  
 , – being orthogonal complements to the correspond ranges are the 

compliments to identity operators of ranges OP- operators: as  m n KKer L R Ker L R, 
   

 
     

 
  . 

These OP –operators on correspondent kernels we denote by Z Z( ), ( )   correspondingly:  

L L
Z P Z P


  

 

   ( ) , ( ) ,
 

Obviously: 

K m nZ E P Z E P   
 

       ( ) ( ), ( ) ( )  (4) 

,K m nE E  - identity operators in correspondent spaces. 

In accordance with the general properties of PdI, the next properties are valid: 

 
r

T
k k

k

P P v v
1

( ) , ( )
    



                 . 

Correspondingly: 
r

T
K m n K k k

k

Z E Z E E v v
1

( ) ,    ( )  




               . 

10. Basic operators PdI theory for a cortege operators: grouping operators. 

Grouping operators (G- operators) [Donchenko, Zinko, Skotarenko, 2012], designated below by 

R R 
 ( ),   ( ) , are also "paired" operators, and are determined by the relations: 

            R R( ) ,  ( ) .
                                       

11. Theorem 8. G-operators for the cortege operators  
 ,    can be represented by the next expression: 

r r r
T T

i i i tr i i i i i i
i i i

R X U U X U trU X U trX U i r2 2 2

1 1 1

( ) ( , ) , 1,   

  

           

with  
K

i ik k
ki

U v A i r
1

1
, 1,



 
; 

besides, the quadratic form trX R X
( , ( ) )  is determined by the relation: 

  



  2 2

1

( , ( ) ) ( , ) ,
r

tr k k tr
k

X R X U X  
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12. Theorem 9. Quadratic form trX R X
( , ( ) )  may be written as: 

T T T T T T
K

T T T T T Tr
T K

tr i i i
i

T T T T T T
K K K

trA XtrA X trA XtrA X trA XtrA X

trA XtrA X trA XtrA X trA XtrA X
X R X v v

trA XtrA X trA XtrA X trA XtrA X

1 1 2 2 1

4 2 1 2 2 2

1

1 1 1

( , ( ) ) 



 
 
    
  
 






   


  = 

 
T

r r
T T

i i i i
i iT

K

trA X

v v X

trA X

2

1
24 4

1 1

  

 

  
  

    
  

  

     

 

Importance of G-operators is determined by their properties, represented by the next two theorems. 

13. Theorem 10. For any , 1,iA i K  of ( ),
1( ... ) m n K

KA A R    the next inequalities are fulfilled: 

i i trA R A r i K r rank 
    ( , ( ) ) , 1, , . 

14. Theorem 11. For any , 1,iA i K  of ( ),
1( ... ) m n K

KA A R    the next inequalities are fulfilled: 

 
     min( , ( ) ) , 1, ,i i trA R A r r i K r rank , i i tr

i n
r A R A r r i K r rankmin min

1,
max( , ( ) ) , 1, ,


        . 

Comment to the theorems 10, 11. These theorems give the minimal grouping ellipsoids for the matrixes

, 1,iA i K . In order to build it one only has to construct cortege operator  by the cortege

( ),
1( ... ) m n K

KA A R    .  

Linear discrimination problem in matrix Euclidean space  m nR  

Linear discrimination problem (LDP) is the problem of separating of two classes, represented by correspond 

learning sample by appropriate hyper plane, For Euclidean spaces mR this problem was formulated and 
successfully solved  on the base of PdI technique in [Kirichenko, Lepeha, 2002]. This problem is formulated and 
solved below on base of PdI technique developed for matrices on the base of cortege operators represented 
early in this article.  

The wording of the problem. 

Let 
 m

1,...,X
n

KX R  united collection of matrixes from learning sample, represented two classes: 

   1 1 2 2, , , :j jX Kl j J X Kl j J      1 2 1 2, {1,2,...,K}J J J J . 

It is necessary to find   0 and design linear functional   1: m nA R R in such a way that 

j tr j trA X j J A X j J1 2( , ) , ,( , ) ,       

We will designate by  ( ) the domain of real-valued vector  1(y ,...,y )T
Ky from KR with the components 

which satisfy to the next constraints: j jy j J y j J1 2, , ,       

LDP solution. 



International Journal "Information Content and Processing", Volume 1, Number 2, 2014 

 

121

LGP solution for matrices spaces is because the vector of “discriminating” values  T

tr K trA X A X1( , ) ,...,( , ) of 

discriminating linear forms trA X( , ) determines the value of conjugate operator to cortege operator 

K1: (X ,..., X )     on argument A . 

The next theorem then is valid. 

Theorem 12. LDP is equivalent of linear equation problem 
 X y for cortege operator     1, (X ,..., X )K

and j jA X j J A X j J1 2( , ) , ,( , ) ,      . 

Proof. Indeed, fulfilling of (1) means that vector  

  1: ( , ),...,( , ) T
Ky A X A X y  (5) 

belongs to  ( ) .  

Theorem 13. Allows to conclude, that (5) is equivalent to solvability the equation 

      1A y, (X ,..., X ),y ( )K . And, thus, the proof of the theorem is finished. 

Theorem 14. LDP is solvable if there exists Ky R( )    and correspond solution is determined by the 

equality 

A y
  (6) 

Corollary 1. LDP is solvable if there exists Ky R( )    for which the next condition is fulfilled  

r
T T T

K k k
k

y Z y y E v v y
1

( ) ( ) 0   


     

and correspond solution is still determined by (6). 

Theorem 15. LDP is equivalent to quadratic optimization problem for quadratic form 
r

T T T
K k k

k

y Z y y E v v y
1

( ) ( )


    

In domain KR( )   . If the solution y  of the optimization problem in the domain gives minimum, that equal 

zero, then matrix A - LDP solution, is determined by equality 

A y
 . 

Linear Discrimination Problem: algorithm 

When saying about the algorithm of matrix LDP problem with united for two classes collection of matrices 
 m

1,...,X
n

KX R  then it starts with the first step”. 

1-st step: calculation of Gram’ matrix for collection of matrices
 m

1,...,X
n

KX R : 

   

   

T T
Ktr trK

T T
K K Ktr trK K K

A A A AtrA A trA A

F

A A A AtrA A trA A

1 1 11 1 1

11

, ,..., ,,...,

, ,..., ,,...,

  
  

    
       

  . 
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And then: 

2-nd step: computing the singularities k k kv k r r rankF2 2( , ), 0,  1, ,        ;  

3-d step: calculating the matrixes 
r

T
K k k

k

E v v
1

 of quadratic form; 

4-th step: calculating the minimum of quadratic form 
r

T T
K k k

k

y E v v y
1

  
 

 in domain KR( )   (numerical 

methods) and correspondent argument y ; 

4-th step: verification the conditions of zero value of minimum: if 
r

T T
K k k

k

y E v v y
1

0 


   
 

 : 

5-th step:  

 If condition is fulfilled: 
r

T T
K k k

k

y E v v y
1

0 


   
 

 , then computing linear form A of LDP-solution 

accordingly to relation A y
 ; 

 If condition is not fulfilled, then LDP is unsolvable.  

Matrix Linear Discrimination Problem in clasterization 

Theorem 11 can be applied to problems of matrix clustering just in the same way as in [Donchenko, Krak, 

Krivonos, 2007] it has been done for mR . 

Conclusion 

Conception of enriching the standard considering the ”representatives” in Applied Math to be the feature vectors: 
elements from Euclidean space, - has been further developed in the paper (see, also, [Donchenko, Zinko, 
Skotarenko, 2012]). Using matrixes as the “representatives” of the real objects is main idea of the conception. 
This mean, that matrix instead vector represents all principal features of the objects in applied fields. Support of 
this concept requires the development of technologies handling with matrixes similar techniques operating with 
vectors from Euclidean spaces. SVD-technique as well as PIMP - technique are the priority among them. The 
results of such type are represented in the paper. These results demanded a generalization of matrix algebra and 
transforming it in algebra of matrix and vector cortege as well as definition and using the linear cortege operator. 
Correspond results are represented in the paper of the authors [Donchenko, Zinko, Skotarenko, 2012]. Using that 
handling technique for matrix features (“matrix feature vectors”) make it possible to put and fully solute the Linear 
Discrimination problem for two collection of matrixes. Corresponded solution uses standard SVD and PIMP for 
Gramian matrix of united collections and solution of quadratic optimization in a domain of appropriate. Thus, the 
development of matrix technique manages to reduce to existing technique for real valued vectors. Solution of 
Linear Discrimination Problem for matrixes is similar to corresponded result for real-valued vectors in [Kirichenko, 
Krivonos, Lepeha, 2007] or [Donchenko, Krak, Krivonos, 2012]. The two obvious application areas are worth 
mentioning within the context of the application of these results. These are: speech recognition and image 
processing. Matrixes naturally represent the objects under consideration, namely, spectrograms and digital 
images.  
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