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BUILDING PRECONDITIONERS USING BASIS MATRIX METHOD 

Volodymyr Kudin, Vsevolod Bohaienko 

 

Abstract: New class of preconditioners for iterative algorithms of sparse linear systems solution built using basis 
matrix method and incomplete decomposition methodology has been proposed. Algorithms with static and 
dynamic restriction set along with additional refinement procedures have been presented. Results of developed 
algorithms' testing carried out on matrices from Tim Davis Matrix Collection have been given. Basing on received 
results, matrix classes, applying proposed preconditioners on which resulted in iterative algorithms speed-up 
and/or accuracy increase, have been identified  
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Introduction 

Matrix computations, especially linear systems solution problems, appear while doing mathematical modelling of 
most physical processes. In many cases, such linear systems have ill-conditioned large sparse matrices and are 
usually solved by iterative methods such as conjugate gradients (CG) or stabilized biconjugate gradients 
(BiCGstab) [Saad, 2003].  

Preconditioning [Ke Chen, 2005] – methods based on multiplying linear systems' matrix by another matrix that 
results in condition number decrease, is a main technique used to achieve better convergence rate and/or 
accuracy of iterative methods. While inverse matrix is an ideal preconditioner, most preconditioners are built as its 
approximation. Most common methods are incomplete decompositions (e.g. incomplete LU decomposition) and 
incomplete inversions (e.g. polynomial preconditioners), among others multigrid and wavelet preconditioners can 
be distinguished. 

It's worth noting that efficiency of preconditioners usage in most cases can't be theoretically proved, so there is a 
problem of experimental finding of matrix classes for which given preconditioner is efficient in sense of 
computations speed-up or solution accuracy improvement. 

Preconditioners built upon basis matrix method 

Incomplete decomposition is one of preconditioner building methods which consists in a restriction of a set of 
matrix elements changing in decomposition process, e.g. LU [Saad, 2003], QR [Ke Chen, 2005], or while applying 
inversion procedure, e.g. Gram-Schmidt method [Qiaohua Liu, 2013]. This yields to a matrix, which approximates 
inverse matrix and can be used as a preconditioner. 

Such method can also be applied to algorithms of basis matrix method [Kudin, 2007]. Consider linear system 

Ax b  where dim [ , ]A n n , dim dim [ ,1]x b n  . Basis matrix methods' algorithm which results in 

matrix 1A , inverse of A , may be stated as follows: Let 
( )i
бA , 

( )dim [ , ]i
бA n n  be a basis matrix on i -th 

iteration of algorithm, 
( )[ ]i
бA j  be a column of  matrix 

( )i
бA , ia  be a row of matrix A , 

(0) 0
б бA A . When 

i -th iteration of algorithm can be written as follows:1)  ( 1)i
бv diag AA  ; 2) 

max i
i

k v
; 3) 

( 1)i
k бa A  ; 
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4) 
( ) ( 1)[ ] [ ] /i i
б б kA k A k  ; 5) 

( ) ( 1) ( )[ ] [ ] [ ],i i i
б б l бA l A l A k l k   ; 

After execution of n  iterations, algorithm results in 
( ) 1n
бA A . 

Algorithm of incomplete basis matrix method can be obtained from aforementioned algorithm by changing step 5 

as follows: 5а) 
( ) ( 1) ( )[ ] [ ] [ ] , , ( , )i i i
б j б j l б jA l A l A k l k l j R    , where R  is a set of matrix elements' 

indices. Here, after execution of n  iterations, algorithm results in 
( ) 1n
бA A . 

Definition of set R  is needed to obtain a particular algorithm. By analogy with incomplete LU decomposition 

algorithms [Saad, 1994], consider following incomplete basis matrix methods' algorithms: IBMM0, where R  is a 

set of matrix A  non-zero elements, and IBMM1, where R  is a set of matrix TAA  non-zero elements. 

Another variant of incomplete basis matrix methods' algorithm (also by analogy with other incomplete 

decomposition algorithms) is an algorithm with dynamically changing R . Let R  be restricted in such way that 

(condition1) number of ( , )l j  elements in it can't be bigger that number of non-zero elements in l -th row of 

matrix A . This can be taken into account by changing step 5 as follows: 

5б) If ( , )l j R  or ( , )l j R , but condition 1 is met only for column l , then do following transformation: 
( ) ( 1) ( )[ ] [ ] [ ] , , ( , )i i i
б j б j l б jA l A l A k l k R R l j     . Here element will be changed and added to the set 

if set does not contain it;  

If ( , )l j R  and condition 1 is not met, then transformation 

 ( 1) ( ) ( 1) ( )[ ] 0, [ ] [ ] [ ] , ( , ) ( , )i i i i
б m б j б j l б jA l A l A l A k R R l m l j        must be done if 

( 1) ( 1) ( ): [ ] [ ] [ ]i i i
б m б j l б jm A l A l A k    : element will be changed and added to the set if column contains 

an element with lower absolute value. That element at the same time will be set to zero and removed from set R
. We'll call such algorithm IBMMd. 
Consider additional procedures which extend IBMM0, IBMM1 and IBMMd algorithms. 

Condition 
( ) 1,

[ ]
0,

i
k б

l k
a A l

l k


  

 is met on every iteration of basis matrix method, but not during incomplete 

transformation. To make this condition met in IBMM0 and IBMM1 algorithms' iterations, following step must be 
added: 

6) If ( , )l j R , 0kja   and 
( 1)max , [ ] 0i

kj б j
j

m a A l    then transformation 
( ) ( ) ( )[ ] [ ] [ ] /i i i
б m б m l б j kj kmA l A l A k a a   must be done. 

In the case of IBMMd algorithm, step 6 must be applied when ( , )l j R , condition 1 is not met and an element 
with lower absolute value does not exist in a column, or while substituting a non-zero element: 

6а) If ( , )l j R , condition 1 is not met, 
( 1) ( 1) ( ): [ ] [ ] [ ]i i i
б m б j l б jm A l A l A k     and  

( 1)max , [ ] 0i
kj б j

j
m a A l   , then do following transformation: 

( ) ( ) ( )[ ] [ ] [ ] /i i i
б m б m l б j kj kmA l A l A k a a  . 

6б) If ( , )l j R , condition 1 is not met, 
( 1) ( 1) ( ): [ ] [ ] [ ]i i i
б m б j l б jm A l A l A k     and  

( 1)max , [ ] 0,i
kj б j

j
p a A l j m    , then do following transformation 
( ) ( ) ( )[ ] [ ] [ ] /i i i
б p б p l б m km kpA l A l A k a a  . 
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We'll designate algorithms with correction step 6 as IBMM0+c, IBMM1+c, IBMMd+c. 

Taking into consideration efficiency of Jacobi preconditioner while solving many linear systems, it can be 
combined with incomplete basis matrix methods' algorithms. In such case, left preconditioner will take the 

following form: 
1( ) ( )n n

б бdiagA A A


   . We'll designate such algorithms as “+rs”. 

Refinement procedure [Bohaienko, 2009] consisting in iterative algorithm execution with 
(0) ( )n
б бA A , can be 

also applied to incomplete basis matrix methods' algorithms. 

Testing of preconditioners efficiency 

Efficiency of matrices, generated by developed algorithms, as left preconditioners has been tested on matrices 
from Tim Davis Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/index.html) while solving 
corresponding linear problems using Bicgstab algorithm. Number of iterations after which given accuracy was 

achieved is given in Table 1. Maximal iteration number was set to 1000. All elements of vector b  was equal to 1, 

and 
0
бA I . Here information about matrix is given to the right of its' name, nnz(A) is a number of non-zero 

elements and cond(A) is a condition number. 

 
 

Table 1. Number of iterations after which accuracy   was achieved 

   1 1 1 1 1 1 1 2 2 2 2 2 2 
Number of refinement 

iteration 
   - - - - - - + - - - - + + Correction steps 

Matrix and 

10log   

- + - - - + + + - - - + + - + Jacobi preconditioner 

- - 0 1 d 0 1 d 0 0 1 0 1 1 1 

Algorithm: 
0 – IBMM0 
1 – IBMM1 
d - IBMMd 

bfwa62 Collection Bai, dimA=[62,62], nnz(A)=450, cond(A)=553, electro-dynamical problem 
-2 26 20 57 - - - - - - - - - - - -  
-4 35 23 61 - - - - - - - - - - - -  
-6 37 31 - - - - - - - - - - - - -  
-8 42 33 - - - - - - - - - - - - -  
-10 44 34 - - - - - - - - - - - - -  

bfwa398 Collection Bai, dimA=[398,398], nnz(A)=3678, cond(A)=2993, electro-dynamical problem 
-2 72 54 269 - 226 313 - 195 - - - - - - -  
-4 103 78 295 - 230 317 - 213 - - - - - - -  
-6 107 87 304 - 266 317 - 245 - - - - - - -  
-8 108 89 - - 286 - - 281 - - - - - - -  
-10 118 90 - - - - - - - - - - - - -  

olm100 Collection Bai, dimA=[100,100], nnz(A)=396, cond(A)=15275, hydrodynamic problem 
-2 82 - 73 - - - - - - 56 - - - 35 58  
-4 83 - 79 - - - - - - 56 - - - 35 61  
-6 - - - - - - - - - - - - - 35 61  

poli Collection Grund, dimA=[4008,4008], nnz(A)=8188, cond(A)=311, economical problem 
-6 17 17 8 6 - 8 7 - - 8 8 8 10 - -  
-10 20 20 9 9 - 9 9 - - 9 9 9 12 - -  
-14 - - - - - - - - - - - 9 12 - -  
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A more detailed look has been taken on developed algorithms' efficiency when applying them to matrices from  
Averous collection: epb0, epb1, epb2, epb3. Characteristics of these matrices which arise from thermodynamical 
problems are given in Table 2. 

 

Table 2. Characteristics of Averous collection matrices 

Matrix Number of rows nnz(A) cond(A) Sparsity pattern

epb0 1794 7764 64165 
 

epb1 14734 95053 5940 
 

epb2 25228 175027 2618 
 

epb3 84617 463625 - 
 

 

Data, same as in Table 1, are given in Table 3. 

 

Table 3. Number of iterations after which accuracy   was achieved for Averous collection matrices 

   1 1 1 1 1 1 2 2 2 
Number of refinement 

iteration 

   - - - - - - - - - Correction steps 

Matrix and 

10log   

- + - - - + + + - - + Jacobi preconditioner 

- - 0 1 d 0 1 d 0 1 0 

Algorithm: 

0 – IBMM0 

1 – IBMM1 

d - IBMMd 

epb0             

-4 - 918 - - - 663 - - 490 - 490  

-6 - 992 - - - 675 - - 526 - 518  

-8 - - - - - 772 - - 548 - 528  

-10 - - - - - 815 - - 585 - 567  

-12 - - - - - 838 - - 588 - 575  

epb1             

-4 358 321 231 210 125 187 199 133 255 272 279  

-6 426 407 274 260 160 233 228 166 383 385 399  

-8 517 488 343 303 198 295 262 201 434 505 423  
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-10 541 517 363 348 203 299 325 212 466 518 430  

-12 573 552 405 352 211 336 331 221 490 664 488  

epb2             

-4 192 111 91 96 - 85 95 - 96 - 111  

-6 259 128 116 118 - 111 119 - 139 - 148  

-8 315 166 133 132 - 133 130 - 181 - 176  

-10 461 191 162 159 - 157 175 - 198 - 231  

epb3             

7 120 99 105 - - - - - 103 - -  

5 291 258 428 - - - - - 542 - -  

3 845 297 511 - - - - - 566 - -  

1 - 616 569 - - - - - 661 - -  

 

Change of residual logarithm while solving linear system with epb0 matrix applying different preconditioners is 
presented on Figure 1.  

 

Figure1. 10log   while solving linear system with epb0 matrix depending on iteration number 

Conclusions 

According to numerical experiments' results, different modifications of developed algorithms are efficient while 
using them with different matrices.  
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It's worth noting that, in general, they are more efficient when applying to matrices with bigger conditional number.  
Particularly, when using them with relatively poor conditioned matrices olm100 and epb0, several orders of 
magnitude increase of accuracy was achieved and applying to epb1 matrix yields to twice less number of 
iterations needed to achieve given accuracy. On the other side, no positive effects were observed when applying 
them to relatively good conditioned matrices bfwa62, bfwa398, epb2 and epb3.  

Reduction of needed number of iterations along with accuracy increase was observed upon applying incomplete 
basis matrix methods' preconditioners too relatively good conditioned matrix poli which arises from economical 
modelling problem. Taking this feature into consideration, similar matrices could be used as an object of further 
research. 
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