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ON STRING MINING SPEECH RECOGNITION 

Levon Aslanyan, Minoosh Heidari 

 

Abstract: Automatic Speech Recognition (ASR) is a well developed technical area, conjoining 

technologies such as DSP, Machine Learning, HS Codesign, and Linguistics. For scientific research 

ASR is an invaluable source of ideas and solutions integrated in one important product. Unfortunately, 

being a business interest, advanced ASR technologies are hidden by companies. The open literature is 

focused round the Hidden Markov Models (HMM) which was developed earlier in 1960’s and then 

incorporated into the HMM as an attractive technique. Open ASR systems with HMM report surprisingly 

low level recognition – 75%. After the beginning of HMM era many things changed in HS area – now 

very large memories are available, even the portable devices use multiprocessors with high 

computational power. It is to analyze what is achieved and what reminds to be understood with ASR in 

new situation and probably this helps in increasing the accuracy of recognition. Our target after this 

analysis will be the setting up of advanced ASR system (for Armenian language). In fact the system will 

be learnable, when large linguistic corpora are available, so that it can be multilingual. The feature ASR 

technology that is visible today is related to the Sequence Data Mining (SDM) technique. Being part of 

the structural data mining this technique is already studied and developed. Studies involve the topics of 

LCS, gene alignment and similar, but speech signal analysis provide a specific situation that is to be 

studied deeply, with consequent optimization and implementation. All the related thoughts are openly 

presented in the text below. Future work will enlarge the given ongoing prototype with means of 

advanced SDM and with interfaces. 

Keywords: hidden Markov model, string mining, and speech recognition. 
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Introduction 

Two technologies are our objective below – the Hidden Markov Models (HMM) and the String Data 

Mining (SDM). The former is a well known tool for many applications, including speech recognition that 

is our application target. SDM is specific case of Data Mining mostly used in search systems. Our 

discussion wants to understand the real advanced technical resource of speech recognition today. The 

experimental platform is presented by open tool set at [Becchetti & Ricotti, 1999].  
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Paper is composed in three parts. At first the HMM is considered and analyzed in order to determine the 

means of the best correlatedness between the state and observation sequences. Analysis shows that 

although probabilities are given to all pairs of states and observations, a unique observation sequence 

generates one dominating sequence of states moreover this sequence of states is built by constructing 

of individual – isolated states. We suppose that this might be the main bottleneck of the known low 

recognition rate in ASR with HMM. The third part of the paper considers an alternative to HMM 

technique for use in ASR. This is the technique, well known as the string data mining, and well 

developed for search purposes. Here an ASR string of observations is considered as intervals in whole. 

The learning set helps ASR to correspond to such intervals their classes by the ordinary means of the 

supervised pattern recognition. And our supposition is that by the given reason this technique fits better 

to the ASR needs. Finally, the section two of the work describes the open, accessible software 

environment of ASR, where we find all the input information tackled by HMM and SDM algorithms. 

[Becchetti & Ricotti, 1999] provides an open code software ASR together with the detail description of all 

the stages of its work. The valuable parts of the work are learning databases TIMIT (Texas Instruments 

and MIT) developed by a NIST project, with support of DARPA-ISTO, and ATIS (Air Travel Information 

System) developed by ARPA-SLS project. TIMIT provides phoneme annotated acoustic recordings to 

train the ASR, and ATIS is commonly used for the evaluation of word error performances. We refer to 

the chapter 3 “Speech signal analysis” of [Becchetti & Ricotti, 1999] that presents the DSP part of the 

work with signal windowing and algorithmic analysis, that outputs the multidimensional numerical vector 

sequences/strings. These strings correspond to the observation sequences considered by HMM and 

SDM. 

 

Analysis of Hidden Markov Models in ASR 

Start with defining the basic elements of the HMM. 

Hidden Markov model (HMM) is a statistical model, extended form of Markov Chain model in which the 

system being modeled is assumed to be a Markov process, probably with unknown parameters, and the 

challenge is to determine the hidden states from the observable symbols.  

In regular Markov model, the stats are directly visible to the observer, and therefore the state transition 

probabilities are the only parameters of the model. In a HMM, unlike a regular Markov model, the states 

are not directly visible, but variables influenced by the state are visible. Each state has a probability 

distribution over the set of possible output symbols. Therefore the sequence of symbols generated by 

an HMM gives some information, in an intermediary way, about the sequence of the states. 
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Formal Definition of Hidden Markov Models. The HMM is characterized by the following elements: 

1) ܰ, the number of states of the model. Although the states are hidden, for many practical applications 

there is often some physical significance attached to the states or to sets of states of the model. 

Generally the states are interconnected in such a way that any state can be reached from any other 

state (e.g., an ergodic model); however, we will see later that other possible interconnections of states 

are often of interest. We denote the individual states set as	ܵ = { ଵܵ, ܵଶ, … , ܵே}, and the state at time ݐ	as	ݍ௧. 
 

ܯ (2 , the number of distinct observation symbols per state, i.e., the size of a finite alphabet. The 

observation symbols correspond to the physical output of the system being modeled. We denote the 

individual symbols set as	ܸ = ,ଵݒ} ,ଶݒ … ,  .{ெݒ
 

3) The state transition probability distribution  

ܣ  = (ܽ௜௝) (1) 

where ܽ௜௝ = ௧ାଵݍൣܲ = ௝ܵหݍ௧ = ௜ܵ൧, 1 ≤ ݅, ݆ ≤ ܰ.  

 

Here we see that the probabilities do not vary by the time. For the special case where any state can 

reach any other state in a single step, we have ܽ௜௝ > 0 for all	݅, ݆. For other types of HMMs, we would 

have ܽ௜௝ = 0 for one or more (݅, ݆) pairs. 

 

4) The observation symbol probability distribution in state ݅, ܤ = {ܾ௜(݇)},	where ܾ௜(݇) = ௧ݍ|ݐ	ݐܽ	௞ݒ]ܲ = ௜ܵ], 1 ≤ ݅ ≤ ܰ, 1 ≤ ݇ ≤  (2) .ܯ

 

5) The initial state distribution ߨ = ௜ߨ where {௜ߨ} = ଵݍ]ܲ = ௜ܵ], 1 ≤ ݅ ≤ ܰ. (3) 

Concerning (1) to (3) some relations exist among the model 

parameters: 	∑ ܽே௝ୀଵ ௜௝ = 1 , 	∑ ܾெ௞ୀଵ ௝ (݇) = 1 , and ∑ ே௜ୀଵߨ ௜ = 1 . The points 3 and 4 can be 

demonstrated as follows (Figure 1): 
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Figure 1. State transition probability matrix and Symbol observation probability matrix 
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So a complete specification of an HMM requires specification of two model parameters (ܰ and ܯ), 

specification of the state and observation symbols, and the specification of the three probability 

measures ܤ ,ܣ, and ߨ. For convenience, we use the compact notation ߣ = ,ܣ) ,ܤ  (4) (ߨ

to indicate the complete parameter set of the model. 

An introductory example. Figure 2 shows a Hidden Markov model that represents urn-and-ball system 

frequently used to illustrate HMM. We use, after a correction, the example of point 4.3.3 of [Becchetti & 

Ricotti, 1999]. We use the simplified and the complete versions. 

 

 

 

Figure 2. An HMM that models two urns containing Black and White balls. 

 

Let us assume that there are 2 (ܰ = 2 states) urns with black and white balls inside, i.e. 2 distinct 

colors (ܯ = 2 observations as output symbols). Within each urn there is a large quantity of different 

balls. From urn, a ball is chosen at random, and its color is recorded as an observation. The ball is then 
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replaced in the urn form which it was selected. A new urn is then selected according to the random 

selection procedure associated with the current urn. Ball selection process is repeated. This entire 

process generates a finite observation sequence of colors, which we would like to model as the 

observable output of an HMM. 

 

Consider in particular the example when the first urn 0 is filled only with black balls (symbol 1), and the 

second urn 1 is filled with an equal number of the two color balls. Each extraction from urn 0 is followed 

by an extraction from urn 0 or 1 with equal probabilities. And the extraction from urn 1 determines a 

successive extraction from urn 0 and 1, with the same equal probability	½. The initial urn probabilities 

are supposed to be equal. 

 

A physical process for obtaining observations is as shown on Figure 2. 

 

Revisiting Hidden Markov Model for Figure 2, the formal definition is	(ܵ, ܸ, ,ܯ,ܰ ,ܣ ,ܤ ܵ .where 1 ,(ߨ = ,(1ݏ)0݊ݎܷ} ܸ .2	{(2ݏ)1݊ݎܷ = ,(0)/݁ݐℎ݅ݓ} ܾ݈ܽܿ݇/(1)}	 	
ܣ .1 = (ܽ௜௝) is given as 

 S1 S2 

Start 0.5 0.5 

S1 0.5 0.5 

S2 0.5 0.5 

 
ܤ .2 = { ௝ܾ(݇)} is given as 

 B W 

S1 1.0 0.0 

S2 0.5 0.5 

 
௜ߨ .3 =	0.5 

 

What is the probability of occurring of the sequence B W B?  
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To compute this probability, all the possible paths of the states to produce the output sequence (B W B) 

should be taken into account. The four possible paths are: 

1ݏ  → 2ݏ → 1ݏ 1ݏ → 2ݏ → 2ݏ 2ݏ → 2ݏ → 2ݏ 1ݏ → 2ݏ →  ↓ ↓ ↓ ↓ 2ݏ

.5×.5×.5×.5 + .5×.5×.5×.5×.5 + .5×.5×.5×.5×.5 + .5×.5×.5×.5×.5×.5 = .140925 

 

With this simple example, we tried to understand the capability of HMM modeling which is larger in 

reality. The theory differs the output symbol generation – being it related to the states or to the state 

transitions correspondingly. The former (that we considered above) is called state-output HMM while the 

output generation in state transitions is known as the edge-output HMM. In this form, the output symbol 

is produced by the edges. So, it is called the edge-output HMM which is defined as a quadruple	߆ =(ܵ, ܻ, {ܶ௞}, where: S is the set of N states, Y is the set of M output symbols.  {T୩} ,(ߨ = 	 {	T୩|k = 1,… ,M} is a set of N×N (and implicitly N×M) matrices, with the elements t୧୨(k) of 

the joint probability distribution  of states and output symbols. {T୩} must satisfy: 

 For all i, j		such that 1 ≤ i, j ≤ N,  ܽ௜௝ = ∑ t୧୨(k)୩ ; 

 For all i	such that 1 ≤ j ≤ N,  ܾ௜(݇) = ∑ t୧୨(k)୨ ; 

 For all i	such that 1 ≤ i ≤ N,  ∑ t୧୨(k)୨,୩ = 1; 

 For all i, j		such that 1 ≤ ݅, ݆ ≤ ܰ and 1 ≤ ݇ ≤ (݇)௜௝ݐ ,ܯ ≥ 0. 

And π is the initial state probability distribution. 

 

The joint matrices of this form of HMM can be demonstrated as shown on(Figure 3): 

 

Consider again the example above. Replace the part of description “And the extraction from urn 1 

determine a successive extraction from urn 0 and 1, with the same equal probability	½.” by the new one 

“The extraction of a white ball (symbol 0) or a black ball (symbol 1) from urn 1 determine a successive 

extraction from urn 0 and 1 correspondingly, with the equal probability	½”. Model is the same. Now also 

change the equal probabilities. It is easy to see that the state output model is unable to model this case 

which is to consider as an edge-output model. 
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Figure 3. Joint Matrices Demonstration 
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We will use in our analysis some internal objects and definitions of this Procedure, so we have to bring 

them again. 

That is the so called forward variable  

(݅)௧ߙ  = ܲ( ଵܱ, ܱଶ, … , ܱ௧, ௧ݍ = ௜ܵ|(5) ,(ߣ 

 

And the similar backward variable, that is 

(݅)௧ߚ  = ܲ(ܱ௧ାଵ, ܱ௧ାଶ, … , ்ܱ, ௧ݍ = ௜ܵ|(6) .(ߣ 

 

P2. Optimal State Sequence Associated to the Acquired Observation Sequence 

Given the observation sequence ܱ = ଵܱ, ܱଶ, … , ்ܱ , and the model ߣ = ,ܣ) ,ܤ (ߨ , how do we 

choose a corresponding state sequence ܳ = ,ଵݍ ,ଶݍ … ,  which is optimal in some meaningful sense ்ݍ

(i.e., best “explains” the observations)? 

 

P3. Model Parameter Estimation that Maximize the Acquired Observation Sequence Probability 

How do we adjust the model parameters ߣ = ,ܣ) ,ܤ  ?(ߣ|ܱ)ܲ to maximize (ߨ

Among the basic HMM problems P2. is the most meaningful. Problems P1 and P3 are computational, 

algorithmic, optimization tasks. Indeed these tasks are very much important to set up the final effective 

HMM application environment but the P2 is the place where the states and observations meet each 

other. 

 

Analysis of the P2.  

Here, as mentions [Becchetti & Ricotti, 1999], the difficulty lies with the definition of the optimality of a 

state sequence, i.e., there are several possible optimality criteria. For example, one possible optimality 

criteria is to choose the states, which are individually and independently most likely. 

To implement this solution define the variable 

(݅)௧ߛ  = ௧ݍ)ܲ = ௜ܵ|ܱ,  (7) (ߣ

 

that is the probability of being in state ௜ܵ at time step ݐ, given the observation sequence ܱ, and the 
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model ߣ. Equation (7) can be expressed simply in terms of the forward-backward variables, i.e. 

(݅)௧ߛ  = (ߣ|ܱ)ܲ(݅)௧ߚ(݅)௧ߙ = ∑(݅)௧ߚ(݅)௧ߙ ௧(݅)ே௜ୀଵߚ(݅)௧ߙ  (8) 

 

since ߙ௧(݅) counts for the partial observation sequence ଵܱ, ܱଶ, … , ܱ௧  and state ௜ܵ , at time step ݐ , 

while ߚ௧(݅) accounts for the remainder of the observation sequence ܱ௧ାଵ, ܱ௧ାଶ, … , ்ܱ, given state ௜ܵ 
at ݐ. The normalization factor ∑ ௧(݅)ே௜ୀଵߚ(݅)௧ߙ  makes ߛ௧(݅) a probability measure so that 

 

෍ߛ௧(݅)ே
௜ୀଵ = 1 (9) 

 

Using ߛ௧(݅), we can solve for the individually most likely state ݍ௧, at time ݐ, as 

௧ݍ  = 1 ,[(݅)௧ߛ]maxଵஸ௜ஸே݃ݎܽ ≤ ݐ ≤ ܶ. (10)

 

Analysis: 

a) Consider the Figure 4. explaining ߛ௧(݅) around the time step ݐ. 
The formula counterpart to ߙ௧(݅)ߚ௧(݅) in this picture is  

 ([∑ (݇)௧ିଵߙ ∙ ܽ௞௜ே௞ୀଵ ]ܾ௜(ܱ௧)) ∙ ௧(݅). (11)ߚ

 

Having ௜ܵ  fixed at time step ݐ, and the sequence ܱ௧ାଵ, ܱ௧ାଶ, … , ்ܱ  defined, maximization of ߚ௧(݅) 
becomes an independent task from the left part of the formula (11). ܾ௜(ܱ௧) is also fixed value, by the 

conditions given at time step ݐ. So the part of formula to be maximized is the part included in square 

brackets. Rewrite ߙ௧ିଵ(݇)  in the form ߙᇱ௧ିଵ(݇) ∙ ܾ௞(ܱ௧ିଵ)  (which is valid by the definition of ߙ௧ିଵ(݇)) and then consider the transformation of the base formula into the: 

 ([∑ (݇)ᇱ௧ିଵߙ ∙ ܾ௞(ܱ௧ିଵ) ܽ௞௜ே௞ୀଵ ]ܾ௜(ܱ௧)) ∙ ௧(݅). (12)ߚ
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Formulas of ߙᇱ௧ିଵ(݇)  in (12) depend on parameters ଵܱ, ܱଶ, … , ܱ௧ିଵ  and the requirement that ݍ௧ିଵ = ܵ௞ . Our idea is to understand, and outline, the tendency here in recursive maximization of 

terms of type ܾ௞(ܱ௧ିଵ)ܽ௞௜ . These is exactly the product of two probabilities – state probability and 

observation probability out of some current state ܵ௞. The real formula requires finding a set of similar 

optimized pairs. In more detail, in one fragment, by ܱ௧ it is to take such state ݍ௞ for step ݐ − 1 that 

provides greater probability ܾ௞(ܱ௧ିଵ) for ܱ௧ିଵ and then it is to choose the next to the ݍ௞ state with the 

highest probability ܽ௞௜ . The formal description requires that the product of these two probabilities is 

maximal. If states and observations are correlated this can have a meaning. While so, then this is a 

hypothesis, functional dependency, and it is mandatory to formulate this at the beginning. Without it - 

states and observations - having no connection to each other - can enter into the same game. 

 

 

Figure 4. An Illustration for Forward and Backward Algorithm 
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b) Another caution to the considered algorithm is raised in [Rabiner, 1989]. Independent from one to the 

other construction of the optimal states at time steps ݐ, 1 ≤ ݐ ≤ ܶ can draw to a situation that the 

resulting state sequence can be not even valid. The simplest explanation of this is in use of the zero 

state transition probabilities. 

In this section we analyzed the issues of applicability of HMM in ASR, in part of determination of best 

correlatedness between the state and observation sequences. Questions rise as it is mentioned in a), 

Figure 4 and in b). The formal technique for finding the single best state sequence is based on dynamic 

programming methods, and is called the Viterbi algorithm. The Viterbi algorithm combats the notion b) 

but not the a). The basic construction is again the pair (ܾ௞(ܱ௧ିଵ), ܽ௞௜)  and it is a question if 

consideration of 2 nearby states can be effectively manages the long state sequences. As an alternative 

technique, in last section of the work we will describe the use of String Data Mining technique in ASR. 

 

Automatic Speech Recognition 

This section brings the ASR internal information necessary to understand the use of HMM and SDM. 

Speech recognition is a type of the supervised recognition scenario. The final target is to create the 

alphanumeric information counterpart to the uttered speech but the way to this consists of different local 

steps such as setting the learning data and training, time and spectral domain analysis of signals, model 

composition that links the signal parameters to the linguistic elements like phonemes and words, and 

then can be some orthography and grammatical checks and empowerments. ASR uses both 

deterministic and statistical technique in model compositions. In statistical speech recognition it is wide 

spread to consider the Hidden Markov Models. Markov Models are really statistical but whole ASR 

framework in this case is quiet deterministic. And it is correct to mention another approach, statistical, 

when large speech corpuses are created, analyzed and characterized, and when the input signal and its 

parts are compared statistically with the fragments of these learning data. Anyway, our interest is to 

study a real example of ASR system with the use of this traditional technology, to analyze it, trying to 

understand the alternatives and empowerments. The base of our study in this part is the well made 

book [Becchetti & Ricotti, 1999]. We use it as a prototype environment to understand the whole pros 

and cons in area, determining novel research targets and developing technologies and solutions to 

them. Probably one of the starting points is that the maximal correct recognition percentage mentioned 

here is 75%. Usually it is 60-65%. Why the result of such hard work is so low? Is this because of 

incorrect or misuse of the selected models and is there a room for empowerment?  

What we learn from [Rabiner, 1989]? 
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First, in “RES” project (Recognition Experimental System), that implemented in the book [Becchetti & 

Ricotti, 1999], there is information about the hardly made training data available for future 

experimentation such as TIMIT, and ATIS. 

They are the most important speech databases used to build acoustic models of American English. 

TIMIT is an acronym composed by TI (Texas Instrument) and MIT, the two research centers involved in 

the project at NIST, National Institute of Standards and Technology, sponsored by DARPA-ISTO. 

TIMIT contains a total of 6300 sentences that 630 American speakers have spoken 10 sentences. The 

database has been made up of the recorded waveform of the sentence, with a sampling frequency of 16 

kHz, together with a time-aligned phonetic transcription of the sentence. The speakers in TIMIT have 

been subdivided into training and test sets using some criteria such as: Almost 20 to 30% of the 

database is considered for the test set, and the remaining 70 to 80% for training.  

 

Every phrase is associated with: 

.txt the orthographic transcription of the phrase (spelling) 

.wav the wave file of the sound 

.phn 
the correspondence between the phonemes and the samples (the number of all Phonemes 

(included many times in different contexts in the mentioned speech corpora) is around 50 to 60). 

.wrd the correspondence between the words  and the samples 

 

Furthermore, there is the pair of letters (SX, SI and SA) before the name of files: 

SX are phonetically compact phrases in order to obtain a good coverage of every pair of phones 

SI phonetically varied phrases, for different allophonic contexts 

SA for dialectal pronunciation 

 

The other mentioned database, ATIS, stands for Air Travel Information System, distributed from 1989 by 

ARPA-SLS project. It contains 10 722 utterances by 36 speakers. 
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Every phrase is associated with the following file types: 

.cat category of the phrase 

.nli phrase text with point describing what the speaker had in mind 

.ptx text in prompting form (question, exclamation,…) 

.snr 
SNOR (Standard Normal Orthographic Representation) transcription of the phrase (abbreviations 

and numbers explicitly expanded) 

.sql additional information 

.sro detailed description of the major acoustic events 

.lsn SNOR lexical transcription derived from the .sro 

.log scenario of the session 

.wav 
the waveform of the phrase in NIST_1A format (sampling rate, LSB or MSB byte order, min max 

amplitude, type of microphone, etc…) 

.win references for the interpretation 

 

Furthermore, there are several labels (S, C, X and R): 

.cat category of the phrase 

‘s’ close-speaking (Sennheiser mic) 

‘c’ table microphone (Crown-mic) 

‘x’ lack of direct microphone, ‘s’ spontaneous speech 

‘r’ read phrases 
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In general, the project (RES) has the following general specifications: 

It works on recorded speech files and it basically includes: 

 The batch modules for acoustic model initialization and training; 

 Grammar models training; 

 Phoneme/word recognition; 

 Performance evaluation.  

It performs in speaker independent phonetic recognition:  

 With 69.2% of percent correct using all TIMIT test data using context independent phonetic models.  

It yields 87.83% of percent correct in speaker independent word recognition on ATIS using context 

independent phonetic models not optimally tuned on this database. 

Second are the input signal and its analysis. The base where speech signals and their fragments are 

compared is selected 16kHz. Then the recommended window length and the overlap is 512 and 384. 

The number of time spectral characteristics produced equals 39 including 13 base characteristics with 

their first and second order differences. 

At this point it is seen that the base element for recognition is a fixed 39 length numerical vector. The 

input signal is coded/presented as the “overlapping” sequence of the numerical vectors. And surely the 

similar interpretation is possible to apply on training set signals, those already provided with the 

notations and transcriptions. 

All the above information is acquired during the standard signal processing and feature extraction 

procedures: 

 

 

 

Speech is analyzed over short analysis window. 

For each short analysis window, a spectrum is obtained using FFT (Fast Fourier Transform). 
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Cepstral analysis is performed on Mel-Spectrum to obtain Mel-Frequency Cepstral Coefficients (MFCC). 

Thus speech is represented as a sequence of Cepstral vectors. 

It is these Cepstral vectors which are given to pattern classifiers for speech recognition purpose. 

The following block diagram shows algorithmic internals of the time spectral domain analysis of input 

signals by [Becchetti & Ricotti, 1999]: 

 

Speech Recognbition Software System Initialisation Project Block‐Diagram 
 

 
DbaseVoc dbase; 
dbase.Configure(config_file, TRUE); gets dbase configuration options \to soundlab.cpp\ 
\includes reading phoneme positions \in phn\ at labelcl.cpp 
NTimit39LabelClass::Open_Sym(const String & file_name);\ 
   
 
 
 
 
 
 
 
ini_options.Set_Options(config_file, dbase.Get_Num_Of_Symbols()); \iniopt.cpp symbol models\ 
 
symbol_models_initialization.Configure(ini_options, config_file, dbase.Get_Num_Of_Symbols());  

\to initiali.cpp\ … feature.Configure(config_fname); \to feature.cpp\ …  
 
symbol_models_initialization.Symb_Model_Calculation(ini_options.InitializedModelsFName, 
ini_options.models_file_input, dbase, ini_options.full_covariance, ini_options.load_one_mixture, 
ini_options.unif_sect, ini_options.model_type); \to initiali.cpp\ … where: 
 

Write_Header_Of_File_Model (out_fname, dbase.Snd_Type(), dbase.Label_Type(), 
dbase.Db_File_List_Name(), dbase.Window_Lenght(), dbase.Window_Overlap(), stat_dim, full_cov);

tspecbas.cpp opens phonemes_1.spt, outputes the header and closes the file
states_info.Initialize(num_sections_per_symbol[i], num_mix_per_symbol[i],stat_dim, full_cov);

\initiali.cpp initialize (*this)[0‐2][0] with zeros\
Calculate_One_Mixture_Codebook(act_phon, num_frames, dbase, unif_sect); \at initiali.cpp\ in 

what:
 

not_end_of_dbase=dbase.Get_Filtered_Sequential_VetSmp_And_Its_Predecessors(vetsmp,act_phon, 
is_new_phone, pred_list); \at initiali.cpp Ln163 which goes to soundlab.cpp where:\ 
 

while(not_end_of_dbase AND NOT 
SoundLabelledFile::Get_Filtered_Sequential_VetSmp_And_Its_Predecessors(vet,sym, 
is_new_fone, pred_list)) \to in the same soundlab.cpp, where:\ 

act_smp=snd_file‐>Get_Actual_Position(); \to soundfil.cpp\ position=44 then
SetSymbol(sym, act_smp, new_smp); to labelcl.cpp, new_smp_pos

Set_Absolute_Position(new_smp);
Backshift=numpred*(len_win_sample‐overlap);

Set_bsolute_Positin(new_smp OR new_smp‐backshift); \by soundfil.cpp and 
operation seekg();\

Get_Sequential_Vet(vet); \to soundlab.cpp where \Read at soundfil.cpp\ and 
\Set_Relative_Position(‐overlap) at soundfil.cpp by use of seekg()\; 

 
feature.Get_Previous_Info(pred_list, dbase.Smp_Rate()); \perform sequential 
transformations over prev_vetsmp_list to the memory of all the modules\ 
feature.Extract(vet_features, vetsmp, dbase.Smp_Rate()); \retrieve configuration from 
configuration file apply all the required transformations\ 
states_info[k][cluster].Do_Averages(); \utilize mean & cov accumulators to explicitly 
calculate.. for covariance, square of population, external product mean vector, 
main diagonal\ 

 

  

States_info.Compute_Whole_Codebook_Clusters_Distortions(); \eigenvectors, eigenvalues\
         states_info.Compute_Cluster_Weights();

states_info.Store_Codebook(out_fname, act_phon, load_one_mixture, model_type); \model computation 
and output\

 

conf.Open_File(config_file); \to resconf.cpp Where it opens\  
file_ini.open(file_name,ios::in|ios::_Nocreate); \“res.ini” & ”res.opt”\

conf.Get_String_Opt("DBaseOptions", "ListOfSoundFNames", db_file); \resconf.cpp\ 
Initialize(config_file,"DBaseOptions",read_transcription); \soundlab.cpp\ size 2048 
Inizialize_File_List(); \to soundlab.cpp “file_list” then vets_cardinality\ 

soundfil.cpp reading ‘headers” of sound files, 44
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This section described in short the internals of [Becchetti & Ricotti, 1999]. The basic initial information is 

the speech databases TIMIT and ATIS. All speech records are digitized and analyzed with help of DSP 

algorithms over the proper sliding windows. Multidimensional numerical vectors and their sequences are 

the observations, given as input to the HMM tools.  

Modeling and Learning with Substring Data Mining 

This section aims at introducing the elements of the Data Mining technique [Han & Kamber, 2006] in the 

form applicable to the ASR design. We mention the ordinary [Li et al, 2006], structural [Srivatsan & 

Sastry, 2006], sequential [Nizar & Ezeife, 2010]  and finally the String [Ji & Bailey, 2007] Data Mining. 

We consider String Data Mining as an alternative to the HMM for ASR related applications. 

Association Rule Mining. Consider a finite set ܣ = {ܽଵ, … , ܽ௠}, ݉ ≥ 1. The elements of ܣ we will 

also call items, due to example applications used in this area (supermarket transactions and market 

basket analysis). Further, let ࣞ: 2஺ → ℕ଴ defines a multi-set over the power-set of ܣ in a way that for 

each ܺ ∈ 2஺ the number ࣞ(ܺ) indicates how many times the subset (item-set) ܺ occurs in multiset ࣞ. We will refer to ࣞ as the database and to its elements as transactions. It is realistic to suppose the ࣞ to be finite in each time frame, although as a database it is a dynamically evolving relational table. 

We will use also the n-cube notation, where ࣞ induces natural item-set coding and their weights/labels 

to the n-cube vertices. In some cases we will consider and analyze only none zero occurrences/weights. 

 

Figure 5. Hasse type diagram of power set of set ܣ with isoareas by values of support function ݏ(ܺ) 

K+1 
K 

empty set 

set A 
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For ܺ ⊆ (ܺ)ݏ we define ܣ ≔ ∑ ࣞ(ܻ)௒⊇௑  to be the support of ܺ in ࣞ. We say that a subset ܺ ⊆  ܣ

is ݐ-frequent in ࣞ, ݐ ≥ 0, if ݏ(ܺ) ≥   .ܺ transactions in ࣞ containing ݐ that is when there are at least ,ݐ

Monotonity is the important property of function ݏ(ܺ),  
 (ܺ ⊆ ܻ) ⇒ (ܺ)ݏ ≥  .(ܻ)ݏ
 

Izo-areas of ݏ(ܺ) can be presented by the sequences of embedded monotone Boolean functions. But 

such sequences can’t behave arbitrarily. For example, if to consider a simple 2 row database then these 

rows correspond to 2 vertices of n-cube: ݒଵ and ݒଶ. Consider subcubes ݒ)ܫଵ, 1) and ݒ)ܫଶ, 1) formed 

by these vectors and by the all 1 vector (set ܣ). All points of these subcubes 1-support one of the rows, 

but the points in intersection support both rows. So it is not possible to design a database that gives 

homogeneous support value over the area covered by ݒ)ܫଵ, 1)  and ݒ)ܫଶ, 1) . So the mentioned 

“sequences of embedded monotone Boolean functions” are a specific inclusion-exclusion type object to 

be described and studied in deep. 

Frequent subsets are the basis of the large research area of data mining. More precisely the association 

rule mining uses frequent subsets generating rules of some given confidence. The basic approach of 

association rule mining was formed inside the approach known as the APRIORI algorithm [Agrawal & 

Srikant, 1994], [Agrawal & Srikant, 1999]. An alternative approach is formulated in [Aslanyan & 

Sahakyan, 2009], [Aslanyan, 1976] using the well known technique of chain split [Hasel, 1966] and 

chain computations [Tonoyan, 1976], [Aslanyan & Khachatryan, 2008] of n-dimensional unite cube. 

Today the real application problems that use the data mining technique deal with more complex 

information structures that the simple set of elements we considered so far. One typical problem is the 

trajectory analysis. Having the vertex set representing some real geographical points and considering 

movements of objects among these vertices we see that the valid trajectories are to be connected 

entities. Considering this in a graph we face the problem of mining connected sub-graphs [Rosen, 

2010]. Another problem can consider only Sperner type subsets of a set trying to mine the frequent sets 

of this type. Interesting problems appear with sequences and its sub-sequences. The dominating part of 

research here supposes consideration og the so called embedded subsequences in manner of the 

known combinatorial LIS and LCS problems. Besides these mentioned structural diversity an attractive 

task is the algorithmic complexity issue. Bring an example. Consider the so called closed accessible set 

systems of the transactions database.  

A subset ܺ ⊆ ܻ is called closed (maximal subset) if for each ܣ ⊆ ܻ ,ܣ ⊃ ܺ, it holds ݏ(ܻ) <  .(ܺ)ݏ
For ܺ ⊆ (ܺ)ߩ we define ܣ ≔ ⋂{ܻ ⊆ ܣ ∶ ܻ ⊇ ܺ	ܽ݊݀	ࣞ(ܻ) > 0} to be the closure of ܺ  in ࣞ . It 
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can be checked that ܺ ⊆ (ܺ)ߩ , ܺ ⊆ ܻ ⇒ (ܺ)ߩ ⊆ (ܻ)ߩ  and ߩ൫ߩ(ܺ)൯ = (ܺ)ߩ . It also can be 

checked that the closed subsets are the closures. 

Obviously ࣞ: 2஺ → ℕ଴  defines a monotonic decreasing integer function when ܺ  increases by set-

inclusion, over the Boolean cube (2஺, ⊆), and it can be checked that the closed subsets are the upper ݇-points of ࣞ, for ݇ ≥ 0. Also observe that the frequent subsets are all the subsets of the closed 

frequent subsets, and thereby the closed frequent subsets determine the frequent subsets. This 

technique is minimizing the mining constructions and computations.  

Among the diverse problems of structural, sequential, time domain data mining there is a specific 

domain, known as string data mining (SDM) which is the one directly related to the speech recognition 

domain. There are plenty of algorithms dealing with sequential data mining. Each data structure with 

specific particularities of the applied problem inserts additional specifics in constructing the efficient 

mining algorithms. In speech recognition there appear vector sequences. Vectors are of fixed length and 

they have numerical coordinates (time/spectral domain coefficients). Particular coordinates and the 

vectors in whole are comparable – having a similarity/dissimilarity measure. One can imagine to cluster 

the vectors but the target is not the individual vector but their sequences, the sequence of utterances, 

moreover the important subsequences are of different length. We may imagine the Hasse diagram that 

interprets this situation. It is very simple. 

The upper vertex (level 0) represents the entire sequence of length m, itself. In level 1, below the level 

0, there are only 2 subsequences of length ݉ − 1. In ݇-th level there are ݇ subsequences of length ݉ − ݇. Graphically this can be represented as a triangular halve of a rectangular grid construction. 

Having the voce signal one have to create the vector subsequence counterpart, and scan all 

subsequences to accumulate their appearances on the grid vertices. Given a voice signal database we 

determine thresholds for each vector component (quantization, where rounding of coordinates by 

threshold values is applied) and accumulate subsequence repetitions into the grid points.  

Our next postulation is about the validity of monotonity property on frequent subsequence area. This is 

easy to check and is very useful as an algorithmic construction of SDM. In global terms such algorithms 

identify all subsequences in groups by their initial vectors, then in each group the maximal frequent 

subsequence is sought. In real speech domain these frequent subsequences must obey additional 

requirements (properties). They will not involve one the other and they will not intersect in time axis. 

These are not absolute propositions but they are recommended and are almost mandatory. 

In conclusion we bring the descriptions related to the technique we designed concerning the 

enhancements of the experimental speech recognizers.  

String Mining. Let Σ denote a finite alphabet. A sequence ܵ is an ordered list composed by letters from Σ . Denote the 	݅ -th item of a sequence ܵ  as ܵ[݅] . We will consider two types of structures: 
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subsequences and substrings. A sequence ଵܵ = ܽଵܽଶ. . . ܽ௠  is called a subsequence of sequence ܵଶ = ܽଵܽଶ. . . ܽ௡  if ݉ ≤ ݊ and there exist integers 1 ≤ ݆ଵ < ݆ଶ <. . . < ݆௠ ≤ ݊  such that ܽ௜ = ௝ܾ೔ 
for 1 ≤ ݅ ≤ ݉. We denote this relation as ଵܵ ⊆ ܵଶ. In a similar way, if there exist an index ݆, 1 ≤ ݆ ≤݊ −݉ + 1 so that ܽ௜ = ௝ܾା௜ିଵ for 1 ≤ ݅ ≤ ݉, then sequence ଵܵ is called a substring of ܵଶ denoting 

this relation as ଵܵ ⊑ ܵଶ. We also express this relation as ଵܵ = ܵଶ[݆, ݆ + ݉ − 1]. In both cases there 

can be large number of subsequence and/or substring insertions within one general string. 

Subsequence and substring data mining algorithms in an initial stage discover frequent subsequence 

and substring insertions correspondingly. Sequence mining is known with its application in market 

basket type data analysis. String mining, as it is easy to understand, can be an important tool of speech 

signal analysis. 

In this application the alphabet Σ, as it was described in previous section, consists of signal window 

characteristic-observation vector quantization. Let us insert, in addition, a concept of similarities of 

letters of Σ. We do not justify it but denote it as d൫a୧,a୨൯, 	a୧,a୨ ∈ Σ. Given a threshold ε we may identify a୧,a୨  when d൫a୧,a୨൯ ≤ ε . In this way we come to the approximate subsequence/substring mining 

concept.  

Given a sequence database ܵܤܦ  and a minimum support threshold α, a string Q is frequent substring 

pattern of ܵܤܦ  if it holds 

 |S ∈ SDB|Q ⊑ S||SDB| 	≥ α. 
 

In this case it is used that ܵܤܦ lists strings of our interest – words, phoneme code-words, etc. The 

same formula is applied in a case when ܵܤܦ presents a long speech signals recording or a set of them. 

The variety is expressed by the use of the term “episode”. Frequent episodes are like a clustering model 

while the substring mining tends to the supervised learning. Technically substring mining is based on 

suffix tree models, well developed, and importantly linear in time and space complexities. And indeed 

still there are particular problems to understand and manage with this type of algorithms. Consider a 

couple of scenarios.  

Let we are given a speech corpus scanned and computed the window based observations. Frequent 

substring mining in this case that gives a limited number of episodes is an equivalent to a cluster 

analysis procedure. Cluster analysis can not be applied directly due to different length of target 

subsequences. And the episodes derived can be used as the initial basis in manual notification of 

phonemes. 
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As the second scenario consider the case when a phoneme database is given and when it is to be 

enlarged by the use of speech corpus analysis. Then how the frequent episodes and the existing base 

can be combined? This seems like a supervised substring mining procedure. Here one possible 

approach may apply the well known parametric optimization of voting estimation algorithms by Yu. 

Zhuravlev.  

And of course the main case is the phoneme search and partitions by phonemes that is based on suffix 

tree constructions and their extensions. Just mention two extensions of these types [Fischer et al, 2005] 

inserts minfreq and maxfreq in constraint-based frequent string mining computing all strings that are 

frequent in one database and infrequent in another. The technique used is the suffix tree and the 

longest common prefix (LCP) array constructions. [Tsuboi, 2003] proposed a divide-and-conquer type 

algorithm that decomposes the mining task into a set of smaller tasks by using a ternary partitioning 

technique. It brings to memory minimization and to the computation reduces.  

Next group of technique we bring is about classification, recognition. An evident strategy is the use of 

search by phonemes (observation vector sequences) that can be effectively implemented by the suffix 

tree based algorithms. The necessary extension may address the use of distances and similarities, the 

idea of scaling over the time domain, and the none-intersection (separation) requirement of the 

phonemes. In addition, [Chan et al, 2003] introduces the emerging substring concept that aims at mining 

data classes, substrings, which occurs more frequently in one particular class rather than in other 

classes. In this model, above the support threshold, a growth rate threshold is determined. And again 

the technique is the prefix suffix trees and their transformations. 

String Recognition. We use the special case of general data mining, in our case the association rule 

mining technique that tries to generate if-then type rules with a property of having satisfactory support 

and confidence. The rule has left hand attributes with their constraints and a similar set of right hand 

attributes with constraints. Previously, the same construction appeared in relational databases in part of 

functional dependency generation. Even that period, in several applications, appeared an interest in 

generating rules and dependencies with only one right hand attribute [Armstrong et al, 1998]. Now, [Liu 

et al, 1998] use this scheme in associated rule mining with one right side attribute rules. This attribute 

corresponds to the class label. Parallel frequency determination for the part of observation attributes 

and then for the complete attribute set – the class label included, forms a proper base for class 

associated rule mining. This can correspond to the phoneme classification rules by the use of window 

based observation vectors and their analytics.  

Conclusion 

Having that the recognition rate is quite low in HMM based ASR systems it is to try to find out the real 

bottleneck of the problem. HMM analysis shows that even being well defined and an attractive 
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technique for applications it raises question with their implementation in ASR system design. Even the 

Artificial Neural Network (ANN) can be a good alternative. Due to ANN is not well interpretable the SDM 

technique might be a better choice. For experimentation on this it is necessary to set up an open source 

research HS environment with necessary learning databases, with DSP and interfaces. An open source 

prototype is selected. The additional models and components to be inserted into these environment 

were sought and determined as SDM (and ANN potentially). 
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