
International Journal "Information Content and Processing", Volume 2, Number 1, 2015

26

ON ATTACK GRAPH MODEL OF NETWORK SECURITY

Hasmik Sahakyan, Daryoush Alipour

Abstract: All types of network systems are subject to computer attacks. The overall security of a

network cannot be determined by simply considering the vulnerable points in the network; it is essential

to realize how vulnerabilities can be combined in the same host or in a set of connected hosts to initiate

an attack. Attack graph is a tool for modeling compositions of vulnerabilities and thus representing

possible multi-stage multi-host attacks in networks. Attack graphs can be used for measuring network

security; supporting security solutions by identifying vulnerabilities that should be removed such that no

attack can be realized targeting given critical resources, and thus hardening the network. We consider a

general model of attack graphs and a scheme of attack graph generating algorithm; and investigate

graph-theoretical problems related to particular tasks of network hardening.

Keywords: Attack graph model; Network security

ACM Classification Keywords: C.2 Computer-communication networks; G2.2 Graph Theory; G2.3

Applications

1. Introduction

All types of network systems are subject to computer attacks. The overall security of a network cannot

be determined by simply considering the vulnerable points in the network. To evaluate the network

security, it is essential to understand how vulnerabilities can be combined in the same host or in a series

of connected hosts to initiate attacks. Attack graph is a tool for modelling compositions of vulnerabilities

and thus enumerating multi-stage multi-host attacks in networks (see e.g. [Aslanyan et al, 2013; Barik et

al, 2014; Noel et al, 2010; Sheyner et al, 2002; Zhang et al, 2009]). Generally, attack graphs are large

and complex, and automatic and efficient generation of attack graphs is an important issue. It is also

important to analyze attack graphs for measuring network security, supporting security solutions by

identifying vulnerabilities that should be removed such that none of the attack paths leading to a given

critical resource can be realized, and thus by hardening the network. In this paper we address graph-

theoretical problems related to particular tasks in the network security.

The paper is organized as follows. A brief overview of network security is given in Section 2 below.

Section 3 introduces network vulnerability model and the role of attack graphs. A simple algorithm of

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

27

generating attack graph is described for an attack graph model. Section 4 is devoted to graph-

theoretical problems and algorithms related to particular network hardening tasks.

2. Network Security

A computer network is a group of computer systems and other computing hardware devices that are

linked together through communication channels enabling communication, data exchange and resource

sharing between users (Figure 1).

Network security refers to protection of resources. The resources to be protected include:

 All types of information resources (user-generated data, programs, computer services and
processes);

 Communication infrastructure (communications devices, transmission paths, communication
data);

 Computer system (hardware software operability).

Figure 1. Computer network in an example

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

28

In general, three main components of network security are of basic interest:

 Confidentiality: the information must be protected from disclosure to unauthorized parties;

 Integrity: the information must be protected from being modified by unauthorized parties;

 Availability: the information must be available when it is needed and access right is in place, -
must be protected against unauthorized deletion/modification of data or causing a denial of
service of data.

The base elements of network attacks are threats and vulnerabilities.

Threats are actions, events, or circumstances that have the potential to compromise network security,

for example, to obtain unauthorized access to data.

Vulnerability is a flaw or weakness in a network that can be exploited by one or more threats to gain

access to a system or network.

For example, the vulnerability can allow an attacker:

 To execute commands as another user;

 To access data that has access restrictions;

 To conduct a denial of service action, etc.

Vulnerabilities can be exploited by human or another (technical) system to initiate an attack. Network

attack is an intrusion on the network infrastructure. First it can collect and analyze information in order to

exploit the existing vulnerabilities. In such cases the purpose is only to get some information from the

system, - these are passive attacks. Active attacks occur when resources or data are modified, disabled

or destroyed.

Examples of network attacks are:

DoS (Denial-of-Service) – Send more requests to the computer than it can handle.

Unauthorized access – Access some resource that the computer should not provide the attacker. For

example, a host might be a web server and should provide anyone with requested web pages. However

the host should not provide command shell access to a person who should not get it.

There are some standards to classify vulnerabilities (see e.g. [CVE], [NVD], [OSVD]). Common

Vulnerabilities and Exposures (CVE®) is a dictionary of common names for publicly known information

security vulnerabilities. The CVE vulnerabilities have three parts. Their styles are in the following format:

CVE-year-vulnerability number. For example:

Name: CVE-1999-0012

Description: Some web servers under Microsoft Windows allow remote attackers to bypass access

restrictions for files with long file names.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

29

Common Vulnerability Scoring System (CVSS) is a standard designed to convey vulnerability severity

and help determine urgency and priority of response ([CVSS]). CVSS has been adopted by a number of

vulnerability database providers. CVSS consists of 3 groups: Base, Temporal and Environmental. Each

group produces a numeric score ranging from 0 to 10, and a Vector, a compressed textual

representation that reflects the values used to derive the score. The Base group represents the intrinsic

qualities of vulnerability. The Temporal group reflects the characteristics of vulnerability that change

over time. The Environmental group represents the characteristics of vulnerability that are unique to any

user's environment. CVSS base score consists of exploitability metrics and impact metrics. In the

exploitability metrics there are three metrics for Access Vector (AV), Attack Complexity (AC) and

Authentication (Au). The exploitability metrics measure characteristics of the vulnerability that affect the

difficulty of exploitation of the vulnerability. The impact metric contains the following components:

Confidentiality Impact (C), Integrity Impact (I), and Availability Impact (A). The impact metric measures

how vulnerability, if exploited, will directly affect an IT asset, where the impacts are independently

defined as the degree of loss of confidentiality, integrity, and availability. For example, vulnerability could

cause a partial loss of integrity and availability, but no loss of confidentiality.

Exploitability Metrics Impact Metrics

Access Vector (AV)

Local (AV:L)
Adjacent

Network (AV:A)

Network

(AV:N)

Access Complexity (AC)

High (AC:H) Medium (AC:M) Low (AC:L)

Authentication (Au)

Multiple (Au:M) Single (Au:S) None (Au:N)

Confidentiality Impact (C)

None (C:N) Partial (C:P) Complete (C:C)

Integrity Impact (I)

None (I:N) Partial (I:P) Complete (I:C)

Availability Impact (A)

None (A:N) Partial (A:P) Complete (A:C)

Scoring equations and algorithms for the base, temporal and environmental metric groups are also

described.

Consider the following example. Let assume that in one computer of the network “Microsoft Office 2010”

is installed.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

30

Related to “Microsoft Office 2010” CVE includes the following vulnerability:

Name: CVE-2015-1649

Description: Use-after-free vulnerability in Microsoft Word 2007 SP3, Office 2010 SP2, Word 2010 SP2,

Word Viewer, Office Compatibility Pack SP3, Word Automation Services on SharePoint Server 2010

SP2, and Office Web Apps Server 2010 SP2 allows remote attackers to execute arbitrary code via a

crafted Office document, aka "Microsoft Office Component Use After Free Vulnerability."

Consider the corresponding CVSS vector for CVE-2015-1649.

Exploitability Metrics Impact Metrics

Access Vector (AV)

Local (AV:L)
Adjacent Network

(AV:A)

Network

(AV:N)

Access Complexity (AC)

High (AC:H) Medium (AC:M) Low (AC:L)

Authentication (Au)

Multiple

(Au:M)
Single (Au:S) None (Au:N)

Confidentiality Impact (C)

None

(C:N)

Partial

(C:P)

Complete

(C:C)

Integrity Impact (I)

None (I:N) Partial (I:P) Complete (I:C)

Availability Impact (A)

None

(A:N)

Partial

(A:P)

Complete

(A:C)

In the part of Exploitability Metrics

1. Access Vector is "Network", since CVE-2015-1649 can be exploited remotely;
2. Access Complexity is not "High" because this vulnerability is not exploitable at the attacker's

whim, and it is not low because some additional access or specialized circumstances need to
exist for the exploit to be successful;

3. Authentication is "None" because the attacker does not need to authenticate to any additional
system.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

31

In the part of Impact Metrics

If an administrative user were to run the virus scan, causing the buffer overflow, then a full system

compromise would be possible. Since the most harmful case must be considered, each of the three

Impact metrics is set to "Complete" because of the possibility of a complete system compromise.

Thus, CVSS base score for CVE-2015-1649 is: (AV: N/AC:M/Au:N/C:C/I:C/A:C).

There are known software /vulnerability scanners/ designed to scan computers and networks for

vulnerabilities and then report about the identified vulnerabilities. Network-based vulnerability scanners,

such as Port Scanners (Nmap, Nessus), Web application security scanner, Network vulnerability

scanner (BoomScan) - are installed on a computer that scans a number of other hosts on the network.

Host-based scanners, such as Database Security Scanner, - are installed in the host.

However, to achieve the attack goals attackers may need to use not only separate vulnerabilities but

also combinations of vulnerabilities, i.e. they can attack a vulnerable computer and then use it for further

attack goal. Thus, the overall security of the network cannot be determined by simply counting the

vulnerabilities, and an important task in network security is to analyze which vulnerabilities are

acceptable risks; how particular vulnerabilities or exploits can be combined and exploited in complex

attacks; and to support security solution.

One approach for modeling how particular vulnerabilities can be combined for an attack that is our

interest in this article - is the model of attack graphs.

3. Network Vulnerability Model and Attack Graphs

Generally, to efficiently evaluate security of a network system, it is necessary to develop a network

vulnerability model that illustrates the security risk properties of the system.

For composing network vulnerability model it is necessary to know network configuration (hosts,

operating systems, application programs, network services, etc.); network connectivity, including the

connectivity-limiting effects of devices such as firewalls and router access control lists. Then it should be

identified vulnerabilities and interdependency between them.

Thus the model will have the following components:

 Hosts;

 Services in every host;

 Vulnerabilities of every service;

 Connectivity between services/vulnerabilities;

 Possible attacks.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

32

Let ܪ = {ℎଵ,⋯ , ℎ௡} denote the set of hosts in a network that can potentially be targeted by an

attacker.

Let ௜ܸ = ,௜,ଵݒ} ⋯,௜,ଶݒ , {௜,௠೔ݒ denote the set of vulnerable services running at host ℎ୧ ∈ ܪ , ݅ =1,2,⋯ , ݊; we suppose that vulnerabilities descriptions are known (for example, from CVE, CVSS).

Let ܥ௜,௝ = {ܿ௜,௝,ଵ, ܿ௜,௝,ଶ, ⋯ , ܿ௜,௝,௠ೕ} denote the set of connectivity relations from the host ℎ௜ to the

vulnerable services running at host ℎ௝, ݅ = 1,2,⋯ , ݊, ݆ = 1,2,⋯ , ݊, ݅ ≠ ݆ 	ܿ௜,௝,௞ = ൜1, ,0	௝,௞ݒ	݋ݐ	ℎ௜	ݐݏ݋ℎ	݉݋ݎ݂	݊݋݅ݐܿ݁݊݊݋ܿ	ܽ	ݏ݅	݁ݎℎ݁ݐ	݂݅ ݁ݏ݅ݓݎℎ݁ݐ݋

Let ܣ denote the set of possible attacks.

Generally, an attack ܽ ∈ can be initiated if some certain network conditions exist (for example, a ܣ

service running in the destination host can be accessed from a source host) and/or an attacker has

certain privilege on certain hosts (for example, attacker has user privilege on source host). These are

attack preconditions. Successful execution of an attack may create new attacker privilege or new

network conditions. These are postconditions of the attack. Let ܽ௣௥௘ and ܽ௣௢௦௧ denote the sets of

preconditions and postconditions of the attack ܽ, respectively.

Thus, each attack ܽ can be given by the following elements:

 Source host ℎ௦௥௖ from where ܽ is launched;

 Target host ℎௗ௘௦௧;
 Target vulnerability ݒ that exist at ℎௗ௘௦௧;
 Set ܽ௣௥௘ of attack preconditions that enable to attack the vulnerability ݒ from the host ℎ௜ ∈ ;ܪ

 Set ܽ௣௢௦௧ of attack postconditions on host ℎௗ௘௦௧ obtained after successfully attacking target

vulnerability ݒ.

To achieve the attack goals attackers may need to use not only separate vulnerabilities but also

combinations of vulnerabilities. However, the vulnerability scanners cannot directly identify the complex

attack routes on the network. The attack postconditions of an attack ܽ ∈ initiated from the source ܣ

host ℎ௦௥௖ to the destination host ℎௗ௘௦௧, can be the attack precondition for another attack ܽ′ ∈ from ܣ

the host ℎௗ௘௦௧. By knowing the characteristics of vulnerabilities, the preconditions required exploiting

them, and the postcondition of exploiting them, it becomes possible to chain possible simple/atomic

attacks ܽ ∈ together into a sequence of attacks that achieve a certain goal. This is the information ܣ

that attack graphs represent.

Thus, attack graph is a tool for enumerating multi-stage multi-host attacks in networks. Without this tool

it is very difficult to manually discover how an attacker can combine vulnerabilities in the same host or in

connected hosts to compromise critical resources. The task becomes more difficult as the number of

vulnerabilities as well as the size of network increases. Attack graphs can be used for measuring

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

33

network security, supporting security solutions by identifying vulnerabilities that should be removed such

that none of the attack paths leading to a given critical resource can be realized, and thus by hardening

the network. The low cost of removing the vulnerabilities is also important.

There are different types of attack graphs, and different algorithms for generating them. We will address

a general model of attack graphs based on exploit dependency attack graph model.

Formally, attack graph can be represented as a directed bipartite graph ܩ = (ଵܸ ∪ ଶܸ, Nodes in ଵܸ .(ܧ

correspond to either attacker privilege or network conditions. Nodes in ଶܸ correspond to

Attacks/Exploits. Directed edges from ଵܸ to ଶܸ are preconditions of attacks/exploits. Directed edges

from ଶܸ to ଵܸ are postconditions of executing exploits/attacks.

Consider nodes in ଵܸ. An attacker can have certain privilege on certain hosts. For example, the attacker

can have user privilege on host “h”. Then, there will be a corresponding node in ଵܸ: user(“h”). Certain

services running at the destination host can be accessed from a source host. There will be

corresponding nodes in ଵܸ, for example, if ftp service is running, then the node ftp(“h1”,”h2”) will refer

that ftp service running at “h2” is accessible from “h1”.

To execute attack attackers may need multiple network conditions (preconditions of the attack).

Successful execution of an exploit may create new attacker privilege or new network conditions

(postconditions of the attack). Nodes in ଶܸ can be of form: Exploit(“h1”,”h2”) or Exploit(“h1”) - meaning

that having some privilege on “h1”, an attacker can perform the exploit Exploit at “h2”; or the Exploit can

be performed locally at “h1”.

Consider a simple example: the network consisting of host1, host2, host3. Let in host1 and host2 “Office

Web Apps Server”1 has been installed. It is mentioned in CVE database that this software has a

vulnerability CVE-2015-1649, which allows remote attackers to execute arbitrary code via a crafted

Office document, aka "Microsoft Office Component Use after Free Vulnerability." Therefore in our

assumed network, attacker using this vulnerability can gain user privilege on the host running the

service “Office Web Apps Server”. According to sources of CVE, this kind of vulnerability is called Use-

after-free, that means that when a user execute a weak software then an error occurs, and the pointer is

immediately freed ([CWE]). However, this pointer is later incorrectly used in the other function.

Attacker uses a buffer overflow or use-after-free kinds of memory corruption errors to overwrite control-

data and control flow of the program finally.

1 Office Web Apps Server is a new Office server product that delivers browser-based versions of Word, PowerPoint, Excel, and OneNote.

A single Office Web Apps Server farm can support users who access Office files through SharePoint 2013, Lync Server 2013, Exchange

Server 2013, shared folders, and websites.[https://technet.microsoft.com/en-us/library/jj219437.aspx]

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

34

Assume that “Office Web Apps Server” service at host2 can be accessed from both host3 and host1,

and “Office Web Apps Server” service at host1 can be accessed from host2 only. The attacker has

initially user privilege on host3. Figure 2 demonstrates the network.

Figure 2. An example network to construct the Attack Graph

Now we construct the corresponding attack graph. Initially, the precondition nodes (nodes in ଵܸ) are the

following: user(3) (attacker privilege) and OfficeWebAppsServer(3,1), OfficeWebAppsServer(3,2),

OfficeWebAppsServer(1,2) (network conditions).

user(3) and OfficeWebAppsServer(3,1) make it possible the exploit: use-after-free (3,1). Similarly,

user(3) and OfficeWebAppsServer(3,2) make it possible the exploit: use-after-free(3,2). Thus, the graph

should have use-after-free(3,1) and use-after-free(3,2) exploit/attack nodes (nodes in ଶܸ).

This part of attack graph is shown in Figure 3. Oval-nodes correspond to nodes in Vଵ ; and the

rectangle-nodes correspond to nodes in ଶܸ.

host 2

host 1

host 3

Office Web Apps Server

Office Web Apps Server

user privelage

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

35

Figure 3. Part of Attack Graph

Exploiting the use-after-free(3,1), an attacker obtains user privilege on host1 and exploiting the use-

after-free(3,2) an attacker obtains user privilege on host2 (postcondition nodes user(1) and user(2))

(Figure 4).

Figure 4. Part of Attack Graph in the next step.

user(1) and OfficeWebAppsServer(1,2) make it possible the exploit use-after-free(1,2), which in its turn

give the attacker user privilege on host2. Figure 5 demonstrates the whole graph.

OfficeWebAppsServer(1,2)

OfficeWebAppsServer(3,1)
user(3)

OfficeWebAppsServer(3,2)

use-after-free(3,1) use-after-free(3,2)

OfficeWebAppsServer(1,2)

OfficeWebAppsServer(3,1)
user(3)

OfficeWebAppsServer(3,2)

use-after-free(3,1) use-after-free(3,2)

user(1) user(2)

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

36

Figure 5. An Attack Graph example

Indeed the real practical networks are quite large and an automated Attach Graph generation is an

objective. It is to be composed by the collected descriptions of the network and it is supposed that the

data collection is also automated. Let us formulate our Attack Graph generation algorithm.

Algorithm ܩ_ܣ

Input of the algorithm ܩ_ܣ.

Let ܪ = {ℎଵ,⋯ , ℎ௡} denote the set of hosts in a network that can potentially be targeted by an

attacker. Let ௜ܸ = ,௜,ଵݒ} ,௜,ଶݒ ⋯ , ௜,௠೔} denote the set of vulnerable services running at host ℎ୧ݒ ∈ ݅ ,ܪ = 1,2,⋯ , ݊. We suppose that vulnerabilities descriptions are known (for example, from CVE, CVSS).

Let ܥ௜,௝ = {ܿ௜,௝,ଵ, ܿ௜,௝,ଶ, ⋯ , ܿ௜,௝,௠ೕ} denote the set of connectivity relations from the host ℎ௜ to the

vulnerable services running at host ℎ௝, ݅ = 1,2,⋯ , ݊, ݆ = 1,2,⋯ , ݊, ݅ ≠ ݆.

OfficeWebAppsServer(1,2)

OfficeWebAppsServer(3,1)

user(3) OfficeWebAppsServer(3,2)

use-after-free(3,1)

use-after-free(3,2)

user(1)

user(2)

use-after-free(1,2)

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

37

Input of the algorithm ܪ ܩ_ܣ, ௜ܸ for ݅ = 1,2,⋯ , ݊, and ܥ௜,௝ for ݅ = 1,2,⋯ , ݊, ݆ = 1,2,⋯ , ݊

Output of the algorithm ܩ_ܣ is the corresponding attack graph.

begin

source_H=dest_H=H;

while (source_H is not empty)

{

source:=take_host_from(source_H);

if user(source) then

{

source_H=current(source_H,source)

add_node_vuln_type_with_label("user(source)");

dest_H=current(dest_H,source);

while (dest_H is not empty)

{

dest= take_host_from(dest_H);

dest_H=current(dest_H,dest);

while (V_dest is not empty)

{

vuln=take_vuln_from(V_dest);

V_dest=current(V_dest,vuln);

if (connect(source,dest,vuln)) then

{

add_node_vuln_type_with_label(vuln);

Precond = add(Precond)

if (find_attack(Precond)) then

{attack(attack_precond, attack_postcond); add_node_attack_type_with_label(attack_name);

add_Connection(attack_precond, attack_name); Postcond=attack_postcond;

add_node_vuln_type_with_label(Postcond); add_Connection(attack_name,attack_Postcond);

Precond = add(Postcond }

}

}

}

}

}

end

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

38

Let us explain the terms and definitions used:

take_host_from(H) – returns the current host from the set H;

user(h) – returns 1 if attacker has “user” privilege on host “h”, and 0 – otherwise;

current(H,h) – returns the set H\{h};

add_node_vuln_type_with_label(l) – adds a node of type “vulnerability” with the label “l”;

add_node_attack_type_with_label(l) – adds a node of type “attack” with the label “l”;

take_vuln_from(V) – returns the current vulnerable service name from the set V;

connect(h1,h2,v) – returns 1 if the vulnerability “v” at the host “h2” can be accessed from the host

“h1”;

P=add(p) – adds into P all vuln_type node labels, created during the current cycle;

find_attack(P) – returns 1 if there is a known attack, which has preconditions that are in P;

attack(name,P1,P2) – returns the attack name, the set of attack preconditions and the set attack

postconditions;

add_Connection(F,T) - adds connection from all elements of the set F to the all elements of the set

T.

4. Graph-theoretical tasks

In this section we consider graph-theoretical local actions related to the tasks of network hardening.

Let us start with definitions.

Definition: A directed graph is a graph, where the edges have a direction associated with them. In

formal terms, a directed graph is a pair ܦ = (ܸ, is a set of ܣ where ܸ is the set of vertices, and ,(ܣ

ordered pairs of vertices, called arcs, or directed edges.

An ark ܽ = ,ଵݒ) ଵ is calledݒ ଶ is called the head andݒ .ଶݒ ଵ toݒ ଶ), is considered to be directed fromݒ

the tail of the arc.

For a vertex ݒ, the number of head endpoints adjacent to ݒ is called the in-degree of the vertex and the

number of tail endpoints adjacent to ݒ is its out-degree. The in-degree of ݒ is denoted as ݀݁݃ି(ݒ),
and the out-degree as ݀݁݃ା(ݒ).

Definition: A directed graph ܦ = (ܸ, is called a directed bipartite graph if there exists a partition of (ܣ

the vertex set: ܸ = ଵܸ ∪ ଶܸ such that ܦ[ଵܸ] and ܦ[ଶܸ], the two induced directed subgraphs of ܦ,

contain no arcs of ܣ (Undefined terms can be found in [Jorgen et al, 2007]).

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

39

Tasks related to the vertex degrees in attack graph.

Let ܦ = (ଵܸ ∪ ଶܸ, is a directed bipartite graph corresponding to attack graph model, described in (ܣ

the previous section. ଵܸ consists of attacker privilege or network condition type nodes, and ଶܸ consists

of Attack type nodes.

If a vertex ݒଵ ∈ ଵܸ has large number of tail endpoints, then network conditions corresponding to ݒଵ

may allow large number of possible attacks.

If a vertex ݒଶ ∈ ଶܸ has small number of head endpoints, then the corresponding attack/exploit has

small number of preconditions, and thus, is easy to execute. If ݒଶ has large number of tail endpoints,

then the execution of the corresponding to ݒଶ attack will create large number of conditions for further

attacks. Removal of the corresponding services will reduce the number of possible attacks. Thus, the

vertex degree is a managing parameter to be computed.

Thus we formulate:

Task1. Find all vertices in ଵܸ, which have out-degree greater than the given threshold.

Find all vertices in ଶܸ which have in-degrees less than the given threshold.

These are easy tasks, and simple algorithms can be used (complexity is | ଵܸ| × | ଶܸ|).
Similar task is to find subsets of ଵܸ , such that the summary out-degrees is greater than the given

threshold.

Tasks related to the covering problems.

One of the main tasks in network hardening is to identify minimal number of vulnerable services that

should be removed such that no attack will be possible.

If we pay no attention to the fact that vertices of ଵܸ are not homogeneous (meaning that the

corresponding vulnerabilities can be created step by step, as results of attack exploits), then we deal

with ܦ as undirected graph, and thus consider the following problem.

Find minimal number of nodes in ଵܸ which “cover” all nodes in ଶܸ.

Now consider an equivalent form of the task – formulated as the set cover problem.

Set cover

Given a finite set ܵ, a collection ܥ of subsets of ܵ, and a positive integer ܭ ≤ Does there exist a .|ܥ|

cover ܥ′ ⊆ |′ܥ| of ܵ such that ܥ ≤ ′ܥ i.e. does there exist a subset ,ܭ ⊆ |′ܥ| such that ܥ ≤ and ܭ

every element of ܵ is in at least one subset of ܥ′. This is the decision version of the set cover problem.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

40

In the set covering optimization version, the task is to find minimal cover. The decision version of the set

covering is NP-complete, and the optimization version is NP-hard ([Garey,Johnson, 1979]).

If we associate with each vertex ݒ ∈ ଵܸ the subset of vertices of ଶܸ connected to ݒ , then in this

manner, ଵܸ can be considered as collection of subsets of ଶܸ.

Initially, ଵܸ is a cover for ଶܸ, since each attack node in ଶܸ is connected with some vulnerability in ଵܸ.

Thus, we formulate the task as optimization version of set covering:

Task2. Given a finite set ଶܸ, a collection ଵܸ of subsets of ଶܸ. Find a minimal cover of ଵܸ.

Many algorithms have been developed for solving the set cover problem. The exact algorithms are

mostly based on branch-and-bound and branch-and-cut (e.g. [Balas et al, 1996]). Since exact methods

require substantial computational effort to solve large-scale instances of the problem, heuristic

algorithms are often used to find a good or near-optimal solution in a reasonable time [Sahakyan, 2014].

Greedy algorithms may be the most natural heuristic approach for quickly solving large combinatorial

problems ([Vazirani, 2001], [Bendorz, 2008]).

Greedy Approximation Algorithm for Set cover.

Consider the greedy approximation algorithm for Task2 :

Algorithm ܩ

Input: Undirected bipartite graph ܦ with parts ଵܸ and ଶܸ.

Output: cover ܥ.

begin ܥ = ∅;

while (ଶܸ is not empty)

{ take ݒ ∈ ଵܸ which is connected to maximum number of vertices of ଶܸ;

 remove those vertices from ଶܸ;

 add ݒ into ܥ

}

end

The algorithm ܩ finds cover whose size is at most O(݈݊| ଶܸ|) times the size of minimal set cover.

A similar task is when neutralizing of certain attacks is the interest, which requires that certain vertices

are to be covered in ଶܸ.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

41

Task3. Find minimal number of nodes in ଵܸ that “cover” given vertices ݒଵ,⋯ , .௞ in ଶܸݒ

Observe that we have simplified the task when consider all vertices of ଵܸ, whilst only those vertices,

which are starting points of attack paths may be satisfactory.

Algorithm ܩ′ below is a modified version of ܩ.

Algorithm ܩ′.
Input: Directed bipartite graph ܦ with parts ଵܸ and ଶܸ.

Output: cover ܥ.

begin ܥ = ∅;

while (ଶܸ is not empty)

{ take ݒ ∈ ଵܸ such that ݀݁݃ି(ݒ) = 0 and ݀݁݃ା(ݒ) is maximal (ܸ′ denotes the set of heads for arcs

starting in ݒ);

 for each ݒ′ ∈ ܸ′
 {

 if (݀݁݃ା(ݒ′) ≠ 0)

 Removing_procedure(ݒ′);
}

remove ܸ′ from ଶܸ;

add ݒ into ܥ;

}

end

Removing_procedure(ݒ′) - removes all arc heads having ݒ′ as head or tail; and continue this process

while the current node has out-degree greater than 0.

Conclusion

Attack graphs as a useful model and tool in the areas of network security can be identifying

vulnerabilities that should be removed. We have proposed a general model of representing and

generating attack graphs. A simple algorithm of generating attack graph has been described for the

attack graph model. Some graph-theoretical problems and algorithms are investigated related to

particular network hardening tasks. For future work we plan to improve the algorithm and to create an

implementation using real-world network data in realistic situations.

International Journal "Information Content and Processing", Volume 2, Number 1, 2015

42

Bibliography

[Aslanyan et al, 2013] L. Aslanyan, D.Alipour and M.Heidari, Comparative Analysis of Attack Graphs. Mathematical Problems

of Computer Science, 40, 2013, pp. 85-95.

[Balas et al, 1996] E. Balas, M. Carrera, A dynamic subgradient-based branch-and-bound procedure for set covering.

Operations Research 44, 1996, pp. 875–890.

[Barik et al, 2014] M.S. Barik, Ch. Mazumdar, A Graph Data Model for Attack Graph Generation and Analysis, Recent

Trends in Computer Networks and Distributed Systems Security, Communications in Computer and Information

Science Volume 420, 2014, pp 239-250.

[Bendorz, 2008], Greedy algorithms, edited by W. Bednorz, Publisher: InTech, 2008, 586 pages.

[CVE] Common Vulnerabilities and Exposures (CVE®), the standard for Information security Vulnerability Names, [Online].

Available: http://cve.mitre.org.

[CVSS] Common Vulnerability Scoring System (CVSS-SIG), [Online], Available: http://www.first.org/cvss

[CWE] Common Weakness Enumeration, [Online], Available: http://cwe.mitre.org/data/definitions/416.html.

[Jorgen et al, 2007] Jørgen Bang-Jensen, Gregory Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag,

2002, 754 pages.

[Noel et al, 2010] S. Noel, L. Wang, A. Singhal and S. Jajodia, Measuring security risk of networks using attack graphs,

International Journal of Next-Generation Computing, vol. 1, no. 1, 2010, pp. 135-147.

[NVD] National Vulnerability Database, [Online], Available: https://nvd.nist.gov/.

[OSVD] Open Sourced Vulnerability Database, [Online], Available: http://osvdb.org/.

[Sahakyan, 2014] H. Sahakyan, Constrained object-characterization tables and algorithms, International Journal "Information

Content and Processing", Volume 1, Number 2, 2014, pp.136-144.

[Shey et al, 2002] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. M. Wing, Automated generation and analysis of attack

graphs, Proceedings of the IEEE Symposium on Security and Privacy, 2002, pp. 254–265

[Vazirani, 2001], V. Vazirani,. Approximation Algorithms, Springer, 2001.

[Zhang et al, 2009] Zhang Lufeng, Tang Hong,Cui YiMing, Zhang JianBo, Network Security Evaluation through Attack Graph

Generation, World Academy of Science, Engineering and Technology, 54, 2009.

Authors' Information

Hasmik Sahakyan – Scientific Secretary, Institute for Informatics and Automation

Problems, NAS RA, P. Sevak St. 1, Yerevan 14, Armenia, e-mail: hasmik@ipia.sci.am

Daryoush Alipour – PhD student, Institute for Informatics and Automation Problems, NAS

RA, P. Sevak St. 1, Yerevan 14, Armenia, e-mail: computernano@gmail.com

