
International Journal "Information Content and Processing", Volume 3, Number 3, 2016

203

MODEL OF PROBLEM DOMAIN

“MODEL-DRIVEN ARCHITECTURE FORMAL METHODS AND APPROACHES”

Elena Chebanyuk, Krassimir Markov

Abstract: Model-Driven Architecture MDA can be regarded as a part of Model-Driven Development

(MDD), where the modeling operation and transformation languages are standardized by Object

Management Group (OMG).

This article is devoted to designing of domain model that illustrates interconnections between

mathematical foundations used to design formal approaches of software models transformation. Then,

review of related researches advantages, according to MDA promising, is represented. A summary of

requirements to model to model transformation approach according to MDA promising is outlined.

The scope of mathematical foundations for designing model to model transformation techniques is

defined. During domain model designing, a controlled vocabulary containing description of basic

mathematical foundations that are used for model to model transformations is composed. Proposed

domain model will serve as a template for choosing proper mathematical approaches and means for

model to model transformation performing with given level of accuracy. It should be considered when

new transformation methods are designed.

Means of increasing productiveness for transformation methods designing, involving proposed domain

model, are formulated in conclusions.

Keywords: software model, model transformation, Model-Driven Architecture (MDA), theory of

categories, first-order logic, metalogic, formal language, transformational grammar.

ACM Keywords:

- Classification of 2012 year: Software and its engineering, Software system structure,

Software system model, Model driven system engineering.

- Classification of 1998 year: D2 software engineering, D 2.0 Tools

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

204

Introduction

Software models, often represented as Unified Modeling Language (UML) diagrams, are key artifacts in

Model-Driven Development (MDD) approach. The key idea behind MDA is to separate the specification

of the system functionality from its implementation on specific platforms increasing the degree of

automation and achieving interoperability with multiple platforms. Thus, model processing, is a key and

the most common activity for different software development lifecycles processes.

Software model transformation is a key activity of Model-Driven Architecture (MDA). Target of model

transformation activity is to analyze together information from different software development lifecycle

processes. In order to archive this goal the next model transformation activities are implemented: Model

to Model (M2M), Model to Text (M2T), and Text to Model (T2M) transformations. Text in M2T and T2M

transformations means analytical representation of software model or skeleton of program. In the first

case, the role of text is to be subsidiary artifact that saves information about model. In the second case

the role of text to be target of transformation [Truyen, 2006].

Other transformation’ aspects are horizontal and vertical software model transformations. A horizontal

transformation is a transformation where the source and target models reside at the same abstraction

level. Typical examples are refactoring (an endogenous transformation) and language migration (an

exogenous transformation). A vertical transformation is a transformation where the source and target

models reside at different abstraction levels. A typical example is refinement, where a specification is

gradually refined into a full-fledged implementation, by means of successive refinement steps that add

more concrete information. Also code generation operation are considered as vertical software model

transformation [Czarnecki and Helsen, 2006].

The key idea behind MDA is to separate the specification of the system functionality from its

implementation on specific platforms increasing the degree of automation and achieving interoperability

with multiple platforms.

The promise of Model Driven Architecture is to facilitate the creation of machine-readable models with a

goal of long-term flexibility in terms of:

• Technology obsolescence: new implementation infrastructure can be more easily integrated and

supported by existing designs;

• Portability: existing functionality can be more rapidly migrated into new environments and platforms as

dictated by the business needs;

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

205

• Productivity and time-to-market: by automating many tedious development tasks; architects and

developers are freed up to focus their attention on the core logic of the system;

• Quality: the formal separation of concerns implied by this approach plus the consistency and reliability

of the artifacts produced all contribute to the enhanced quality of the overall system;

• Integration: the production of integration bridges with legacy and/or external systems is greatly

facilitated;

• Maintenance: the availability of the design in a machine-readable form gives analysts, developers and

testers direct access to the specification of the system, simplifying their maintenance chores;

• Testing and simulation: models can be directly validated against requirements as well as tested

against various infrastructures. They can also be used to simulate the behavior of the system under

design;

• Return on investment: businesses are able to extract greater value out of their investments in tools

[Mens and Van Gorp, 2006].

To realize software model transformation tasks many successful researches are done. These

researches are aimed to solve actual software engineering tasks of implementing software model

transformation.

Consider papers that make a strong contribution in several MDE promising by means of using tools or

means operating with some mathematical solutions.

A review of mathematical foundations for providing realization of model transformation techniques is

outlined in [Rabbi et al, 2016].

The MDE promising are achieved solving actual software engineering tasks by means of implementing

software model transformation [Favre and Duarte, 2016].

Paper [Greiner et al, 2016] represents a case study dealing with incremental round-trip engineering of

UML class models and Java source code.

The MoDisco [Bruneliere et al., 2010] framework is used to parse the Java source code into a model

representation. QVT-R is used to formalize a bidirectional model-to-model transformation between the

UML model and the Java model. This aspect is an interesting feature of QVT-R, as a transformation

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

206

developer may provide a single relational specification which may be executed in both directions, rather

than writing two unidirectional transformations separately. Moreover, QVT-R is chosen because of its

declarative nature where the developer is supposed to focus on relations and dependencies between

the metamodels rather than on single execution steps [Greiner et al, 2016].

Described approach tries to prevent information loss during round-trip engineering by using a so called

trace model which is used to synchronize the platform independent and the platform specific models.

Furthermore, the source code is updated using a fine grained bidirectional incremental merge. Also,

information loss is prevented by using Javadoc tags as annotations. In case model and code are

changed simultaneously and the changes are contradicting, one transformation direction has to be

chosen, which causes that some changes might get lost [Greiner et al, 2016].

Declarative notation of QVT-R language allows involving predicate logic to express transformation rules.

A review of metamodeling tools is represented in paper [Favre and Duarte, 2016] and several

metamodeling frameworks are described. Two points of this review are interesting for us from point of

view of providing descriptions of mathematical foundations that consist the basic of metamodeling tools

and frameworks:

1. Varró and Pataricza presented a visual and formally precise metamodeling framework that is

capable of uniformly handling arbitrary models from engineering and mathematical domains.

They propose a multilevel metamodeling technique with precise static and dynamic semantics

(based on a refinement calculus and graph transformation) where the structure and operational

semantics of mathematical models can be defined in a UML notation [Varro and Pataricza,

2003]. In order to verify metamodel some expressions are composed. First-order logics may be

used as mathematical foundations for it. Different semantics (for example static and dynamic

semantics) are used to verify the content of metamodels.

2. Also, logics are used to design modeling languages. For example modeling language “Allow” is

based on first-order relational logic. It can be a base for creating frameworks for metamodels

and model processing by means of analyzing their analytical representation. For example,

Boronat and Messeguer describe an algebraic, reflexive and executable framework for

metamodeling in MDD [Boronat and Meseguer, 2010]. The framework provides a formal

semantic of the notions of metamodel, model and conformance relation between a model and a

metamodel.

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

207

Authors of [Favre and Duarte, 2016] provided a metamodeling framework based on MOF and the

algebraic formalism that focus on automatic proofs and tests. The central components of the proposed

approach are the definition of the algebraic language NEREUS and the development of tools for formal

metamodeling: the NEREUS analyzer and the NEREUS-to-CASL translator.

Let’s consider main possibilities of NEREUS syntax: classes may declare types, attributes, operations

and axioms which are formulas of first-order logic. They are structured by different kinds of relations:

importing, inheritance, sub-typing, and associations [Favre and Duarte, 2016].

Descriptive notation of NEREUS allows adding new construction to describe variety of connections

between objects and operations. First-order logic and algebraic formalisms used to describe

relationships between NEREUS components and to compose new expressions for interconnecting

NEREUS with other metamodeling tools.

Considering that there exist many formal algebraic languages, NEREUS allows connecting any number

of source languages such as different Domain Specific Languages (DSLs) and target languages

(different formal languages).

The contribution of paper [Rabbi et al, 2016] is a new web-based metamodeling and model

transformation tool called WebDPF based on the Diagram Predicate Framework (DPF). WebDPF has

been developed using HTML5 and JavaScript. Any HTML5 and JavaScript enabled web browser can be

used for metamodeling with WebDPF. Algorithms, related to model transformation and analysis in

WebDPF, are written in JavaScript and therefore executes on the client machine. WebDPF supports

multilevel diagrammatic metamodeling and specification of model constraints, and it supports

diagrammatic development and analysis of model transformation systems. In WebDPF, one can

graphically specify constraints and model transformation rules. Transformation rules have been

introduced in WebDPF for two purposes:

i) automatic rewriting of partial (incomplete) models so that they can be made to conform to the

underlying metamodel;

ii) modelling the behavior of systems.

The support for model transformation systems in WebDPF can be exploited to (i) support auto-

completion of partial models thereby enhancing modeling efficiency, and (ii) provide execution

semantics for workflow models.

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

208

The WebDPF metamodeling environment supports multilevel metamodeling [Rutle, 2010]. In WebDPF,

one can graphically specify constraints and model transformation rules, based on graph transformation

rules. The rules are linked to predicates and the standard double-pushout (DPO) approach is used.

Attached transformation rules for a predicate p, is given by a set of coupled transformation rules ρ(p)

where the meta-models remain unchanged. A rule r ∈ ρ(p) of a predicate p has a matching pattern (L),

a gluing condition (K), a replacement pattern (R), and an optional negative application condition. The

matching pattern and replacement pattern are also known as left-hand side and right-hand side of a

rule, respectively. WebDPF performs termination analysis based on principles adapted from layered

graph grammars [Ehrig et al., 2006]. In a layered typed graph grammar, transformation rules are

distributed across different layers. The transformation rules of a layer are applied as long as possible

before going to the next layer. WebDPF generalizes the layer conditions from [Ehrig et al., 2006]

allowing deleting and non deleting rules to reside in the same layer as long as the rules are loop-free

[Favre and Duarte, 2016].

Authors of [Zaraket and Noureddine, 2014] proposed a method of checking software with first order

logic specification using And-Inverter-Graph (AIG) solvers. AIG can be viewed as a restricted C++

program, specifically a concurrent program in which all variables are either integers, whose range is

statically bounded, or Boolean-valued, and dynamic allocation is forbidden. Using first order logics it

permits developing and modifying semantics for model checking operations. Using conjunctive normal

forms it support defining templates to estimate software models quality.

The results of literature review, matching strong contribution of considered transformation methods and

techniques to MDA promising are represented in Table 1.

The first column contains features of the MDA promising. The next four columns contain analysis of

transformation methods and techniques outlined in the considered papers:

― Formal MOF Metamodeling and Tool Support [Favre and Duarte, 2016];
― Model Checking Software with First Order Logic Specifications using AIG Solvers [Zaraket and

Noureddine, 2014];
― Bidirectional transformations approach with QVT-R [Greiner et al, 2016];
― Web-based metamodeling and model transformation tool called WebDPF [Rabbi et al, 2016].

The last column contains our proposal what features we expect from the full automated method model

to model transformations which has to be developed.

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

209

Table 1. Matching of considered transformation methods and techniques to MDA promising

Methods
and

tools

MDA

promising

Formal MOF
Metamodeling

and Tool
Support

Model
Checking

Software with
First Order

Logic
Specifications

using AIG
Solvers

Bidirectional
transformations
approach with

QVT-R

Web-based
metamodeling

and model
transformation

tool called
WebDPF

Full automated
method

model to model
transformations
(to be developed)

Summary Approach
integrates MOF
meta-language
with formal
specification
languages
based on the
algebraic
formalism.
More concretely,
NEREUS, as a
formal
metamodeling
language,
supports
processes for
reasoning about
MOF-like
metamodels
such as ECORE
metamodels.

Synthesis and

verification

frameworks to

validate

programs. And-

Inverter-Graph

(AIG) is a

Boolean formula

with memory

elements,

logically

complete

negated

conjunction

gates, and a

hierarchical

structure.

Method uses

extensible model

for model to

model

transformations

by means of

adding relations

and elements

WebDPF is
based on the
Diagram
Predicate
Framework
(DPF). WebDPF
supports
multilevel
diagrammatic
metamodeling
and
specification of
model
constraints, and
it supports
diagrammatic
development
and analysis of
model
transformation
systems.

Provide a both

top-down and

bottom-up

software model

transformation

from any type of

UML diagram to

another

Technology

obsolescence

Framework is

extensible

because all of its

components are

described

declaratively.

 WebDPF

specification

allows adding

new

programming

languages

Using existing

and new formal

approaches and

tools

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

210

Methods
and

tools

MDA

promising

Formal MOF
Metamodeling

and Tool
Support

Model
Checking

Software with
First Order

Logic
Specifications

using AIG
Solvers

Bidirectional
transformations
approach with

QVT-R

Web-based
metamodeling

and model
transformation

tool called
WebDPF

Full automated
method

model to model
transformations
(to be developed)

Portability Such open

standards as

javaScript and

HTML5 allow

using WebDPF

for different

platforms

To be

compatible with

open standards,

open data

specifications,

and open model

processing

environments or

tools

Productivity

and time-to-

market

 Effective

optimization of

model checking

operations lets

to shrink time for

processing large

amount of

software models

Using tools lets

to proceed many

software models

and modules of

code raising

effectiveness of

software

development

processes

 Providing

bidirectional

transformations

for different

types of software

models.

(productivity). (*)

Reusing

information from

different

software models

(time to market).

(*)

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

211

Methods
and

tools

MDA

promising

Formal MOF
Metamodeling

and Tool
Support

Model
Checking

Software with
First Order

Logic
Specifications

using AIG
Solvers

Bidirectional
transformations
approach with

QVT-R

Web-based
metamodeling

and model
transformation

tool called
WebDPF

Full automated
method

model to model
transformations
(to be developed)

Quality Comparability

with constraint

language allows

to design high

quality

metamodels

Setting model

quality

characteristics

and involving

different

verification

techniques to

modeling

process allows

estimating

resulting models

 By

understanding

both SysML

semantic and

programming

languages

constructions

Using

modularity,

restriction

languages, and

semantic tools

Integration Framework uses

formal language

and it is

compatible with

other model

processing tools

and plugins,

namely CASL,

HETS and AST

 Web

environment

allows

integrating

proposed tool

with other

metamodeling

frameworks

Considering

operations on

meta-level

allows designing

integration tools

for different

platforms

Maintenance: Quality models

are sources for

effective

software

lifecycle

development

processes

Using open

standards

simplifies the

model

maintenance

procedure

 Maintenance

procedure based

on matching

transformation

techniques with

visualization

ones

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

212

Methods
and

tools

MDA

promising

Formal MOF
Metamodeling

and Tool
Support

Model
Checking

Software with
First Order

Logic
Specifications

using AIG
Solvers

Bidirectional
transformations
approach with

QVT-R

Web-based
metamodeling

and model
transformation

tool called
WebDPF

Full automated
method

model to model
transformations
(to be developed)

Testing and

simulation

 Using tools

following open

standards

notations allows

verifying all

intermediate

results in model

transformation

process

 Creating

environment for

model

processing

allows combining

analytical results

with existing

plugins and tools

for model testing

and simulation

Task and challenges

Task: to design model of problem domain “Model-driven architecture formal methods and approaches”.

A subsequent task is to represent information for designing model to model transformation automated

method, covering all MDA promising.

Explanation, how to follow MDA promising by means of mathematical foundations, is represented in the

last grey column of the Table 1.

Challenges to this model:

 Reflect interconnection between mathematical foundations used to design new transformation

methods or techniques;

 Serve as a template for defining collaboration between mathematical foundations involved to

transformation techniques;

 Simplify the procedure defining compatible data formats for transmitting information about

models between different stages of transformation methods.

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

213

Domain model design

There is no standard for domain model design, but there are articles containing precise description of

this process. According to many recommendations, the first step of domain model designing is to

compose a controlled vocabulary. Such one is represented in Table 2.

Table 2. Controlled vocabulary of problem domain “MODEL-DRIVEN ARCHITECTURE FORMAL

METHODS AND APPROACHES”

Term Definition

Logic A particular system or codification of the principles of proof and inference: Aristotelian

logic.

Study of correct reasoning, especially as it involves the drawing of inferences.

[Britannica, 2016c]

The formal mathematical study of the methods, structure, and validity of mathematical

deduction and proof. [MathWorld. 2016g]

Formal logic Abstract study of propositions, statements, or assertively used sentences and of

deductive arguments. From the content of these elements, the discipline abstracts the

structures or logical forms that they embody.

Alternative titles: mathematical logic; symbolic logic [Britannica, 2016a].

First-order

logic

The set of terms of first-order logic (also known as first-order predicate calculus) is

defined by the following rules:

1. A variable is a term.

2. If f is an n-place function symbol (with n>=0) and t1, ..., tn are terms, then f(t1,...,tn) is

a term.

If P is an n-place predicate symbol (again with n>=0) and t1, ..., tn are terms, then

P(t1,...,tn) is an atomic statement.

Consider the sentential formulas xB and xB, where B is a sentential formula,  is

the universal quantifier ("for all"), and  is the existential quantifier ("there exists"). B is

called the scope of the respective quantifier, and any occurrence of variable x in the

scope of a quantifier is bound by the closest x or x. The variable x is free in the

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

214

Term Definition

formula B if at least one of its occurrences in B is not bound by any quantifier within B.

[MathWorld. 2016e]

First-order

predicate

calculus

The set of sentential formulas of first-order predicate calculus is defined by the

following rules:

1. Any atomic statement is a sentential formula.

2. If B and C are sentential formulas, then ¬B (NOT B), B Λ C (B AND C), B V C (B OR

C), and BC (B implies C) are sentential formulas (cf. propositional calculus).

3. If B is a sentential formula in which x is a free variable, then xB and xB are

sentential formulas.

In formulas of first-order predicate calculus, all variables are object variables serving as

arguments of functions and predicates. The set of axiom schemata of first-order

predicate calculus is comprised of the axiom schemata of propositional calculus

together with the two following axiom schemata: ∀ݔ (ݔ)ܨ ⇒ (ݎ)ܨ (ݎ)ܨ(1) ⇒ ݔ∃ (2) (ݔ)ܨ

where F(x) is any sentential formula in which x occurs free, r is a term, F(r) is the result

of substituting r for the free occurrences of x in sentential formula F, and all

occurrences of all variables in r are free in F.

Rules of inference in first-order predicate calculus are the Modus Ponens and the two

following rules: ܩ ⇒ ܩ(ݔ)ܨ ⇒ ∀ (3) (ݔ)ܨݔ

F(x) ⇒ G∃(ݔ)ܨݔ ⇒ (4) ܩ

where F(x) is any sentential formula in which x occurs as a free variable, x does not

occur as a free variable in formula G, and the notation means that if the formula above

the line is a theorem formally deducted from axioms by application of inference rules,

then the sentential formula below the line is also a formal theorem [MathWorld. 2016e].

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

215

Term Definition

Metalogic:

Second-and

Higher-order

Logic

Study and analysis of the semantics (relations between expressions and meanings)

and syntax (relations among expressions) of formal languages and formal systems

[Britannica, 2016a]. Metalogic may be second or higher order logic.

Second-order logic is an extension of first-order logic where, in addition to quantifiers

such as “for every object (in the universe of discourse),” one has quantifiers such as

“for every property of objects (in the universe of discourse).” This augmentation of the

language increases its expressive strength, without adding new non-logical symbols,

such as new predicate symbols. For classical extensional logic, properties can be

identified with sets, so that second-order logic provides us with the quantifier “for every

set of objects.”

There are two approaches to the semantics of second-order logic. They differ on the

interpretation of the phrase “for every set of objects.” Does this have some fixed

meaning to which we can refer, or do we need to consider the variety of meanings the

phrase might have? In the first case (which will be called standard semantics), we are

taking for granted certain mathematical concepts. In the second case (which will be

called general semantics), much less is being taken for granted. In this case, to be

considered valid, a sentence will need to be true under all the allowable meanings of

the phrase “for every set of objects.” [Stanford, 2015].

In second-order predicate calculus, variables may denote predicates, and quantifiers

may apply to variables standing for predicates [MathWorld. 2016e].

There is no need to stop at second-order logic; one can keep going. We can add to the

language “super-predicate” symbols, which take as arguments both individual symbols

(either variables or constants) and predicate symbols. And then we can allow

quantification over super-predicate symbols. And then we can keep going further.

[Stanford, 2015]

Language Set (finite or infinite) of sentences, each finite in length, and constructed out of a finite

set of elements [Chomsky, 1957].

Formal

Language

Formal language is normally defined by an alphabet and formation rules. The alphabet

of a formal language is a set of symbols on which this language is built. Some of the

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

216

Term Definition

symbols in an alphabet may have a special meaning. The formation rules specify which

strings of symbols count as well-formed. The well-formed strings of symbols are also

called words, expressions, formulas, or terms. The formation rules are usually

recursive. Some rules postulate that such and such expressions belong to the language

in question. Some other rules establish how to build well-formed expressions from other

expressions belonging to the language. It is assumed that nothing else is a well-formed

expression. [MathWorld. 2016f]

Notation A series or system of written symbols used to represent numbers, amounts, or

elements in something such as music or mathematics [Oxford, 2016].

Grammar Grammar is best formulated as a self-contained study independent of semantics.

We consequently view grammars as having a tripartite structure. A grammar has a

sequence of rules from which phrase structure can be reconstructed and a sequence of

morphophonemic rules that convert strings of morphemes into strings of phonemes.

Connecting these sequences, there is a sequence of transformational rules that carry

strings with phrase structure into new strings to which the morphophonemic rules can

apply [Chomsky, 1957].

Transfor-

mational

Grammar

(Transforma

-tional-gene-

rative

Grammar)

System of language analysis that recognizes the relationship among the various

elements of a sentence and among the possible sentences of a language and uses

processes or rules (some of which are called transformations) to express these

relationships. Transformational grammar assigns a “deep structure” and a “surface

structure” to show the relationship of such sentences.

A type of grammar that describes a language as a system that has a deep structure

which changes in particular ways when real sentences are produced [Britannica,

2016e].

Generative

grammar

Precisely formulated set of rules whose output is all (and only) the sentences of a

language — i.e., of the language that it generates. There are many different kinds of

generative grammars, including transformational grammar as developed by Noam

Chomsky from the mid-1950s [Britannica, 2016b].

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

217

Term Definition

Algebra The part of mathematics in which letters and other general symbols are used to

represent numbers and quantities in formulae and equations [Corry, 2005]. Term

algebra usually denotes various kinds of mathematical ideas and techniques, more or

less directly associated with formal manipulation of abstract symbols and/or with finding

the solutions of an equation.

Examples of algebras include the algebra of real numbers, vectors and matrices,

tensors, complex numbers, and quaternions. (Note that linear algebra, which is the

study of linear sets of equations and their transformation properties, is not an algebra in

the formal sense of the word.) Other more exotic algebras that have been investigated

and found to be of interest are usually named after one or more of their investigators.

This practice unfortunately leads to entirely unenlightening names which are commonly

used by algebraists without further explanation or elaboration [MathWorld. 2016b].

Modern

algebra

Branch of mathematics concerned with the general algebraic structure of various sets

[Britannica, 2016d].

Modern algebra, also called abstract algebra, is the set of advanced topics of algebra

that deal with abstract algebraic structures rather than the usual number systems. The

most important of these structures are groups, rings, and fields. Important branches of

abstract algebra are commutative algebra, representation theory, and homological

algebra. [MathWorld. 2016a].

Category

theory

A general mathematical theory of structures and of systems of structures.

It is a language, or conceptual framework, allowing us to see the universal components

of a family of structures of a given kind, and how structures of different kinds are

interrelated

Category theory is an alternative to set theory as a foundation for mathematics. As

such, it raises many issues about mathematical ontology and epistemology.

Categories are algebraic structures with many complementary natures, e.g., geometric,

logical, computational, combinatorial, just as groups are many-faceted algebraic

structures [Stanford, 2014].

Category theory is a branch of mathematics which formalizes a number of algebraic

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

218

Term Definition

properties of collections of transformations between mathematical objects (such as

binary relations, groups, sets, topological spaces, etc.) of the same type, subject to the

constraint that the collections contain the identity mapping and are closed with respect

to compositions of mappings. The objects studied in category theory are called

categories. [MathWorld. 2016c].

A category consists of three things: a collection of objects, for each pair of objects a

collection of morphisms (sometimes call "arrows") from one to another, and a binary

operation defined on compatible pairs of morphisms called composition [MathWorld.

2016d].

Analyzing Table 2 and defining interconnections between vocabulary entities, domain model of

mathematical approaches to be used for model transformation tasks is designed and represented on

Figure 1.

Figure 1. Model of problem domain

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

219

Domain model description

Consider mathematical foundations for software model elements description (Table 2).

Languages that are used for designing software models contain a set of elements to be combined for

creation of complex software model structures. Considering theory of categories, one may see that each

language element corresponds to some category. Combination of language elements allows creating

more complex constructions. Also theory of categories is used to describe complex structure from some

elements. Thus, it shows complex relations between components of complex structure.

Of course, some rules for designing these constructions should be followed. And first-order logic allows

expressing these rules.

From software model elements whole model is designed. Thus, in turn, consider mathematical

foundations for whole software model description.

Variety of complex constructions permits design precise software models. Grammar of language,

namely its syntax, defines space of rules for checking correctness of software model in a whole. Also,

first-order logic allows expressing rules and restrictions for correct model creation.

Semantic rules are used for analysis of software model content. To express semantic rules, first or

second order logic is used. First order logic allows composing expressions. Second-order logic is aimed

to estimate group of expressions or expressions that works with group of objects. Then chosen logic is

used for estimating composed expressions. Also mathematical apparatus for semantic checking should

be compatible with tool of software model designing and representation.

Finally, metalogic, or second order logic, as a foundation that studies interconnections between syntax

and semantic, should cover all aspects of software model representation and all model processing

operations.

Further researches

Further researches are:

1 Analyze model to model transformation techniques in order to define the typical stages of

transformation operations.

2 Using controlled vocabulary (Table 2) and domain model (Figure 1), define mathematical

foundations for every of these tasks and their interconnections. It has to be done with aim to

ground the choice of mathematical foundations for every stage of transformation algorithms.

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

220

3 Represent formal description of all model to model transformation operations in terms of chosen

mathematical foundations. Then propose techniques, which allow combining different formal

solutions of transformational tasks.

Conclusion

Model of problem domain “MDA formal methods and approaches” is proposed in this article. Designed

model illustrates relationships between different mathematical foundations that are used in formal

software models transformational methods. It is proposed to use domain analysis artifacts, namely

controlled vocabulary and domain model, by the following way:

- Decompose transformation techniques into steps;

- Match tasks of every step with possibilities of mathematical foundations, represented in

controlled vocabulary (Table 1);

- Define a set of mathematical tools for solving tasks formulated above, analyzing controlled

vocabulary and domain model;

- Co-ordinate different mathematical foundations for software model representation and

processing.

Performing such operations allows:

- Formulating requirements to data specifications;

- Considering math apparatus for solving transformation tasks more attentively;

- Simplifying software model verification operations;

- Co-ordinate hidden relations between mathematical descriptions.

Bibliography

[Boronat and Meseguer, 2010] Artur Boronat, José Meseguer. An algebraic semantics for MOF. Formal

Aspects of Computing. Springer Verlag, 2010, 22 (3), pp.269-296. <10.1007/s00165-009-0140-9>.

<hal-00567269> https://hal.archives-ouvertes.fr/hal-00567269/document

[Britannica, 2016a] First-order Logic. Encyclopædia Britannica. 2016.

https://www.britannica.com/search?query=first-order%20logic

[Britannica, 2016b] Generative Grammar. Encyclopædia Britannica. 2016.

https://www.britannica.com/topic/generative-grammar

[Britannica, 2016c] Logic. Encyclopædia Britannica: 2016. https://www.britannica.com/topic/logic

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

221

[Britannica, 2016d] Modern Algebra. Encyclopædia Britannica.

2016.https://www.britannica.com/search?query=Modern%20Algebra

[Britannica, 2016e] Transformational grammar. Encyclopædia Britannica: 2016.

https://www.britannica.com/topic/transformational-grammar

[Bruneliere et al., 2010] Hugo Bruneliere, Jordi Cabot, Frederic Jouault, Frederic Madiot. MoDisco: A

Generic And Extensible Framework For Model Driven Reverse Engineering. 25th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE 2010), Sep 2010, Anvers, Belgium.

pp.173-174, 2010. <hal-00534450> http://hal.univ-nantes.fr/hal-00534450/document

[Chomsky, 1957] Noam Chomsky, Syntactic Structures. Mouton publishers, Eilenberg: Mac Lane The,

Hague, 1945 - 1957. ISBN 90 279 3385 5. p.107. http://ewan.website/egg-course-

1/readings/syntactic_structures.pdf

[Corry, 2005] Leo Corry. History of algebra. In: Encyclopædia Britannica. 2005.

http://www.tau.ac.il/~corry/publications/articles/pdf/algebra%20EB.pdf

[Czarnecki and Helsen, 2006] Krzysztof Czarnecki , Simon Helsen. Feature-based survey of model

transformation approaches. IBM Systems Journal Vol. 45 No.:3: 2006. pp. 621 - 645. ISSN :0018-

8670, DOI: 10.1147/sj.453.0621.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5386627

[Ehrig et al., 2006] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals of Algebraic

Graph Transformation. Monographs in Theoretical Computer Science. Springer. ISBN 978-3-540-

31188-1. http://www.springer.com/us/book/9783540311874

[Favre and Duarte, 2016] Liliana Favre and Daniel Duarte. Formal MOF Metamodeling and Tool

Support. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-Driven

Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.

Desfray. SCITEPRESS – Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-

989-758-168-7. pp. 99-110. DOI:10.5220/0005689200990110,

http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=j1i7qrX33Ns=&t=1

[Greiner et al, 2016] Sandra Greiner, Thomas Buchmann, Bernhard Westfechtel. Bidirectional

Transformations with QVT-R: A Case Study in Round-trip Engineering UML Class Models and Java

Source Code. In: MODELSWARD 2016, Proceedings of the 4th International Conference on Model-

Driven Engineering and Software Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P.

Desfray. SCITEPRESS – Science and Technology Publications, Lda. Portugal, 2016. ISBN: 978-

989-758-168-7. pp. 15-27. DOI:10.5220/0005644700150027

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=efZXth7Zbbg=&t=1

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

222

[Rabbi et al, 2016] Fazle Rabbi, Yngve Lamo, Ingrid Chieh Yu, Lars Michael Kristensen. WebDPF: A

Web-based Metamodelling and Model Transformation Environment. In: MODELSWARD 2016,

Proceedings of the 4th International Conference on Model-Driven Engineering and Software

Development. Edited by S. Hammoudi, L.F. Pires, B. Selic and P. Desfray. SCITEPRESS – Science

and Technology Publications, Lda. Portugal, 2016. ISBN: 978-989-758-168-7. pp. 87-98.

DOI:10.5220/0005686900870098,

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=lzjjeczBZuA=&t=1

[MathWorld. 2016a] Abstract Algebra. Wolfram MathWorld. 2016.

http://mathworld.wolfram.com/AbstractAlgebra.html

[MathWorld. 2016b] Algebra. Wolfram MathWorld. 2016. http://mathworld.wolfram.com/Algebra.html

[MathWorld. 2016c] Category Theory. Wolfram MathWorld. 2016.

http://mathworld.wolfram.com/CategoryTheory.html

[MathWorld. 2016d] Category. Wolfram MathWorld. 2016. http://mathworld.wolfram.com/Category.html

[MathWorld. 2016e] First-Order Logic. Wolfram MathWorld. 2016. http://mathworld.wolfram.com/First-

OrderLogic.html

[MathWorld. 2016f] Formal Language. Wolfram MathWorld. 2016.

http://mathworld.wolfram.com/FormalLanguage.html

[MathWorld. 2016g] Logic. Wolfram MathWorld. 2016. http://mathworld.wolfram.com/Logic.html

[Mens and Van Gorp, 2006] Tom Mens, Pieter Van Gorp. A Taxonomy of Model Transformation.

Electronic Notes in Theoretical Computer Science 152 Elsevier B.V., 2006. pp. 125–142.

http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/MensVanGorpTaxonomy.pdf

[Oxford, 2016] Notation. Oxford Dictionaries. Oxford University Press, 2016.

http://www.oxforddictionaries.com/definition/english/notation

[Rutle, 2010] Rutle, A. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis,

Department of Informatics, University of Bergen, Norway. (2010).

http://bora.uib.no/handle/1956/4469

[Stanford, 2014] Category Theory. The Stanford Encyclopedia of Philosophy. The Metaphysics

Research Lab, Center for the Study of Language and Information (CSLI), Stanford University. 2015.

Library of Congress Catalog Data: ISSN 1095-5054 http://plato.stanford.edu/entries/category-theory/

[Stanford, 2015] Second-order and Higher-order Logic. The Stanford Encyclopedia of Philosophy. The

Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford

International Journal "Information Content and Processing", Volume 3, Number 3, 2016

223

University. 2015. Library of Congress Catalog Data: ISSN 1095-5054

http://plato.stanford.edu/entries/logic-higher-order/#4

[Truyen, 2006] Frank Truyen. The Fast Guide to Model Driven Architecture. The Basics of Model Driven

Architecture (MDA). Cephas Consulting Corp, 2006.

http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

[Varro and Pataricza, 2003] Varro, V., Pataricza, A., VPM: A visual, precise and multilevel

metamodeling framework for describing mathematical domains and UML. Journal of Software and

System Modeling, Vol.2, Issue 3. Springer-Verlag, 2003. pp. 187-210. ISSN: 1619-1366 (print

version), ISSN: 1619-1374 (e-version), doi:10.1007/s10270-003-0028-8

http://link.springer.com/article/10.1007/s10270-003-0028-8

[Zaraket and Noureddine, 2014] Fadi A. Zaraket, Mohamad Noureddine. Model Checking Software

Programs with First Order Logic Specifications using AIG Solvers. arXiv, Cornell University, Ithaca,

New York 14850. arXiv:1409.6825v1 [cs.SE] 24 Sep 2014. https://arxiv.org/pdf/1409.6825v1.pdf

Authors' Information

Elena Chebanyuk – Software Engineering Department, National Aviation University,

Kyiv, Ukraine,

Major Fields of Scientific Research: Model-Driven Architecture, Model-Driven

Development, Software architecture, Mobile development, Software development,

e-mail: chebanyuk.elena@ithea.org

Krassimir Markov – Information Modeling Department, Institute of Mathematics and

Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Major Fields of Scientific Research: Software Engineering, Cognitive Science,

Information Modeling, Multi-dimensional Graph Data Bases, Business informatics,

General Information Theory

e-mail: markov@ithea.org

