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Introduction 

Mathematical models of the problems of constructing linear and nonlinear discriminant functions (classifiers) have 
been considered in many papers (see, e.g., [1, 2]). An approach proposed in [3–6] has certain advantages over 
the method of support vector machines (SVM). Mathematical model proposed in these papers can be 
conveniently represented in the form of convex optimization problems. The technique using efficient nonsmooth 
optimization methods [7] to solve these problems will be considered below. We present the results of 
computational experiments for specific test problems of large dimension. 

The first section presents new results [8-11], allowing efficiently generate the equivalent unconstrained 
optimization problem for problems with constraints. In the second section we describe the mathematical models 
of constructing classifiers. In the third section characteristics of test problems and results of computational 
experiments are given. 

1. A brief description of methods for solving nonsmooth convex constrained optimization 
problems 

The scheme for solving optimization problems with constraints consists in construction of an equivalent 
unconstrained optimization problem, and in its solution by efficient subgradient algorithms (for example, r-
algorithm by N.Z.Shor [7]). 

To construct an equivalent unconstrained optimization problem we use the following approaches: 

- exact penalty functions method; 

- conical extensions of functions [10, 11]. 

Exact penalty functions are considered in a large number of publications, for example in [7,12,13].  The practical 
usage of penalty functions and various generalizations are considered in these papers. 
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Convex programming problem with constraints has the form: find 

 min ( ) :f f x x C    (1) 

where  : ( ) 0, 1,...,n
iC x R h x i m    , , : n

if h R R  – convex functions.  

Let , if h  take finite values at all x . We will consider the penalty function of the form 

( , ) ( ) ( )S x s f x s h x   , , 0s R s  , (2) 

 

where  ( ) max ( ), 1,...,ih x h x i m  , max{0, }x x  . Consider the problem: find 

 ( ) min ( , ) : nS s S x s x R    (3) 

 

Penalty function ( , )S x s  is exact for given values of penalty coefficients s , if the solutions of (1) and (3) 

coincide. 

To select the values of the penalty coefficients it is usually necessary to solve the auxiliary dual problems, or this 
selection is put on the user, which leads either to an overestimation of the values used, or to the necessity of 
multiple solving the same problem for the satisfactory selection of the penalty coefficients. In [8, 9] an approach to 
build an automatic procedure for determining the values of penalty coefficients during the optimization process is 
proposed. Consider a brief description of this approach. 

We assume that C  is a bounded closed set. Denote by ' ( , , )S x s p , ' ( , )f x p , ' ( , )h x p  derivatives of 

functions S , f , h  at a point nx R  in the direction p  for the fixed value s , 

( , ) ( ) ,p x y y x y x y x    .  

Let x  be a solution of (3), and convergent sequences , , 0,1, ...k n kx R y C k    are given, kx x   

when k  .  The sequence kx  is generated during the solution of problem (3) by algorithm for unconstrained 

optimization, the point ky  is determined by an auxiliary rule for the current point kx . Such rules can be defined 

in various ways, for example, we may assign 0ky y , where 0y  is an initial feasible point such that 

0( ) 0h y  , or may choose ky  among the feasible points generated in previous iterations. 

Let kx C . We denote by ( , )k k
C x y  the intersection point of the segment ,k kx y 

   with the boundary of 

the set C , ( , )k k k
Cx x y  . 

Theorem 1 [9]. Let  0  , 0s   such that for each kx , kx C , 0,1, ...k  the following constraint is 

satisfied 

' ( , , ( , ))k k kS x s p x x    (4) 

 

Then x  is a solution of (1), i.e. ( , )S x s  is the exact penalty function. 
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Thus, for using this approach to determine the value of penalty coefficient s  it is necessary to check the 

condition (4) at each step of the optimization algorithm, which requires the solution of one-dimensional problem of 

finding the intersection point ( , )k k k
Cx x y   of the segment ,k kx y 

   with the boundary of the set C . 

This search procedure can be implemented effectively. 

In the case when inequality (4) at some iteration of the algorithm is violated, we will increase the penalty s , so 

that inequality (4) is satisfied. This increase must be not less than B , where 0B   is a given parameter. It is 

easy to see that if there exists such finite s  that for s s the inequality (4) holds on all iterations of the 

algorithm, then the amount of such penalty increases is finite throughout the optimization process. 

Theorem 2 [9]. Given a sequence , 0,1, ...k nx R k   converging to a solution x  of problem (3), 

0 , 1, 2, ...ky y k  , 0( ) 0h y  . Then there exists  s    such that the conditions of Theorem  1 are 

satisfied for s s . 

In [9] a special rule of the choice of ky  was considered. It was showed that 
1

m

i
i

s u


   where 

, 1,...,iu i m   are optimal values of dual variables. 

Theorem 2 allows us to construct the automatic determination of penalty coefficients during the optimization 

process in the case when the starting point 0y , 0( ) 0h y  , is known. If this point is unknown, then the solving 

process of the problem is divided into two phases - the first phase is to find the point 0y , 0( ) 0h y  , on the 

second phase the original problem is solved. 

Conical extensions of functions [10, 11] is another approach to generate an equivalent unconstrained optimization 
problem. The objective function of this problem coincides with the objective function of the original problem on the 
feasible set. Outside of the feasible set the formed function is defined by the behavior of the objective function of 
the original problem on the boundary of the feasible set. The original objective function can not be defined outside 
the feasible set. As above consider a brief description of this approach. 

As before, the problem (1) is considered. It is assumed that C  is a closed bounded set, a feasible point  

0x C  such that 0( ) 0, 1,...,ih x i m   and a number E , 0( )E f x  are given.  

For  x C  we denote 0( , )C x x  the intersection point of the segment 0[ , ]x x  with boundary of the set C .  

Let  

0
0

0 0
( , )

( , )
C

C

x x
R x x

x x x




 
, (5) 

0 0( ) ( ( ( , )) ) ( , )E
C Cx E f x x E R x x      , (6) 

( ),  if 
( )

( ),  if 
E

E

f x x C
x

x x C

  
 

. (7) 

It is easy to see that ( )E x  is a continuous function. Consider the problem of finding 
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 inf ( ) :E E nx x R    . (8) 

Lemma 1 [11]. Let E f  , then *E f   . 

Theorem 3 [11]. Let C  is a closed bounded set, int domC f . Then there exists a finite number E  such 

that ( )E x  is a convex function for all *E E . 

We denote ( )fg x , ( )hg x  subgradients of  functions f , h  at the point x . 

Theorem 4 [11]. Let 0( , )Cx x x  . Then the vector  

0

0

( ) ( ),
( ) ( )

( ),

f
f h

h

E f x g x x x
g g x g x

g x x x

  
 


 (9) 

Is a subgradient of  function  ( )E x  at the point x  (subgradient of  function ( )E x   if x C ). 

Thus, if f  , E  are known,  and conditions of the Lemma 1 and Theorem 3 are satisfied, then any algorithm 

for minimizing convex functions can be used for solving the problem (8). The solution of the problem (8) is a 
solution of the original problem (1). 

Consider the case where the values of f   and E  are unknown. Denote as ' ( , )f x p  the derivative of 

function f  at the point x  in direction p , 0 0 0( , ) ( )p x x x x x x   . Suppose that we use a 

convergent algorithm A  for unconstrained minimization of convex functions, at each iteration of which the value 

of objective function and its subgradient are computed. 

Theorem 5 [11]. Let numbers E  and 0   are given, algorithm A  is used to solve problem (8), and the 

following condition is satisfied at each iteration k  of the algorithm: if kx C  then 

( )kE f x   , (10) 

' 0( ) ( , ( ))k k k kE f x f x p x x x     (11) 

where 0( )k k
Cx x x  , kx  is  the current point at the iteration k . Then the sequence of points generated by 

the algorithm A  converges to the solution of problem (1). 

If at some iteration k  inequalities (10), (11) are violated, then it’s necessary to change the value E  iteratively: 

E B   , where  ' 0min ( ), ( ) ( , ( ))k k k k kf x f x f x p x x x      , 0B   is a  given 

parameter. 

In view of finiteness f   and E  there will be just finite number of changes of the value E , after which the 

algorithm converges to the optimal solution of problem (1). 

Thus, the approach under consideration allows to construct an equivalent unconstrained optimization problem, 
and to solve the original problem using unconstrained optimization algorithm. 
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2. Description of the mathematical models for constructing classifiers  

The problems of constructing linear classifiers are considered in [3-5]. 

Given a set of linear functions 0( , ) , , 1,...,i i i
if x W w x w i m   , where nx R  is an attribute vector, 

1
0( , )i i i nW w w R    is a parameter vector, 1,...,i m .  

Let introduce the notations 1( ,..., )mW W W , , ( 1)LW R L m n   . When 2m   we consider the 

linear classification algorithms (linear classifiers) in the form:  

 ( , ) arg max ( , ) : 1,...,i
i

i
a x W f x W i m  , nx R , LW R . (12) 

When 2m  ,then the linear classifiers are defined by linear functions 
1

0 0( , ) ( , ) , ( , ) nf x W w x w W w w R     , and are presented in the form  

1,  if ( , ) 0,
( , )

2,  if  ( , ) 0,

f x W
a x W

f x W


  

 (13) 

We consider a given finite family of disjoint sets (training set) of points:  : ,t t n
i ix x R t T    , 

1,...,i m , 
1

m

i
i

T T


 .  

It is said that the classifier ( , )a x W  correctly separates the points of , 1,...,i i m  , if ( , )a x W i  for all 

, 1,...,ix i m  . We define function  ( )i t  returning index of the set which contains the point ( )
t

i tx  , 

t T .  

If 2m  , then the value 

  ( ) min ( , ) ( , ) : 1,..., \ , ( )t t i t j
i jg W f x W f x W j m i i i t       

  0 0min , : 1,..., \ , ( )ji j t iw w x w w j m i i i t       (14) 

is called a gap of classifier ( , )a x W  at the point tx , t T .  

In the case of 2m   a classifier gap at the point tx  is the value  

1

2

( , ), if ,
( )

( , ), if .

t
t

t

f x W t T
g W

f x W t T

  
 

 (15) 

 

The value  ( ) min ( ):tg W g W t T   is called a gap of classifier ( , )a x W  on the family of sets 

, 1,...,i i m  . The classifier ( , )a x W  correctly separates the points of the sets , 1,...,i i m  , if 

( ) 0g W  . The sets , 1,...,i i m   are called linearly separable, if there exist a linear classifier that correctly 

separates the points of these sets. 
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If the sets , 1,...,i i m   are linearly separable, then the problem of constructing an optimal classifier 

(determination of the parameters W ) has the following form: find 

 max ( ) : ( ) 1, L

W
g g W W W R     . (16) 

Here ( )W  is the norm of vector W , 2

1 1

( ) ( )
m n

i
j

i j

W w
 

   . 

This problem can be written in the equivalent forms 

 min ( ) : ( ) 1, L

V
V g V V R     , (17) 

 min ( ) : ( ) 1, ,t L

V
V g V t T V R      . (18) 

 

The equivalence is understood in the sense that if W   is the optimal solution of problem (16) then equalities 
**

*
WV

g
 , *

*
1
g

   hold for the optimal solution V   of problem (17) or (18). 

A continuous relaxation of the problem of minimizing the empirical risk is proposed in [4-5] to build a classifier in 
the case of linearly inseparable sets. This relaxation has the form: find 

min ( )t

t T

q d W


   (19) 

under constraints 

2( ) 1W  , (20) 

( ) 1, 1,...,
i

t
i

t T

d W T i m


    (21) 

( ) 1,td W t T  , (22) 

where  1
( ) max 0, ( )t td W g W

B
    
 

, 0   is a parameter of the reliability required for separating 

points of the training set, B  is a parameter (a sufficiently large positive number).  

Consider the problem: find 

2 11
min ( ) : ( ) 1 , 0, ,

2
t t t t n

t T

V C g V t T V R 



              
  

 . (23) 

 

This problem is solved by the method of support vector machines (SVM) for the case 2m  . The SVM method 

is used to build an optimal classifier for linearly separable classes, and for linearly nonseparable classes.  

Note that for linearly separable classes the problems (18) and (23) have the same solutions if coefficient C  is 

sufficiently large. This follows from the theorem on non-smooth penalties [7,12]. 
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In [5] it was shown that in the case of linearly nonseparable classes the problem (23) can be obtained from (19) - 
(22) by Lagrangian relaxation with a special selection of the values of the Lagrange multipliers.  

A choice of coefficient C  is a significant problem when the problem (23) is used in the case of linearly 

nonseparable classes. It should be noted that this problem does not arise when problem (19) - (22) is used.  

Consider the characteristics of problems (16) and (19)-(22) which are useful when the approaches described in 
the previous section are used: 

The point 0 0W   is an interior point of the feasible set. 

1. The optimal values of these problems are always greater than or equal to zero. 

2. Implementation of one-dimensional search for a point on the boundary of the feasible set is simple: let 

2( )k kW   is a squared norm of the points kW , 1k  , then the point 
k

k

W
W 


 is the 

required point on the boundary of the feasible set. 

3. Functions ( )tg W  have the property – ( ) ( )t tg W g W   .  

3. Software implementation and results of computational experiments 

Software implementation for the following approaches to the problems under consideration was developed: 

- for problems (16) and (19)-(22)  - a method of exact penalty functions with automatic adjustment of the 
penalty factor, the method of convex conical extensions; 

- for problems (18) and (23) - a method of exact penalty functions without the automatic adjustment of the 
penalty coefficient. 

Unconstrained optimization problems, to which the original problems with the constraints are reduced, were 
solved using r -algorithm by N.Z.Shor [7]. 

The problems of constructing  linear classifiers for two classes were generated randomly for computational 
experiments. The parameters of problems varied in the range: 

- the dimension n  of attribute space nR  – from 5 to 100; 

- the number of points in the training set – from 40 to 100 000. 

The points in the training set for each class were generated on the basis of a uniform distribution within the unit 
cube. These cubes are shifted relative to each other along the first coordinate, so that the distance between them 

is equal to unity. For each problem 0P , constructed in such way, a family of problems  iP , 1,..., 10i   was 

generated by reducing the distance between the classes (cubes). The distance between classes of the problem  

iP  is equal to 2 i .  All problems from the generated families are linearly separable. 

To construct linearly nonseparable problems (sets) a membership to a class of some points of training set is 
changed. 

According to the results of computational experiments we can do the following conclusions: 

– the method of exact penalty functions with automatic adjustment of the penalty coefficient and the method of 
convex conical extensions showed approximately the same efficiency for the problem (1 1), all problems from the 

generated families  were  solved  successfully  (the accuracy of the objective function 6~ 10 ), the iteration 
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number of the r -algorithm changed from ~ 100  for the dimension 5n   to ~ 1500  for the dimension 

100n  ; 

– the choice of coefficient C  is essential when using the model SVM (problem (23)), in the computational 

experiments  we used the value 1000C  , and the problems iP , 5i   from the generated families were 

solved successfully (separating hyperplanes were found), but the problems  iP , 7i   were not solved 

(separating hyperplanes were not found). 

The developed software tools were compared with existing software (LIBSVM – 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/). In the table the elapsed time for solving problems of constructing a 

linear classifier in the space of dimension 100n  , depending on the number of points in the training set, is 

shown. The standard settings for LIBSVM were used. 

 

Table. 

Number of points 

The solution time, in seconds 

LIBSVM 
Automatic adjustment of the 

penalty coefficient 

5000 9.421 20.8 

10000 24.234 24.3 

25000 83.468 43 

40000 186.484 51,1 

50000 266.203 84,8 

 

Thus, the methods of nonsmooth optimization provide greater opportunities in the construction of linear classifiers 
in comparison with traditional approaches. At the same time the performance of the developed programs is 
comparable with existing software. 
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