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Abstract: The article is devoted to thorough study of a new regression method performance. The proposed 
method  based on convex correcting procedures over sets of predictors is subject to modifications and tested in 
comparison with the acknowledged regression utility. The modifications touch both resource consumption and 
quality aspects of the method and tests are performed with sets of generated samples. 
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Introduction 

Present article continues a series of works devoted to an approach in which optimal forecasting models are built 
by large ensembles of preliminary trained predictors that in turn can be simple univariate egressions. Several 
statistical methods were developed last years that allow improving significantly prognostic ability of regression 
modeling in tasks of high dimension. Efficiency of these methods is associated with effective selecting of 
prognostic variables. Least angle regression or Lasso [Tibshirani, 1996], [Efron et al., 2004] methods may be 
mentioned thereupon. However we believe that a problem of low generalization ability of empirical models in 
high-dimensional tasks cannot be considered completely solved. Thus, a number of convex correcting 
procedures optimization method has been proposed [Senko, 2009], [Senko et al., 2010], [Senko et al., 2011]. 

Suppose that we have set of L  predictors 1,..., Lz z  that forecast some variable Y . Let  1 ,..., Lc c c  be a 

vector of nonnegative coefficients satisfying condition 
1

1



L

i
i

c . Convex correcting procedure (CCP) calculates 

forecasted value as a weighted sum of prognoses that are calculated by single predictors:  

 
1

 
L

ccp i i
i

Z c c z . 

Convex combinations are widely used in pattern recognition. The bagging and boosting techniques [Breiman, 
1999], [Kuncheva, 2004]  may be mentioned as an example, as well as methods based on collective solutions by 
sets of regularities [Zhuravlev et al., 2008], [Zhuravlev et al., 2006], [Kuznetsov et al., 1996]. Convex correction is 
used in regression tasks also. Thus, neural networks ensembles are discussed in [Brown et al., 2005] that are 
based on optimal balance between individual forecasting ability of predictors and divergence between them. 
Efficiency of convex combinations of repressors’ pairs was shown in [Senko, 2004]. Earlier it was shown that 
error of predictors’ convex combination in any case is not greater than the same convex combination of single 
predictors’ generalized errors [Krogh et al., 1995]. 

A method for CCP optimization that is based on minimization of general error estimates was studied in [Senko, 
2009], [Senko et al., 2010]. Experiments with simulated data demonstrated that CCP error optimization also 
implements effective selection of informative prognostic variables. 
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In [Senko et al., 2011], however, it was shown that CCP variance is decreased comparing to the same 
combination of single predictors’ variances and such a decrease deteriorates the CCP’s prognostic ability. An 

additional adjustment to be made to CCP predictions leads to the necessity of maximizing ccpZ  and Y  

correlation. Such a technique based on the same concept of irreducible ensembles searching that was used in 
[Senko et al., 2010] was proposed in the article.  

Again, experiments with simulated data demonstrated that CCP correlation optimization shows great results 
comparing to LARS method, the only drawback of the result being that LARS was implemented by the authors 
and thus may be not the optimal one. So, in present article the method is compared to widely acknowledged 
Glmnet for Matlab written by Jerome Friedman and Hui Jiang [Friedman et al., 2007], [Friedman et al., 2010]. 

In the next few sections we afford repeating some definitions and theorems concerning irreducible ensembles 
searching and convex correctors’ correlation optimization. Then, some modifications to the correlation 
maximization method (CCPCMM) will be described. And finally, the results of experiments will be shown. 

Irreducible ensembles relative to correlation coefficients 

It is supposed further that predictors from initial set are additionally transformed with the help of optimal univariate 
regression models to achieve best forecasting ability. Such predictors will be further called reduced. In other 
words predictor z  will be called reduced if for all  ,  the inequality 

   2 2     E Y z E Y z  

is correct. Here  E X  is mathematical mean of X  by space of admissible objects with defined σ-algebra and 

probability measure. It will be further denoted as X̂ . It is known that following inequalities are true for a reduced 
predictor z : 

       2

 
      

ˆ ˆ ˆcov ,Y z E Y Y z z E z z . 

The use of the described conditions allows effectively searching ensembles with maximal prognostic ability, but 
the approach has its drawbacks. First of all, there are many ensembles with the prognostic ability close to the 
optimal one and it would be rational using them all. Secondly, CCP always decrease prognoses’ variation and 
univariate correcting transformation becomes inevitable. Of all predictors the maximal quality is provided by the 
one most correlated with Y. 

Standard Pearson correlation coefficient is defined as the ratio: 

   
   


cov ,

,
ccp

ccp

ccp

Y Z
K Y Z

V Y V Z
. 

On the other hand    
1

 cov , cov ,
L

ccp i i
i

Y Z c Y z . But iz  is a reduced predictor. So,    cov , i iY z V z , 

1 ,...,i L   and therefore 

 
 

   
1

1 1 1

1

2




  

   




 
,

L

i i
i

ccp L L L

i i i j ij
i i j

cV z
K Y Z c

V Y cV z c c

, 

where ij  denotes discrepancy between i-th and j-th predictors. 
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Further discussions are based on irreducible ensemble concept. A set of predictors z  is called irreducible 
ensemble if removing of at least one predictor from it does not allow constructing CCP with the same prognostic 

ability as of z . The following is a strict definition of ensemble’s irreducibility. 

Definition 1. Sets LD , LD  from L  are defined as 

1

1 0 1


 
    
 
 ; , ,...,
L

L i i
i

D c c c i L , 

1

1 0 1


 
    
 
 ; , ,...,
L

L i i
i

D c c c i L . 

Definition 2. Set of predictors 1,..., Lz z  is called irreducible ensemble relative to some functional  F c , that 

characterize forecasting ability, if there is such vector *
Lc D , that   Lc D ,    *F c F c . 

A set of points from L  simultaneously satisfying constraints: 
1

1



L

i
i

c  and  
1





L

i i
i

c V z  will be further 

referred to as  W . 

Theorem 1. A necessary condition of irreducibility of predictors set 1,..., Lz z relative to  , ccpK Y Z  is existence 

of such real   that quadratic functional  

 
1 1


 

 
L L

v
f i j ij

i j

P c c c . 

achieves strict maximum at  W  in 1
* *,..., Lc c  that satisfies conditions 0*

ic , 1 ,...,i L . 

The maximum necessary condition is existing of positive 0  , such that the following equation holds 

 
1 1


 

 , max
L L

i j i j
i j

c c z z  (1) 

with the next contingencies: 

 2

1





L

i i
i

c E z , 

1

1



L

i
i

c , 

0ic , 1 ,...,i L . 

 

(2) 

 

Lets write down a Lagrange functional for the task (1) 

   2

1 1 1 1

1   
   

   
       

   
  ,
L L L L

i j i j i i i
i j i i

L c c z z c E z c , 

and equal its partial derivatives to zero 

   2

1

2 0  



   

  ,
L

i i k k
ik

L
c z z E z

c
, 
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 2

1

0
 


  

 
L

i i
i

L
c E z , 

1

1 0
 


  

 
L

i
i

L
c . 

Moving to a vectorial form we get 

2    DC E I O , 

TE C , 

1TI C . 

where  


 ,i j n n
D z z ,  2

1
 i

n
E E z , 

1
 i n

C c , 
1

1



n

I , 
1

0



n

O . 

Lets denote 1  TE D E , 1  TI D E , 1  TI D I  for short. The received equation system gets the 

following form 

2 0     , 

2 0    . 

From these equations a dependence between c  and   can be derived 

 2
2 2

1 1

0
   
    

 
  

  
L L

k ki i ki
i i

c d E z d , 1 ,...,k L , 

 

(3) 

where ijd  is an element of the 1D  matrix.  

It must be noted also that the point *c  can be a point of strict maximum of fP  only if  

1 1

0  
 


L L

ij i j
i j

 (4) 

for any  0 ,..., L  satisfying conditions 
1

0



L

i
i

. Let min  is minimal and max  is maximal value of   for 

which one of inequalities (3) becomes equality. Let  2

1

 
L

k ki i
i

R d E z ,  
1




 
L

k ki
i

P ,  

1 0   k k kc  

1
2

 
 


 


k k

k

R P
, 

0
2

 
 


 


k k

k

P R
. 

then 2
0 1 2      fP , where 

0 0
0

1 1

 
 

  
L L

i j ij
i j

, 
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 0 1 1 0
1

1 1

 
 

     
L L

i j i j ij
i j

, 

1 1
2

1 1

 
 

  
L L

i j ij
i j

. 

It is easy to show that 

   
  2

0 1 2

1  
    

 
 

, ccpK Y Z
V Y

. 

Theorem 2. Simultaneous correctness of inequalities 0

1

2

1


 


 

min max ,  0

1

2

1


  


 

  
min  and 

negativity of the condition (4) is necessary condition of irreducibility of predictors set 1,..., Lz z . 

Necessary conditions allows effectively evaluate irreducibility of predictors set. It is sufficient to calculate min   

and max  to evaluate negativity conditions (4) and to evaluate inequalities 0

1

2

1


 


 

min max . It is evident that 

in case when necessary conditions are satisfied and 0

1

2

1





 
  

 for the evaluated ensemble is greater than 

maximal correlation coefficient for any irreducible ensemble with less predictors than the evaluated ensemble is 
irreducible. 

Regression models based on sets of unexpandable irreducible ensembles 

At the first stage initial set of reduced predictors is formed with the help of standard univariate least squares 

technique. Let  1,..., LZ z z  is initial set of L  predictors. An irreducible ensemble z  consisting of l   

predictors will be called unexpandable irreducible ensemble (UIE) if there are no irreducible ensembles in Z  with 

number of predictors greater l   that contain all predictors from z . Two ways of regression model construction 
by sets of UIE were considered that are based on enumerating of all possible UIE. The first method chooses 

single best UIE where correlation coefficient of optimal ccpZ  with Y  is maximal. This optimal ccpZ  ( max
ccpZ ) is the 

final regression model of the first method. The second method selects set of UIE where correlation coefficient of 

optimal ccpZ  with Y  is greater than  1 max( ) , ccpTr K Y Z ,  0 1,Tr  . Thus threshold parameter Tr  allows to 

select UIE with correlation coefficient of optimal ccpZ  with Y  close to maximal value  max, ccpK Y Z . In the 

second method parameters of final regression models are calculated as average by all UIE with 

   max, * ,ccp ccpK Y Z Tr K Y Z .  

Method of UIE enumerating is based on gradual raising of predicates set meeting irreducibility condition.  

Procedure 1. Process subset of predictors  
1

 , ,
ti iZ z z . 

Step 1. Using Theorem 2 check whether Z  is irreducible. 

Step 2. Calculate  
1
, ,

ti ic c  and  ,K Y Z . 
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Step 3. If    *,K Y Z K , where *K  is the previous best result, replace best subset max
ccpZ  with Z  and set 

 * ,K K Y Z . 

Step 4 (second method only). Store Z  in historic list for voting purposes. 

Procedure 2. Main algorithm. 

Step 1. Enumerate all pairs of predictors  ,i jz z , apply Procedure 1. If  ,i jz z  is irreducible, store it in pairs 

dictionary and in list of candidates. 

Step 2. Enumerate all current candidates  
1

 , ,
ti iZ z z , enumerate all pairs from dictionary, beginning with 

ti
z :  ,

ti kz z . Apply Procedure 1 to the subset  
1

  , , ,
ti i kZ z z z . If it is irreducible, store it in next level 

candidates. 

Step 3. If there are any next level candidates, go to Step 2. Otherwise stop and return current max
ccpZ  (and historic 

list). 

Step 4 (second method only). Filter historic list based on *K  and Tr  and average coefficients over all remaining 

combinations. Let’s consider a set of combinations produced by the algorithm:  1 , , pZ Z  , where 

1

 
L

t
t i i

i

Z c z . The final predictor 
1 1

1

 

 
  

 
 

pL
j
i i

i j

Z c z
p

. 

CPPCMM modifications 

First of all, lets state that only second method, i.e. voting over some set of best combinations, is considered as 
proved to be better in experiments. 

A new set of experiments performed for the sake of this article has revealed a major drawback of the described 
method. Significant time consuming in cases of larger dimensions was accompanied by memory exhaustion. 
Thus, strict UIE enumerating demanded additional branch reducing: 

Procedure 3. Reduced main algorithm. 

Step 1. Enumerate all pairs of predictors  ,i jz z , apply Procedure 1. If  ,i jz z  is irreducible, store it in pairs 

dictionary and in list of candidates. 

Step 2. Consider level l . Enumerate all current candidates  
1

 , ,
ti iZ z z , enumerate all pairs from dictionary, 

beginning with 
ti
z :  ,

ti kz z . Apply Procedure 1 to the subset  
1

  , , ,
ti i kZ z z z . If   1  *, lK Y Z K , where 

1
*
lK  is the previous best result of 1l  level, set  1 * ,lK K Y Z . If Z  is irreducible and    *, lK Y Z K , 

store it in 1l  level candidates. 

Step 3. If there are any next level candidates, go to Step 2. Otherwise stop and return current max
ccpZ  (and historic 

list). 

Step 4. Filter historic list based on *K  and Tr  and average coefficients over all remaining combinations. 

The proposed correction although provided giant boost in time and memory saving, slightly dropped overall 
forecasting quality. The next two modifications are aimed to its correction. 
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Definition 2. A predictor iz  is dominating jz  if  ( , ) ( , ) ( , )i i jK Y z aK Y z bK Y z  for all 0,a b , 1 a b . 

Theorem 3. A predictor iz  is dominating jz  if 
   

2

2
1





 


  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j i j j ij

i j i j ij

V z V z V z V z

V z V z V z V z
. 

The second modification consists in removing all dominated predictors from voting according to Theorem 3. 

Third modification is weighting votes of different predictors in Step 4: 
1 1 

 
  

 
 

pL
j

j i i
i j

Z w c z , where 0kw  and 

1

1



p

k
k

w . 

In case of no domination filter applied the weights are calculated simply in proportion to 
  2

1

1 , iK Y Z
. 

Otherwise they are more complicated. Let 
 

2





 
 ij j i

ij
ij

e e
w

p
 and consequently 

1

 
p

i ij
j

w w . Again, 

normalization is applied to satisfy 
1

1



p

k
k

w  condition. 

With that last modification, the parameter Tr  (threshold) described in previous section, although planned as 
close to zero, proved to be more efficient when close to 1 (see experiments). 

 

Experiments 

In all studies dependent variable Y  and regression variables X  are stochastic functions of 3 latent variables 

1U , 2U , 3U . The vector levels of variables U  are independently distributed multivariate normal with mean 0 

and standard deviation 1. The value of dependent variable Y  in j-th case is generated by formula 
3

1

j
j jk y

k

y u e


   where jku  is a value of the latent variable kU , j
ye  is a random error term distributed 

 0, yN d . At that 85% of cases were generated with 1yd  , 15% of cases were generated with 2yd  or 

2 5 .yd . That is how main and noisy components of data were formed. The values of relevant variable iX  

were generated by binary vector  1 2 3, ,i i i i    . In j-th case 
3

1

i j
jk jk k xi

k

x u e


  , where jku  is a value of 

the latent variable kU , j
xie  is a random error term distributed  0, xiN d . In the following experiments relevant 

variables were generated according 0 5.xid  . The levels of irrelevant variable iX  in j-th case are generated by 

formula j
jk xix e . 

In each experiment 100 pairs of data sets were calculated by the random numbers generator according to the 
same scenario. Each pair includes training set that was used for optimal regression model construction and 
control data set that was used to evaluate prognostic ability of this model. In all experiments relevant variables 

were generated at  1 1 0, ,  ,  1 0 1, ,  ,  0 1 1, ,  . In Table 1 there are other parameters of the test 

samples described. 
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Table 1. Experiment sample series. 

 

Task Number of objects Number of features ...of them irrelevant Noize coefficient  yd  

data1 30 120 70 2.0 

data2 30 120 70 2.5 

data3 30 100 50 2.5 

data4 30 140 90 2.0 

data6 20 160 85 2.0 

data7 20 160 85 2.5 

data8 15 150 85 2.1 

data9 40 150 81 2.5 

 

First, the described data was used for the threshold parameter Tr  impact study. The following two graphs show 
the dependency between resulting forecast correlation and the parameter. Here and further on an average values 
over 100 independent control tasks are shown. 

 

 

 

Fig. 1. Data7 test sample, threshold range 0.1–0.2, step 0.01. 
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Fig. 2. Data8 test sample, threshold range 0.1–0.9, step 0.1. 

 

The clear and most unexpected result of this and other similar experiments is that better result are achieved at 
threshold values close to 1. It means that every tested irreducible combination is important for the resulting 
weighted sum. Furthermore, the dependency is quite monotonic and thus threshold in every comparative 
experiment can be set to 1. 

Finally, the second set of experiments shows comparison of the proposed method to Glmnet. It need to be 
mentioned that Glmnet for Matlab also has some parameters. Thus, to make results more undoubted its 
optimization was performed, so all tables and graphs contain its best result over parameters grid. 

 

Table 2. Results of expiriments. Prognostic ability. 

Task CCPCMM’s correlation 
Glmnet for Matlab 

Correlation Optimal parameter   

data1 0.776 0.763 0.55 

data2 0.746 0.726 0.5 

data3 0.741 0.722 0.55 

data4 0.752 0.739 0.55 

data6 0.768 0.736 0.55 

data7 0.728 0.691 0.75 

data8 0.752 0.7135 0.75 

data9 0.732 0.711 0.57 
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The same results are shown on the following graph. 

 

Fig. 3. Correlation in test tasks. 

Conclusion 

Some modifications of the novel regression method are described, which correct its time and memory consuming 
as well as forecasting quality. The results shown in figures 1 and 2 exclude any parameters from the training 
process, which made it suitable for unsupervised use. Moreover, the results shown in table 2 and figure 3 clearly 
show its superiority comparing to well known and widely acknowledged regression tool. 

Thus, the modified method can be recommended for a wide range of forecasting applications, especially in 
automatic unsupervised applications. 
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