
International Journal "Information Models and Analyses" Vol.1 / 2012 

 

146

 

ACTIVITY RECOGNITION USING K-NEAREST NEIGHBOR ALGORITHM 
ON SMARTPHONE WITH TRI-AXIAL ACCELEROMETER 

Sahak Kaghyan, Hakob Sarukhanyan 

 

Abstract: Mobile devices are becoming increasingly sophisticated. These devices are inherently sensors for 
collection and communication of textual and voice signals. In a broader sense, the latest generation of smart cell 
phones incorporates many diverse and powerful sensors such as GPS (Global Positioning Systems) sensors, 
vision sensors (i.e., cameras), audio sensors (i.e., microphones), light sensors, temperature sensors, direction 
sensors (i.e., magnetic compasses), and acceleration sensors (i.e., accelerometers). The availability of these 
sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data 
mining applications. So, it is not surprising that modern mobile devices, particularly cell phones of last 
generations that work on different mobile operating systems, got equipped with quite sensitive sensors. This 
paper is devoted to one approach that solves human activity classification problem with help of a mobile device 
carried by user. Current method is based on K-Nearest Neighbor algorithm (K-NN). Using the magnitude of the 
accelerometer data and K-NN algorithm we could identify general activities performed by user. 
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Introduction 

The data to recognize human’s activity is from the physical hardware sensors, and the combination of the 
accelerometer, the compass sensors and GPS are the most commonly used sensor devices. This project's 
objective is to explore how effective is in general the K-NN algorithm and, in future works, its modifications in user 
activity classification problem solving. For our current research we have taken the base algorithm without any 
serious modifications, although in our future works we shall use different combinations of this one and other 
methods such as, for example, decision trees. In order to know the accuracy of this algorithm we also created two 
applications. One of them is a smartphone application that works on the Android platform and is able to get and 
store data concerning user's physical activity using incoming signals from tri-axial accelerometer that comes with 
mobile device that he or she cares. It stores raw data on security disk card or just SD card of given device. After 
the data saved, it will be transferred on server for further work. Second application is a desktop application that 
does the rest – activity classification using K-nearest neighbor algorithm. It analyzes incoming data in order to 
classify transferred activity. 

In sections below we shall briefly describe what Android operating system is and what an accelerometer is and it 
works on a mobile device. Then we shall give a description of K-NN algorithm itself. Finally, our approach to 
recognize activity from accelerometer data using this algorithm will be introduced and them it will be followed by 
results. 

Android operating system 

First step of activity classification problem, discussed in this article, is to create an application that will be able to 
retrieve acceleration values from smartphone. So, it will be logical to start from choosing a platform that will be 
used. There are several platforms for mobile phones. Most popular of them are Android, IOS and Windows 
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Mobile platforms. And here we used Android as a target platform for our experiments. Thus, here we shall focus 
on explaining how this operating system is organized and what advantages it has. Whether you’re an 
experienced mobile engineer, a desktop or web developer, or a complete programming novice, Android 
represents an exciting new opportunity to write innovative applications for mobile devices. So, the main question, 
from which we shall start, will be the following one: 

What is Android? 

Google describes Android as: The first truly open and comprehensive platform for mobile devices, all of the 
software to run a mobile phone but without the proprietary obstacles that have hindered mobile innovation. 

Generally, Android is a combination of three components: 

 A free, open-source operating system for mobile devices. 

An open-source development platform for creating mobile applications. 

Devices, particularly mobile phones, that run the Android operating system and the applications created for it. 

More specifically, Android is a software stack for mobile devices that includes an operating system, middleware 
and key applications. The Android SDK (Software Development Kit) provides the tools and APIs (Application 
Programming Interfaces) necessary to begin developing applications on the Android platform using the Java 
programming language [Meier, 2010]. 

So we decided to use the Android-based cell phones as the platform for our experiments  because the Android 
operating system is free, open-source, relatively easy to program, and according to October of 2011 statistical 
data, it claims quite impressive position among other mobile operating system manufacturers. Our project 
currently tested on the following type of Android phone: HTC Desire HD. Data that was collected from 
accelerometer of this cell phone was stored on cell phone’s SD card, although we expect to change this way of 
data storing because modern cell phones have all necessary interfaces and means to send data directly to 
server, for example via wireless networks, such as Wi-Fi, or via the Internet. However, data in this work was 
transferred to server via a USB (Universal Serial Bus) connection, but will make it at least less common or it just 
will be fully replaced by wireless data transfer mode in our future works. We also expect to modify software 
application so that later it will be able to do the activity recognition process right on user’s cell phone. 

At the same time Android platform is widely used not only because of it is free or open-source, but also because 
of the mechanisms, designed to protect the privacy and security of Android users, as well as the operating 
system. These methods include the Android security architecture, application certificates and application 
permissions. The purpose of the Android security architecture is to prevent applications from being able to 
automatically perform operations that could jeopardize the security of other applications, the operating system or 
the user. Certificates are used to identify the author of a specific application and to prevent users from installing 
fraudulent software on their devices. Android will not install an application that has not been signed with a 
certificate. Therefore, the origin of all published applications is traceable. Android security permissions are 
handled by the AndroidManifest.xml file present within all application files. When a user downloads an application 
onto their device, they are automatically notified of the permissions the application has access to. This informs 
the user of what type of information an application is able to collect from the device as well as the hardware the 
application can use. The AndroidManifest.xml file takes care of both software and hardware permissions. But 
while Android does require permissions for the use of hardware devices such as the camera and vibrator, it does 
not require permissions to be set in place for the use of any available sensors, including the accelerometer, 
orientation, and gyroscope sensors. Therefore, alongside with other tools, such as the internet and GPS, can also 
pose as security threat to the user. And it is possible for an application to collect user information from these 
sensors without the user’s knowledge. Android’s application-neutral APIs provide low-level access to the 
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increasingly diverse hardware commonly available on mobile devices. The ability to monitor and control these 
hardware features provides a great incentive for application development on this platform. 

Accelerometers 

The data to recognize human’s activity is from the physical hardware sensors, and the combination of the 
accelerometer, the compass sensors and GPS are the most commonly used sensor devices. The accelerometer 
is another component that is becoming a standard item in new devices. Several types of accelerometers, the 
most currently used are based on electro-mechanical devices (micro electro-mechanical systems or MEMS) that 
include a series of needle-like structures that detect motion, generating the readings are then transmitted to the 
main circuit. 

A tri-axial accelerometer is a sensor that returns a real valued estimate of acceleration along the x, y and z axes 
from which velocity and displacement can also be estimated. Accelerometers can be used as motion detectors. It 
measures proper acceleration, which has an experience relative to gravity and is the acceleration felt by people 
and objects. Accelerometers have been proposed by previous studies as a tool to monitor and assess physical 
activities of subjects in a free-living environment. The acceleration signals recorded through accelerometers have 
been used to classify daily living activities. There are extensive researches on using accelerometers to classify 
activities such as walking, running, falling, sitting, cycling, etc. [Lee, 2010], [Nishkam, et al.,2005], [Fomby, 2008], 
[Kwapisz et al., 2010]. This sensor can be used to detect movement and the rate of change of the speed of 
movement. One of benefits of Android platform is that the using of accelerometers in Android applications does 
not require the application to have permission to use it. So, it is possible to collect accelerometer data from user 
without his or her knowledge. This will make process of application executing easier to user, because he will not 
be prompted to give agreement to use built-in accelerometer each time the program runs. The most obvious 
application for the accelerometer is to change the screen orientation when we  

 

Figure 1: Smartphone changes display of 
screen from vertical to horizontal when user 

rotates it. 

rotate the device (Figure 1). The big question is almost all 
devices use screens with vertical orientation, but activities such 
as surfing the web or watch videos require a screen with 
horizontal orientation. Normally you would need to activate an 
option to change the orientation, but with an accelerometer that 
can be done automatically. It's something simple, but ends up 
having a great effect with respect to usability. But there are also 
other situations when this sensor is also used. 

The accelerometer can also be used to shortcut functions, such as changing the track on MP3 player, answer or 
reject a call, open or close applications and so on. A good shake-up band, two put the phone in silent mode and 
so on. Two other important areas are the games and the applications of GPS. In the case of games, 
accelerometer lets you deploy controls in the style of the Nintendo Wii [Nintendo Official Site], which opens a 
whole new range of possibilities. For GPS applications, the accelerometer enables the software to detect ripped 
brakes, cornering and so on. Variables, which can then be used to make software more intelligent, detecting 
when you missed a turn, or keeping a rough estimate of the location when it loses the satellite signal for a few 
seconds, for example. 

These are improvements that alone does not say much, but together they end up making a big difference, more 
than enough to pay the small cost increase resulting from the additional component [Hall et al., 2008]. 



International Journal "Information Models and Analyses" Vol.1 / 2012 

 

149

Human activity classification 

Human physical activity recognition has been receiving increasing attention in recent years. Human behavior and 
its classification are significant for the disciplines such as medicine, behavioral sciences, physiotherapy, etc. An 
accelerometer is an inexpensive, effective and feasible body-worn sensor which has been frequently used in daily 
physical activity classification. Use of accelerometer in patient’s mobile device will help to know whether what 
kind of moves he does and do that without disturbing him. 

Many research groups have studied activity recognition as part of context awareness research [Parkka et al., 
2006]. Context sensing and use of context information is an important part of the ubiquitous computing scenario. 
Context sensing aims at giving a computing device (e.g., cellular phone, wrist-top computer, or a device 
integrated into clothes) senses, with which it becomes aware of its surroundings. With the senses the device is 
capable of measuring its user and environment and it becomes context aware. The context describes the 
situation or status of the user or device. Different devices can use the context information in different ways, e.g., 
for adapting its user interface, for offering relevant services and information, for annotating digital diary (e.g., 
energy expenditure), etc. Location and time belong to the group of the most important contexts and the use of 
these contexts has been studied extensively. However, to recognize the physical activities of a person, a sensor-
based approach is needed. 

Activity recognition is formulated as a classification problem. In this study we consider following activities 
performed by user:  standing; walking; running; sitting; climbing up stairs; climbing down stairs. The reason of 
selecting these activities was quite simple. They were selected because they are performed regularly by many 
people in their everyday life. These activities also involve motions that repeat in time and this in ideal way the 
data that comes from accelerometer will be periodic and will we think that it can make the recognition process 
easier. When we record the data from for each of these activities, we record acceleration in three axes. Process 
of our human activity classification project can be represented by diagram below (Figure 2). 

 

Figure 2: Process of collecting and storing data from smartphone, data transfer and analyzing (logic flow) 

 

First step is to collect data from smartphone user carries in his pocket and store it in memory of mobile device. 
Second step is to transfer data on server and save it in proper way. Third step is the classification process itself 
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where unknown activity template will be compared in a loop with every activity template from predefined training 
set. After calculating distances between each type of activity and target activity, algorithm will display as result 
that activity which will have minimal distance from the unknown one. Thus, the accuracy of results mostly 
depends on the templates that were chosen for selected activities. 

K-Nearest Neighbor 

K-Nearest Neighbor is a supervised learning algorithm where the result of new instance query is classified based 
on majority of K-Nearest Neighbor category. It is one of the most popular algorithms for pattern recognition. The 
purpose of this algorithm is to classify a new object based on attributes and training samples. The classifiers do 
not use any model to fit and only based on memory. K-Nearest Neighbor algorithm used neighborhood 
classification as the prediction value of the new query instance. Many researchers have found that the K-NN 
algorithm accomplishes very good performance in their experiments on different data sets. The traditional K-NN 
text classification algorithm has three limitations: (a) calculation complexity due to the usage of all the training 
samples for classification, (b) the performance is solely dependent on the training set, and (c) there is no weight 
difference between samples. The best choice of k depends upon the data; generally, larger values of k reduce the 
effect of noise on the classification, but make boundaries between classes less distinct. A good k can be selected 
by various heuristic techniques, for example, cross-validation. The special case where the class is predicted to be 
the class of the closest training sample (i.e. when k=1) is called the nearest neighbor algorithm. In pattern 
recognition field, K-NN is one of the most important non-parameter algorithms and it is a supervised learning 
algorithm. The classification rules are generated by the training samples themselves without any additional data. 
The K-NN classification algorithm predicts the test sample’s category according to the k training samples which 
are the nearest neighbors to the test sample, and judge it to that category which has the largest category 
probability. 

The accuracy of the K-NN algorithm can be severely degraded by the presence of noisy or irrelevant features, or 
if the feature scales are not consistent with their importance. Much research effort has been put into selecting or 
scaling features to improve classification. A particularly popular approach is the use of evolutionary algorithms to 
optimize feature scaling. Another popular approach is to scale features by the mutual information of the training 
data with the training classes. In binary (two class) classification problems, it is helpful to choose k to be an odd 
number as this avoids tied votes. One popular way of choosing the empirically optimal k in this setting is via 
bootstrap method [Suguna et al., 2010]. 

  In similar activity recognition works this algorithm came in combination with other helping methods. For example 
in [Das et al., 2010] there were also used decision tables and decision trees. They were able to increase the 
accuracy after the device was properly calibrated for given user. 

In pattern recognition, the k-nearest neighbor algorithm (K-NN) is a method for classifying objects based on 
closest training examples in the feature space. K-NN is a type of instance-based learning, or lazy learning where 
the function is only approximated locally and all computation is deferred until classification. The K-Nearest 
Neighbor algorithm is amongst the simplest of all machine learning algorithms: an object is classified by a 
majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest 
neighbors (k is a positive integer, typically small). If k=1, then the object is simply assigned to the class of its 
nearest neighbor. Figure 3 illustrates situation when k is taken 5. Unknown point will be compared with 5 closest 
neighbors and depending on results will be marked as belonging to proper set. The training examples are vectors 
in a multidimensional feature space, each with a class label. The training phase of the algorithm consists only of 
storing the feature vectors and class labels of the training samples. In the classification phase, k is a user-defined 
constant, and an unlabeled vector (a query or test point) is classified by assigning the label which is most 
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frequent among the k training samples nearest to that query point. Usually Euclidean distance is used as the 
distance metric; however this is only applicable to continuous variables. In cases such as text classification, 
another metric such as the overlap metric or Hamming distance [Math32031, 2007], for example, can be used. 

A drawback to the basic "majority voting" classification is that the classes with the more frequent examples tend 
to dominate the prediction of the new vector, as they tend to come up in the k nearest neighbors when the 
neighbors are computed due to their large number. 

 

Figure 3: uX is point unknown template. In 

this example k=5. Euclidean distance 
between this point and its 5 closest 

neighbors is calculated. 4 of them belong to 

1  and 1 belongs to 3 , so uX  assigned to 

1 set. 

One way to overcome this problem is to weight the classification 
taking into account the distance from the test point to each of its k 
nearest neighbors. 

There are several ways to calculate the distance between two 
points in multidimensional space. Suppose we have two points 
yx,  where each point is an n-dimensional vector, i.e. 

},,,,{ 21 nxxxx   }.,,,{ 21 nyyyy   

Distance measuring functions can be taken the following ways. We 

can define distance function ),( yxdE between two points by 

measuring their distance according to Euclidean formula or 

),( yxdA distance function that measures absolute distance 

between them using formulas below: 
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Our approach uses Euclidean formula to calculate distance between any given 3-dimensional points. 

However, this method it has limitations such as: great calculation complexity, fully dependent on training set, and 
no weight difference between each class. This once again confirms that one of important means of improving the 
accuracy of result data is a good choice of training set. In the prediction problem the K-NN “tuning” parameter is 
the neighborhood size k. In the binary classification problem, the K-NN model requires the tuning of two 
parameters, the neighborhood size and, for each neighborhood size, the cutoff probability for choice. In each of 
these cases the tuning parameter(s) is (are) chosen to optimize the scoring performance in the K-NN model in the 
validation data set. Finally, scoring an optimal K-NN model on the test data set provides the opportunity to obtain 
unconditional performance measures of the optimal K-NN model. 

Data Collection, Analyzing and Results 

Data from the accelerometer has the following attributes: time, acceleration along x axis, acceleration along y axis 
and acceleration along z axis. 

There are cases, when program must be preliminarily calibrated for given user in order to make the accuracy 
more effective like it was done in [Das et al., 2010]. 

We used K-NN algorithm to analyze raw data that we got from mobile device. We used sequential comparing of 
our activity pattern with training sets, each time calculating the distances between incoming acceleration data 
points and points of our training sets. 
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Standard classification algorithms cannot be directly applied to raw time-series accelerometer data. Instead, we 
first must transform the raw time series data into examples. To accomplish this we divided the data into 10-
second segments and then generated features that were based on the 200 readings contained within each 10-
second segment. We refer to the duration of each segment as the example duration (ED). We chose a 10-second 
ED because we thought that it provided sufficient time to capture several repetitions of the (repetitive) motions 
involved in some of activities. Although we did not perform experiments to determine the optimal example 
duration value, but we shall explore that in our future works and will find out how a longer period of ED will effect 
on accuracy.  

After user runs the mobile application, he will be able to save incoming data from device into text file where each 
line contains date and time of accelerations along each axis and the acceleration values themselves. 

 

Figure 4: User interface to collect and store data from smartphone sensor 

Here is part of code that is responsible for retrieving sensor values from smartphone: 
1. // check sensor type 
2. if(event.sensor.getType()==Sensor.TYPE_ACCELEROMETER){ 
3.   // assign directions 
4.    float x=event.values[0]; 
5.    float y=event.values[1]; 
6.    float z=event.values[2]; 
7.    ... 
8.    Calendar now = Calendar.getInstance(); 
9.    ...   
10.    s1.add(String.valueOf(x)); 
11.    s1.add(String.valueOf(y)); 
12.    s1.add(String.valueOf(z)); 
13.    currentDT.add(now.getTime()); 
14. } 
15. ...  
 

As it was mentioned before, modern mobile devices, especially smartphones, can be equipped with various 
sensors. So, when we program function that will listen to changes that will occur when sensor data changes, first 
we must be sure that these changes come from accelerometer and not from any other sensor. Thus, we 
preliminary must enclose all commands of proper acceleration values retrieving in a block that checks whether 
incoming data is from accelerometer or other sensor.  
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The user interface and acceleration values of our Android based acceleration acquiring application is shown on 
following figures (Figures 5-7): 

 

Figure 5: Acceleration along z-axis. 

x: 2.056672, y: 0.8036005, z: 9.91561≈ 1g 

 

Figure 6: Acceleration along x-axis. 

x: 9.80665 ≈ 1g, y: 0.10896278, z: 0.38136974 

 

Figure 7: Smartphone is in vertical position. 

Acceleration along y-axis. 

x: 0.6403563, y: 9.806434 ≈ 1g, z: 1.6334297 
 

 

Three different positions of this smartphone are 
shown on this pictures: first one illustrates the 
situation when smartphone is laying in user's hand 
(figure 5), or it can just lay on table; figure 6 
displays horizontal position of device; finally, last 
picture shows acceleration values when device 
stands vertically. 

As we can see from these pictures when 
smartphone is in position shown on figure 5, 
acceleration along z-axis approaches to 9.8 m/s2, 
i.e. to 1g. The same behavior is noticed when 
mobile device is in position (horizontal or vertical) 
in which acceleration along proper axis also 
approximates to 1g. 

Also, when device is in horizontal position the 
display of smartphone automatically turns on 90 
degrees. 

 

When inner timer of application stops, data retrieving step overs and the next one, i.e. collected data saving step 
starts. After data is saved in mobile phone’s memory, it will be manually transferred via USB cable on server. 
Then, after it is on server, the algorithm implementation does the program that runs on server. Modern personal 
computers have several cores and in order to decrease the time that application spends on calculation process, 
we used multithreading. To compare incoming data with data representing each activity (each training set) we 
gave a single thread to it. Although for these experiments k was taken equal to 1 and training sets had less than 
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thousand points representing each activity, so it gave us only a little bit of efficiency, but if training set will 
increase and k will increase, this computing method will be very helpful. 

Application finds out which template is closer to the current activity vector by measuring distance of each point of 
our target pattern with all points of each template. 

 

 

Figure 4: Windows desktop application. User selects data and program does the 

classification using K-Nearest Neighbor algorithm. 

 

The algorithm that does the classification can be given as follows: 

1. TS = { Set of templates describing each activity; Each template is represented as a 3-dimentional array} ; 

2. TT = { Target template }; 

3. MD = { Minimal distance between element of training set and target template }; 

4. MD = Calculate_Distance( TS[0], TT ); 

5. for each  ts TS \ TS[0] 

a. LD = { Local value of distance between element of training set and target element }; 

LD = Calculate_Distance(ts, TT); 

b. if ( MD ≥ LD) 

i. MD = LD;  

ii. Remember_Activity_Class(); 

c. else continue; 

Output = Get_Proper_Activity_Class_Name(); 

Here Calculate_Distance(), Remember_Activity_Class() and Get_Proper_Activity_Class_Name() are functions 
that help to do distance calculation, given activity saving operation and final results display respectively. 
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It is not hard to notice that every template is a multidimensional vector and, thus, in real program there will be one 

for loop nested inside another, so the complexity of this method is ),( 2pnO  where p is the length of vector 

representing single element from training set and n is total number of activity vectors. Software application, 
implementing this algorithm and doing the classification process, was written on C# programming language 
[Mackey, 2010], [Freeman, 2010] and used multithreading concept in order to increase speed of calculation. 

As it was mentioned above, k was taken equal to 1. When k increases, calculation process becomes more 
complicated. Despite of that is not so big problem for modern personal computers (because data can be 
processed on personal computers with multiple cores or even clusters), but processing time increases anyway. 
This can be a serious problem for data analysis on mobile phone where battery power is limited and power saving 
problem always plays one of major roles. 

For sitting and standing activities method gives 100% accuracy. For all other activities accuracy can be increased 
by increasing training set of each template. 

Conclusion and future work 

The accelerometer proved that it is a useful tool in identifying activities based on user’s phone’s movements and 
that the activities can be recognized with fairly high accuracy using a single tri-axial accelerometer. Despite that, 
activities that are limited to the movement of just hands or mouth are comparatively harder to recognize using a 
single accelerometer worn near the pelvic region. 

We expect in our future work to increase the accuracy of collected data analyzing with K-NN algorithm by 
studying its modifications. Also using the means of Android platform programming we can more effectively collect 
data from sensor by choosing other delay mode. At the same time we shall study other methods that help to 
classify user activity (for example fast Fourier transformations or Hidden Markov Models). 

It is also possible to combine data that will be retrieved from accelerometer with the data that will come from GPS 
sensor. As a result, this combination can make activity recognition process more efficient. 
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