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POLYNOMIAL APPROXIMATION USING PARTICLE SWARM OPTIMIZATION OF
LINEAR ENHANCED NEURAL NETWORKS WITH NO HIDDEN LAYERS

Luis F. de Mingo, Miguel A. Muriel, Nuria Gomez Blas, Daniel Trivifio G.

Abstract: This paper presents some ideas about a new neural network architecture that can be compared to a Taylor
analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic
architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection
in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural
Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP
uses to computed the desired output. This kind of neural network has universal approximation properties even with
lineal activation functions. There exists a clear difference between cooperative and compelitive strategies. The
former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order
to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models,
that is, individuals can die and new individuals are created combining information of alive one; or are based on
molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to
obtain the Neural Network, training the net with a Particle Swarm algorithm.
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Introduction

The only free parameters in the learning algorithm are the weights of one MLP since the weights of the other MLP
are outputs computed by a neural network. This way the backpropagation algorithm must be modified in order to
propagate the Mean Squared Error through both MLPs.

When all activation functions in an axo-axonic architecture are lineal ones (f(z) = axz + b) the output of the
neural network is a polynomial expression in which the degree n of the polynomial depends on the number m of
hidden layers (n = m + 2). This lineal architecture behaves like Taylor series approximation but with a global
schema instead of the local approximation obtained by Taylor series. All boolean functions f(x1,--- ,z,) can
be interpolated with a axo-axonic architecture with lineal activation functions with n hidden layers, where n is
the number of variables involve in the boolean functions. Any pattern set can be approximated with a polynomial
expression, degree n + 2, using an axo-axonic architecture with n hidden layers. The number of hidden neurons
does not affects the polynomial degree but can be increased/decreased in order to obtained a lower MSE.

This lineal approach increases MLP capabilities but only polynomial approximations can be made. If non lineal
activation functions are implemented in an axo-axonic network then different approximation schema can be obtained.
Thatis, a net with sinusoidal functions outputs Fourier expressions, a net with ridge functions outputs ridge expressions,
and so on. The main advantage of using a net is the a global approximation is achieved instead of a local
approximation such as in the Fourier analysis.

A variety of general search techniques can be employed to locate a solution in a feasible solution space, in our
case neural network weights. Most techniques fit into one of the three broad classes. The first major class
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involves calculus-based techniques. These techniques tend to work quite efficiently on solution spaces with friendly
landscapes. The second major class involves enumerative techniques, which search (implicitly or explicitly) every
point in the solution space. Due to their computational intensity, their usefulness is limited when solving large
problems. The third major class of search techniques is the guided random search. Guided searches are similar to
enumerative techniques, but they employ heuristics to enhance the search.

Evolutionary algorithms(EAs) are one of the most interesting types of guided random search techniques. EAs are a
mathematical modeling paradigm inspired by Darwin’s theory of evolution. An EA adapts during the search process,
using the information it discovers to break the curse of dimensionality that makes non-random and exhaustive search
methods computationally intractable. In exchange for their efficiency, most EAs sacrifice the guarantee of locating
the global optimum. Differential evolution (DE) and Particle Swarm Optimization, see figures 9 and 10, are both
stochastic optimization techniques. They produce good results on both real life problems and optimization problems.
A simple mixture between those two algorithms, called Differential Evolution - Particle Swarm Optimization (DE-
PSO0), is also considered. The explanation will no longer use the sine function, but the more frequently used sphere
function. Also note that the explanation for this algorithm will not use a single value, but arrays (vectors) to represent
particles and velocities. Therefore, it is compatible with more dimensions.

Enhanced Neural Networks

The most usual connection type in neural networks is the axo-dendritic connection. This connection is based on the
fact that the axon of an afferent neuron is connected to another neuron via a synapse on a dendrite, and modelized
in ANN model by a weighted activation transfer function. But, there exists many other connection types as: axo-
somatic, axo-axonic and axo-synaptic [Delacour,1987]. This paper is focused on the second kind of connection type
axo-axonic. Merely, the structure of the axo-axonic connection can be sketched by three neurons with a classical
axo-dendritic connection and the synaptic axonal termination of N3 connected to the synapse S12. The principle
consists on propagating the action of neuron N3 as synapse S12. In order to model previous connection type, two
neural networks are required [Mingo,1998]. The first (assistant) one will compute the weight matrix of the second
(principal) one. And, the second network will output a response, using the previously computed weight matrix, this
architecture is named Enhanced Neural Networks ENN [Mingo,1999; Mingo,1999a; Mingo,1999b].

Taylor Approximation

Taylor approximation degree 2 of a function n-differentiable at a point z = a can be obtained using the following
EXPression as a power Sseries:

f@) = fa) + fa)e—a)+ T @ a2 4 efe) ()

, Where & belongs to interval [z, a).

If /() is a continuos function in the closed interval [a, x] then this derivate has a maximun M in such interval,
and therefore, the error in the aproximation (equation 1) is measure by [Blum,1991]:

max |1 (a)| < M @)

(@) < M fo— af’ ®

In case an approximation degree n of function f(x) must be obtained, previous equations can be generalized in
order to get:
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provided following constraints are verified:

1. f9(x) corresponds to the i-derivate of f(x). Besides %) (z) = f(x).
2. Ifi=0theni! = 1.

3. ¢isapointatinterval [z, a).
The approximation error, that is f () — f(x), can be measured if the (n + 1)-derivate is a continuos function in
interval [a, ). Approximation error has a maximum defined by:
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ENN as Taylor series approximators.

Above section has shown that a function can be approximated with a given error using a polynomial P(z) = f (x)
with a degree n. The error f(x) — P(x) is measure by equation (5) in such a way that in order to find a suitable
approximation (error lower than a known threshold) it is only needed to compute sucessive derivates of function
f(z) until a certain degree n.

Enhanced Neural Networks behave as n-degree polynomial approximators depending on the number of hidden
layer in the architecture. In order to obtain such behavior all activation functions of the net must be lineal function
f(z) =ax+0.
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Figure 1: ENN architectures and output expressions

As shown in figure 1 and output equations, the number of hidden layers can be increased in order to increase the
degree of the output polynomial, that is, the number n of hidden layers control, in some sense, the degree n + 2 of
output polynomial of the net.

Table 1 shows how the degree of the output polynomial increases according to the number of hidden layers in the
net.
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Table 1: Number hidden layers vs. degree of output polynomial

Hidden | Degree P(x) Output

Layers Polynomial
0 2 0= agx’® + a1z + ag
1 3 0= azx® + asx® + a1z + ap
n n+2 o=Y""2aat

The only condition that the learning algorithm must verified is that weights must be adjusted to values related with
the sucesive derivates of function f(x) that pattern set represents. Usually such function is unkown therefore, if
the network converges with a low mean squared error then all weights of the net have converged to the derivates of
function f(z) (the pattern set unkown function), and such weights will gather some information about the function
and its derivates that the pattern set represents.

As an example, function f(x) = sen(x)cos(x) can be approximated using equation (4), with a given point a = 0.
Such equation can be reduced to f(z) = = — %xi’), using a polynomial P(x) degree 3. This is a mathematical
approach, but what happens if such function is the pattern set to an enhanced neural network mentioned before?.

A one hidden layer neural network must be used in order to obtain a 3-degree polynomial as the output expression.
Figure 2 shows such architecture, after the training stage, the final configuration is shown. Output equation of the
netiso =z — %x?’ , equivalent equation with f(x).

Figure 2: Approximation of f(x) = sen(z)cos(x) with a one hidden layer

The approximation error using net in figure 2 can be computed using equation (5), and therefore M SE < |e(x)|.
Such approximation is not the only one nor the best one, but it can be computed theoretically in order to provide the
net some initial weights in order to speed up the learning process and to obtain a better approximation that the initial
one with a lower error ratio. In sumary, Enhanced Neural Networks can be initialized to some weights computed
using the Taylor Series of the function that the pattern set defines and after this initial stage the learning algorithm
must be applied in order to achieved the best solution (the one that improves the Taylor Series error).

Figure 3 shows the surface computed by a net as the number of hidden layers is increased. The mean squared
error is decreasing as the number of hidden layers goes up. This figure shows that this kind of neural net is very
suitable when approximating functions, a given function or a function defined by the pattern set.

Non-Linear Activation

According to previous ideas, linear ENNs are better than linear MLPs, or at least, they are able to generate complex
regions in order to divide the output space. When working with a MLP, only hyperplanes can be obtained. And
moreover, the degree of the output equation increases according to the number of hidden layers.



International Journal "Information Models and Analyses" Vol.1 /2012 207

Pattern set defined by f(x,y) = sin(x)e¥
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Figure 3: Surface approximation depending on the number of hidden layers
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Figure 4: Approximation with sinusoidal activation functions using basis of figure a).

In order to obtain a functional basis, one constraint must be made. It consists on implementing the network
architecture with lineal PEs except the output neurons of assistant network. These neurons must have an activation
function g(x) which is used to computed the functional basis as the application of g() to a non lineal combination
of inputs. Figure 4 shows an example of a functional basis and the main network ourput.

Depending on the activation function of output neurons belonging to assistant network, the main network will output
an approximation function based on non lineal combination of elements belonging to the basis. That is if a sinusoidal
activation function is implemented, then a cuasi-Fourier approximation is computed by the network; is a Ridge
activation function is implemented, then a cuasi-Ridge approximation is computed and so on.

Main advantage of this new approximation method is that is absolutely easy to implement. And moreover, a global
approximation to all the pattern set is perform. This way, if there are enough input patterns, then the generalization
error will be minimized if there are enough learning iterations.

Enhanced Neural Networks as Universal Approximators

Along the paper [Mingo,1999a], this new architecture has shown that it is very suitable when dealing with any
problem. Decision surfaces generated by the net are complex enough to represent any data set. The powerfull of
these nets is in the number of hidden layers, that is, in the degree of the output polinomial associated to one output
unit.

Funahashi Theorem can be directly apply to Enhanced Neural Networks in order to proof the universal approximation
property of proposed networks, provided that activation function in hidden and output neurons belongs to a given
class of functions stated by Funahashi. This way, ENN behave as universal approximators, that is, they are able to
learn any pattern set.
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Figure 5: Network output corresponding to 2-degree polynomial functions using an enhanced neural network with
no hidden layers.

Results using Linear Networks with no hidden layers

The enhanced neural network architecture has the property that the output equation of an output unit is a n-degree
polynomial if the activation function is a lineal one. This output can be compared with the Taylor approximation
polynomials since the both methods are very similar. A set of data can be approximated by ENNs, computing a
n-degree polynomial as the network output. But, the activation function can be a sinusoidal, instead being a lineal
one. With this function, the approach of ENN is similar to Fourier series decomposition. This way, the activation
function can be changed in order to get a better approximation than in the case of MLPs.

Figure 5 shows that the proposed network is able to learn different surfaces in a 2D space with a low MSE. This is
mainly due to the special architecture of the net. The input to the net affects to the weights in the connection, and
even changes them in order to optimize the error achieved by the net.

In a more complex pattern set, that is, a high dimension space, the proposed architecture is also stable, see figue
6 and note the correlation among all inputs and the correlation between the real output (OUT.1) and the desired
response (OUT). Table 2 shows the final weights of the network.

Particle Swarm Optimization of Enhanced Neural Networks

Starting form general Particle Swarm Optimization algorithms formulas:

o) = v +aalpy - o)) + cxealgy’ - 2y ()
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Figure 6: Correlation matrix of f(z,y, z,t) = 222 — (y + 1)*t — 22 + (t + 2)%, where OUT = f(x,y, z,t)

is the desired output and OUT.1 is the network output.
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xfj) = xg) + vc(li) (7)

Regarding the PSO algorithm, different variants have been developed. Most of them aimed at speeding up the
convergence of it. In addition to the unconstrained optimization problem in discrete or continuous variable, the
multi target problem and the constrained problem have been addressed. We have also developed some hybrid
optimization techniques. PSO technique has been tested with good results for training Artificial Neural Networks.
When applying the method of Back Propagation, we are able to find appropriate weights that minimize an error
function through a succession of iterations. Furthermore, by applying the PSO technique, the weights found are
more efficient just by making small modifications to the algorithm. The new guidelines are aimed at avoiding PSO
stagnation of the local optimal solutions.

Shi and Eberhart [Shi,1998] proposed adjustments to the velocities of the particles by using a factor w called
inertial weight. This factor utilizes the inertia of the particles in the process of friction when they are moving. This
modification in the algorithm is done to control the search space. In order to do that it must change (8).The large
inertia weight makes the global search easier; however small inertia weight does not improve local search. That is
why was the initial value is greater than 1.0 to promote global exploration, and then gradually decreases to obtain
more refined solutions. The algorithm decreases linearly at each iteration. Moreover, the use of inertial weight
removes the restriction V... on the velocity.

vg) = wvc(li) + clel(péi) — l‘g)) + co69 (gg) — :L'g)) (8)

In each iteration, inertia weight decrease linearly through the following expression:

W = Wmax — (wmaaz - wmzn)% (9)
g is the index of the generation, G is the maximum number of iterations previously determined, w;,q. is a value

greater than 1, and w,,,;,, @ value under 0.5. This variation of the method has proven to accelerate convergence.

Clerc and Kennedy [Clerck,2002] obtain another variation in the speed calculation. A constriction factor y is
introduced with that purpose, This factor depends on the constants that are used when calculating speed and it
affects to the formula (6) The aim is to avoid the explosion of velocity:

vc(;) = X[vc(;) + 6161(17((;) - a:g)) + 0262(9((1i) o x&i))] (10

X is:

c1+cp=4.1 (11)

2
X = , =
12— — Ve — 4y

Table 2: Weight matrix corresponding to the auxiliary network when learning function f(x, vy, z,t) = 222 — (y +
1)%t — 22 + (t +2)2

[,1] [,2] [,3] [,4] [,5]
[1,] 0.69392712 -0.03879246 0.636080632 0.1224748 0.3380812
[2,] -0.07873902 -0.55159000 -0.009702458 -1.9004765 -0.4532731
[3,] 0.54488180 -0.02171687 -1.068343779 0.1584132 0.2621986
[4,] 0.06375846 -1.23761019 -0.131404413 1.0906522 -1.2437301
[5,1 0.36486673 -0.22649428 -0.091435548 -1.8485381 4.0222552
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Function Dim. Search space. Name

fi(z) =T a2 30 [-100,100] Sphere/Parabola
fo(z) = SSH100(2i 0 — 22)% + (2, — 1)?] 30 [-30,30] Rosenbrock Generaliz.
f3(z) = Zle(zj.zl z;)? 30 [-100,100] Schwefel 1.2
falw) = XL cos(ai)’ 0 (~00,00)

fs(z) = 3% (22 — 10cos(2mz;) + 10) 30 [-5.2,5.2] Rastrigin Generaliz.
fo(z) = =4 | zisin(y/|z4]) 30 [-500,500]  Schwefel Generaliz. 2.6

Table 3: Functions tested with PSO algorithm

The results are: x = 0.729 and ¢1=co= 2.05. These parameters were obtained by performing several tests.

x factor is similar to the inertial weight. This means that controlling the velocity with V(mazx) is not required when
X is used. Bratton and Kennedy [Bratton,2007], analyzed the stability of this algorithm by using these values and by
following a comparative study of both PSO algorithms (inertial weight and  factor). Both of them are mathematically
equivalent, in particular the algorithm with constriction factor is a special case of the inertial weight. Moreover,
Parsopoulos al [Parsopoulos,2002], combined both for problems with constraints and they obtained equally good
results in several tests.

We observe that the convergence always becomes slower when problem size increase, so when it comes to high-
dimensional problems, a larger number of iterations occurs. Researchers Hatanaka et al [Hatanaka,2007] developed
a PSO model, where velocity values are updated, by considering the rotation of the coordinate system. This model
is aimed at problems of high dimensionality and it showed good results when applied to all functions of De Jong,
(larger dimensions).

In order to test the standard PSO algorithm and two variants with incorporated and inertial weight factor x, we
have used some unrestricted functions which are commonly referred as De Jong functions’. The minimum of these
functions is located in the search space. They were originally proposed by de Jong to measure the performance
of genetic algorithms. However they have also been used to test the performance in PSO algorithms. Some of the
other functions are unimodal and multimodal i.e Ring (/best) and star (gbest) topologies. In the ring topology each
particle is related to its two neighbours. In the star topology all particles are interconnected. A population of 20
particles was considered. Table 3 functions are tested with the standard PSO algorithm and two variations: inertia
weight and constriction factor. The first three functions are unimodal and have the optimal solution 2* = 0.0% and
the minimum value f;(z*) = 0.0. The following are multimodal functions, the function f, has the minimum value
0.0, the optimal solution is ingd, the function f5 has optimal solution z* = 0.0¢ and the minimum value of the
function: f(x*) = 0.0 and fs has the optimal solution z* = 420.968¢ and the minimum value of the function :
f(z*) = —12.569, 4866.

Tables (4) and (5) show the results after 20 executions of the standard algorithm. Not only the inertial weight has
been modified in this algorithm but also the constriction factor for each functions by using neighbourhood models
Ibest and gbest. The algorithm stops when two successive values of the best assessments of the swarm get close
to each other. (A e value is prefixed and so it is a maximum number of iterations). NPE (average number of
assessments) shows the average number of evaluations for the function when applying PSO and its variants.

After PSO Algorithm and its variants are executed, results are collected; best results are found in approximately
equal number of cases regardless the model is used (lbest or gbest), so we can not assure which topology is
optimal. Moreover, we notice that when using the constriction factor, the convergence accelerates and results are
better when compared to the exact solution. In some cases, we notice that the region in which the swarm of particles
initially are, can affect the results. Regarding the number of particles of the swarm, when increased to more than
20, results did not improve.
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PSO Weight Factor
Name Original Inertial Constriction
Best Solut. NPE Best Solut. NPE Best Solut. NPE

fi | 1:3,70889e-07 | 190.480 | 7,68359¢-07 | 28.800 | 2,69078e-08 | 19.100
g:5,9803e-04 | 2 x 10° | 2,45656e-20 | 151.500 | 3,63055¢-20 | 30.820
fo | 1:560357e-06 | 2 x 10° | 2,2112e-05 | 831.580 | 4,5089e-06 | 1.257.520
g: 4,51068e-02 | 4 x 10 | 9,24376e-12 | 4 x 10° | 2,59676e-09 | 5 x 10°
f3 | 1:576231e-06 | 198.280 | 5,57901e-15 | 1.425.900 | 2,83076e-16 | 399.140
g: 4,91261e-06 | 2 x 10° | 1,81786e-12 | 2.596.780 | 1,44177e-13 | 125.640

Table 4: Results obtained by applying the PSO algorithm to unimodal functions, | indicates the model Ibest; g refers
to model gbest.

PSO Weight Factor
Name Original Inertial Constriction
Best solut. NPE Best solut. NPE Best solut. NPE

fi | 1:2.18719e-05 | 2 x 10° | 4.36373e-19 | 114.560 | 6,7306e-19 | 4.174
0: 3,9543e-12 | 180.820 | 1.3000e-12 | 15.120 | 1.7063e-15 | 14.160
fs | 1:1,70688e-14 | 216.240 | 1,81227e-14 | 339.020 | 1,07181e-11 | 9.480
g: 3,00262e-04 | 2 x 10° | 6,82288¢-12 | 12.180 | 2,81599e-12 | 11.040
fe l:-12568,2 | 2 x 10° | -125695 | 2x 10° | -125695 | 2 x 10°
g:-12.569,5 | 6 x 10° | -12569,5 | 6 x 10° | 12.352,3 | 2 x 10°

Table 5: Results obtained by applying the PSO algorithm to unimodal functions, | indicates the model Ibest; g refers
to model gbest.

Particle Swarm Optimization and Neural Networks

Particle swarm optimization can be applied to solve many problems. One of them could be the training of a neural
network architecture: Given a neural architecture, the problem is to find weights that minimize the mean squared
error of the net. Individuals code weights of the neural network, and the fitness function corresponds to the mean
squared error. According to Kolmogorov a multilayer perceptron can approximate any function even when the
number of hidden neurons is unknown.

Obviously, a neural network with 4 input neurons,  hidden neurons and o output neurons ithas (i+1)h+(h+1)o
weights and therefore, individuals of the PSO have (i + 1)k + (h + 1)o dimensions. By considering such number,
any real application with neural networks has at least 20 weights. A classical particle swarm algorithm could be
applied however individuals have a high dimension and then convergence depends on the random initialization.

Figure 7 shows the learning curve of the PSO algorithm applied to a XOR neural network. This network has a
2 — 2 — 1 architecture. It can be seen that the random initialization of individuals affect the convergence process
(columns of figure). And the number of iterations (100 or 1000, at each row) achieves a lower fitness (mean squared
error). Anyway, this simple example is solved with 10 individuals in the population, with dimension 9.

Another example is a binary coding neural network. An exclusive 8-bit vector coded it in a 3-bit vector. This classical
problem can be solved by using a multilayer perceptron with 3 hidden neurons. Table below shows the input/output
patterns of the neural network and the final weights found applying the PSO algorithm. In this case the dimension
of individuals is 39 with a population of 15 individuals.
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Figure 7: XOR multilayer perceptron with 2 hidden neurons and a particle swarm optimization learning using 10
individuals (individuals have 9 dimensions). Each column represents a different random initialization and each row
a number of iterations (100 and 1000).

Input Output
1 1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 -1 1 1 1 -1
1 1 1 1 1 -1 1 1 1 -1 1
1 1 1 1 -1 1 1 1 1 -1 -1
1 1 1 -1 1 1 1 1 1-1 1 1
1 1 -1 1 1 1 1 1 /1-1 1 -1
1 -1 1 1 1 1 1 1 /-1 -1 1
-1 1 1 1 1 1 1 1 /-1 -1 -1

Best fitness value: 5.067e-05

Best neural network weights with a 8 — 3 — 3 architecture:
Input layer — Hidden layer

0.1156528 1.097272 -0.946379977
-0.3683220 25.945492 -1.703378035
1.563256933 -9.765752 -0.636187430
0.4830886 26.536611 0.002121948
-1.5133460 0.790667 -0.131921926
-1.7465932 -3.369892  0.987214704
1.0519552 -4.920479  0.005404300
0.3397246 -1.924014  3.273439670

Bias: 0.7092471 -5.304714 -0.331283300

Hidden layer — Output layer

1.261584 -4.759320 0.9853185
148.541038 -1.054461 -3.1161444
-162.388447 -2.017318 -3.4691962
Bias: 0.090192 1.207254 1.9260548

These two neural examples have shown that the P SO can be successfully applied to the particle swarm algorithm
in order to solve, in some way, the convergence of the algorithm when dealing with high dimension individuals.
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Figure 8: Binary coding neural network form 8 inputs to 3 outputs. First row is a neural network with 3 hidden
neurons and second row a neural network with 5 hidden neurons. Mean squared error (fitness of the PSO)
decreases as the number of iterations (100 to 400) increases.

The XOR example with dimension 9 and the binary-coding example with dimension 39 are a good starting point to
combined classical neural networks with swarm intelligence.

Conclusion

The problem of nonlinear constrained optimization arises frequently in engineering. In general it does not have
a deterministic solution. In the past, nonlinear optimization methods were developed and now it is a challenge
to work with differentiable functions. Before gradient methods were used successfully for solving some problems.
Evolutionary methods provide a new possibility for solving such problems. The PSO technique has been used
successfully in optimizing real functions without restrictions, but it has been little used for problems with restrictions.
This has happened mainly because there are no mechanism to incorporate restrictions on the fithess function.
Evolutionary Computation has tried to solve the constrained optimization problem, either by bypassing nonfeasible
solutions sequences, or by using a penalty function for nonfeasible sequences. Some researchers suggest to use
two subfunctions of fitness. One helps to evaluate feasible elements and the other one evaluates the unfeasible
one. In this regard, there are many criteria. Moreover, some special self adaptive functions have been designed to
implement the penalty technique.

Hu and Eberhart [Hu,2002] presented a PSO algorithm. This algorithm bypasses nonfeasible sequences. it also
creates a random initial population, in which nonfeasible sequences are bypassed until the entire population has only
feasible particles. By upgrading the positions of the particles nonfeasible sequences are bypassed automatically.
The cost of the technique that creates the initial populations is high; especially when it comes to problems with
nonlinear constraints because then it must create an entire population of feasible individuals. In his work, Cagnina
et al [Cagnina,2008] proposed the following strategies for implementing the PSO into problems with restrictions: a)
If two particles are feasible, select the one with the best fitness. b) When a particle is feasible and the other is not,
the feasible one is chosen. ¢) If two particles are nonfeasible, the one with the lowest degree of nonfeasibility is
selected. These strategies are applied when the particles gbest and Ibest are selected. The same authors also
proposed an update in (6). This update considers three elements:

1) pg) which is the best position reached by the particle 7 in its history. 2) gfii) which is the best position reached by
the particles in its neigborhood and ¢; which is the best position achieved by any particle in the whole swarm.

o = w@ + e (0 — 20) + erea(gl) — ) + eses(ta — ) (12)
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Figure 9: PSO Expected Running Time (ERT, ®) to reach f,,; + A f and median number of f-evaluations from
successful trials (+), for A f = 101+1.0:—1,-2,-3,-5,8} (the exponent is given in the legend of f; and f»4) versus
dimension in log-log presentation. For each function and dimension, ERT (A f) equals to #FEs(A f) divided by
the number of successful trials, where a trial is successful if fop¢ + A f was surpassed. The #FEs(Af) are
the total number (sum) of f-evaluations while f,,; + A f was not surpassed in the trial, from all (successful and
unsuccessful) trials, and f,+is the optimal function value. Crosses (<) indicate the total number of f-evaluations,
#FEs(—o0), divided by the number of trials. Numbers above ERT-symbols indicate the number of successful
trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results
from BBOB-2009 for A f = 10~8. Additional grid lines show linear and quadratic scaling.
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Figure 10: DE-PSO Expected Running Time (ERT, ®) to reach f,x + A f and median number of f-evaluations
from successful trials (+), for A f = 10{+1.0.—1,-2,=3,=5,-8} (the exponent is given in the legend of f; and fa4)
versus dimension in log-log presentation. For each function and dimension, ERT (A f) equals to #FEs(Af)
divided by the number of successful trials, where a trial is successful if fo. + A f was surpassed. The #FEs(A f)
are the total number (sum) of f-evaluations while f,; + A f was not surpassed in the trial, from all (successful and
unsuccessful) trials, and f,p is the optimal function value. Crosses () indicate the total number of f-evaluations,
#FEs(—o0), divided by the number of trials. Numbers above ERT-symbols indicate the number of successful
trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results
from BBOB-2009 for A f = 10~8. Additional grid lines show linear and quadratic scaling.
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c1 is the personal learning factor and ¢y and cs are the social learning factors. According to Michalewicz et al
[Michalewicz,1998] and [Michalewicz,1996] constrained optimization methods are classified as:

1. Methods based on preserving feasibility of solutions.

2. Methods based on penalty functions

3. Methods that make a clear distinction between feasible solutions and infeasible sequences.
4. Methods based on decoders

5. Hybrid methods

We propose to analyze the penalty methods under E.A. perspective (Evolutionary Algorithms). The penalty methods
use functions (penalty functions) that degrade the quality of the nonfeasible solution. In this way the constrained
problem becomes a problem without constraints by using a modified evaluation function:

f(x) =

eval(w) = { f(x) + penalty(x) eoc 13)

F is the set created by the intersection of all sets that are the restrictions of the problem (Feasible region). The
penalty is zero if no violation occurs and it is positive otherwise. The penalty function is based on the distance
between a nonfeasible sequence and the feasible region F, It also works for repairing solutions outside of the
feasible region F.

There are many penalty methods. The main difference between the methods is the way the penalty function
is designed and applied to the nonfeasible sequences. Some methods associate a penalty function f;, (j =

1,...,m) with a constraint, which measures the violation of the restriction j as follows:
oy maz{0,gi(x)}, si 1<j<p
wa ={ ) siptlsj<m (14
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Appendix A - Linear Enhanced Neural Networks (with no hidden layers) Implementation in R

train <— function (iter, alpha, patrones_in, patrones_out, verbose) f{
entradas <— ncol(patrones_in)
salidas <— length(patrones_out[1,])
num_patrones <— nrow(patrones_in)
num_pesos <— (entradas+1)xsalidas
matriz_pesos_auxiliar <— matrix(runif ((entradas+1)+«num_pesos),nrow=(entradas +1),ncol=num_pesos)
matriz_pesos_principal <— matrix(runif ((entradas+1)+salidas),nrow=(entradas+1),ncol=salidas)
for (i in 1:iter) {
mse <— 0.0
for (id_patron in 1:num_patrones) {
patron_in <— c(as.matrix(patrones_in[id_patron,]), —1)
patron_out <— c(as.matrix(patrones_out[id_patron ,]))
salida_red_auxiliar <— patron_in %% matriz_pesos_auxiliar
matriz_pesos_principal <— (matrix(salida_red_auxiliar ,nrow=(entradas+1),ncol=salidas))
salida_red_principal <— patron_in %+% matriz_pesos_principal

error <— (salida_red_principal — patron_out)
mse <— mse + sum(error=error+0.5)
variacion_pesos <— —alpha « (error)

matriz_pesos_principal <— matriz_pesos_principal + t(matrix(variacion_pesos,
nrow=(salidas),ncol=(entradas +1))) =+ (matrix(patron_in,entradas+1,salidas))

vector_salida_red_auxiliar <— c(as.matrix(matriz_pesos_principal))

error_auxiliar <— (salida_red_auxiliar — vector_salida_red_auxiliar)

variacion_pesos_auxiliar <— —alpha * error_auxiliar

matriz_pesos_auxiliar <— matriz_pesos_auxiliar + t(matrix(variacion_pesos_auxiliar ,
nrow=(num_pesos),ncol=(entradas +1))) =+ (matrix(patron_in,entradas+1,num_pesos))

}
if (((i%%10)==0)&& verbose) {
cat("Iteration, ", i, ",-->_,MSE" ,(mse/num_patrones)/salidas ,"\n")
}
}
train <— matriz_pesos_auxiliar

}

test <— function (matriz_pesos_auxiliar ,patrones_in, patrones_out) {

entradas <— ncol(patrones_in)

salidas <— length (patrones_out[1,])

num_patrones <— nrow(patrones_in)

num_pesos <— (entradas+1)ssalidas

salida_red <— patrones_out

for (id_patron in 1:num_patrones) {
patron_in <— c(as.matrix(patrones_in[id_patron,]), —1)
salida_red_auxiliar <— patron_in %% matriz_pesos_auxiliar
matriz_pesos_principal <— (matrix(salida_red_auxiliar ,nrow=(entradas+1),ncol=salidas))
salida_red_principal <— patron_in %+% matriz_pesos_principal
salida_red[id_patron ,] <— (salida_red_principal)

}

test <— salida_red
}
panel.cor <— function(x, y, ...) {

par(usr = ¢(0, 1, 0, 1))

txt <— as.character (format(cor(x, y), digits =2))

text (0.5, 0.5, txt, cex = 1.4 » ( abs(cor(x, y))) + 2, col="grey" )
}

plot_correlation <— function(patrones_in, patrones_out, network_output) {
pairs (data.frame (patrones_in, patrones_out, network_output),upper.panel=panel.cor,
main="", col="darkblue", cex=0.5)

}

plot2d_interval <— function(matriz_pesos_auxiliar , patrones_out) {
patrones_in <— data.frame (runif (5000), runif (5000))
sal <— test(matriz_pesos_auxiliar , patrones_in, patrones_out)
color <— (sal[,1]—min(sal[,1]))/max(sal[,1]—min(sal[,1]))
plot (patrones_in,col=rgb(color,color ,0),xlab="",ylab="",pch=19,cex=1)



