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Abstract: In this paper we propose a novel approach for flood hazard mapping by processing and analyzing a 
time-series of satellite data and derived flood extent maps. This approach is advantageous in cases when the use 
of hydrological models is complicated by the lack of data, in particular high-resolution DEM. We applied this 
approach to the time-series of Landsat-5/7 data acquired 2000 to 2010 for the Katima Mulilo region in Namibia. 
We further integrated flood hazard map with dwelling units database to derive flood risk map. 
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Introduction 

Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and 
meteorological disasters are the main contributors to this pattern [Knight, 2006; Rodriguez et al, 2009]. In 2007, 
hydrological disasters, such as floods and wet mass movements, represented 55% of the overall disasters 
reported.  

It should be noted that in recent years flood management has shifted from protection against floods to managing 
the risks of floods (European Flood risk directive) [Mostert and Junier, 2009]. To enable flood risk assessment, 
corresponding flood hazard and flood risk maps should be developed. Flood risk is a function of two arguments: 
hazard probability and vulnerability [Mostert and Junier, 2009; Schumann and Di Baldassarre, 2010]. In other 
words, risk is a mathematical expectation of vulnerability (consequences) function [Jonkmana et al, 2003; Hoes 
and Schuurmans, 2006; Kussul et al, 2010]. Flood probability density is to be estimated in order to produce flood 
hazard maps. Usually, this is done through hydraulic modeling of a peak flow []. But running such models faces 
many uncertainties [Horritt, 2006] due to the lack of hydrological and other required data, their incompleteness 
and imperfection [Mostert and Junier, 2009]. The use of space-borne remote sensing data to flood risk mapping is 
a complement approach to the existing flood modeling techniques [Schumann and Di Baldassarre, 2010; Bates et 
al, 1997; Bates 2004; Horritt 2006; Lecca et al, 2011]. 

In [Schumann and Di Baldassarre, 2010], a novel approach for rapid flood risk mapping is proposed based on the 
use of radar satellite data. An event-specific weighted hazard map was generated based on plausible flood area 
observations from an aggregation of widely applied image-processing techniques. The map is further augmented 
to an event-specific fuzzy flood risk map by fusing the multialgorithm ensemble map with vulnerability-weighted 
land cover vector data. In [See and Abrahart, 2001], an ensemble approach to hydrological forecasting is 
exploited. River level is predicted by fusing outputs from different models, in particular fuzzy neural network, 
statistical model, and hydrological model TOPMODEL. It was shown that accuracy of the ensemble model is 
higher than for separate models. 
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In this paper we propose a novel approach for flood hazard mapping by analyzing a time-series of satellite data. 
In particular, satellite images are processed in order to derive flood extent maps and the latter are used to 
estimate flood probability density. In particular, each pixel of the flood extent maps can be one of the following 
values: 0 - «No water», 1 - «Water», 2 - «NoData». The specific value «NoData» is used to mark pixel that 
contain no valuable information due to the cloud cover and shadows, or specifics of the satellite instrument (for 
example, Landsat-7/ETM+ SLC-off pixels). Therefore, if «NoData» pixels are excluded from considerations, each 
pixel is binary with Bernoulli distribution. Maximum likelihood method is used to derive a parameter of Bernoulli 
distribution, a success probability, from sampling set. This parameter shows probability of inundation, and can be 
viewed as flood probability density function. 

Study area and available data description 

The study area is the Katima Mulilo region in Namibia (Fig. 1). Since 2009, Namibia has experienced a surge of 
flooding in the Northern portion of the country. It was estimated that during 2009, 700,000 of the approximately 2 
million people in Namibia were impacted by the floods of 2009, furthermore around 50,000 people were displaced 
and 102 people lost their lives. During the 2000-2011 periods, each year, except 2005, was characterized by 
floods that usually occurred from the month of February through May. Three floods from this period were in top 10 
water level records historically, and 8 floods were in top 20. 

 

 

 

Figure1. Location of the study area 

 

 

As a follow-up to the assistance provided by the United Nations Platform for Space-based Information for 
Disaster Management and Emergency Response (UN-SPIDER), National Aeronautics and Space Agency 
(NASA), German Space Agency (DLR), Ukraine Space Research Institute (USRI), and other space agencies in 
2009, an international multi-disciplinary initiative, titled Namibia SensorWeb Pilot Project, was established. The 
Pilot aims at developing an operational trans-boundary flood management decision support system for the 
Southern African region to provide useful flood information and water-borne disease forecasting tools for local 
decision makers. 
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One of main tasks within the Pilot is flood risk assessment. In order to provide comprehensive hydrological 
modeling, a high-resolution (approximately 1 m) digital elevation model (DEM) is required since the topography is 
very flat in the study area. At present, such DEM is not available, and a 90 m resolution SRTM DEM is not 
enough to accomplish that task. 

To tackle this problem we exploit different data sets in order to obtain flood hazard map. In particular, we benefit 
from large number of freely available images that were acquired by Landsat-5/7 satellite over 2000-2010 years.  

The following are characteristics of the geospatial data that were used in the study: 

-- 44 images acquired by Landsat-5/TM and Landsat-7/ETM+ from 2000 to 2010 (Fig. 2). 

-- River gauge data: water level and discharge from 1965 to 2010 (provided by Hydrological Services Namibia, 
(Fig. 3). 

-- The Tropical Rainfall Measuring Mission (TRMM) rainfall estimates and global flood potential forecast [Yilmaz 
et al, 2010]. Rainfall estimates are 3-, 24-, 72- and 169-hour rainfall accumulation. Flood potential forecasts are 
provided for 24-, 72- and 128-hour in advance. Real-time global estimation of flood areas using satellite-based 
rainfall and a hydrological model are run globally, every three hours at 0.25° resolution. Real-time product are 
produced within 6 h after observations made by TRMM. 

-- Namibia dwelling unit database. 

 

 

 

 

Figure 2. Distribution of the number of Landsat-5/7 images over 2000-2010 years 
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Figure 3. Hydrograph for 1969, 2009, 2010 and 2005 years along with the mean averaged for 1965 to 2010 

 

Recurrence interval estimation 

Based on river gauge data we estimated recurrence interval. For each year a maximum discharge was 
calculated, and these maximum values were sorted in descending order. The year with the maximum discharge 
was given m=1 magnitude, the year with the second maximum discharge was given m=2 magnitude and so on. 
These values along with total number records, n=46, were used to calculate recurrence interval (Weibull 
equation): 

 

R = (n + 1)/m. (1) 

 

Table 1 shows recurrence interval for the top 10 years with maximum discharge.  

 

A polynomial fit was constructed to predict discharge from recurrence interval. The following 3-order polynomial 
dependence was obtained: 

 

y = 2969.8x3 – 9567.7x2 + 11163x + 1181, (2) 

 

where y is discharge, and x = log10(R). 

 

The obtained coefficient of determination was 0.99. Figure 4 shows the plot along with 95% confidence interval. 
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Table 1. Recurrence interval of floods for the Katima Mulilo region in Namibia 
Magnitude, m Year Discharge, m3/sec R 
1 1969 6817 47.0 
2 2009 6365 23.5 
3 1978 6251 15.7 
4 2010 5704 11.8 
5 1979 5675 9.4 
6 1976 5568 7.8 
7 2007 5564 6.7 
8 1975 5409 5.9 
9 1968 5312 5.2 
10 1966 5276 4.7 

 

Table 2 gives 10-, 50- and 100-year floods values. 

 

Table 2. 10-, 50- and 100-year floods 

n, year Discharge, m3/sec Confidence interval 

10 5746 [5419; 6073] 

50 7093 [6654; 7532] 

100 8993 [8131; 9855] 

 

That is, probability of the flood with discharge exceeding 8993 m3/sec in any given year is equal to 0.01. 

 

Figure 4. Dependency between maximum discharge values from recurrence interval 
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Flood hazard mapping using satellite data 

We used a time-series of 44 Landsat TM and ETM+ images at 30 m spatial resolution to estimate flood 
probability density. Firstly, clouds and shadows were identified on Landsat images using the Automated Cloud-
Cover Assessment (ACCA) Algorithm [Irish et al, 2006]. Also SLC-off pixels on ETM+ images were marked and 
removed from consideration. All these pixels were assigned with the “NoData” value, and were removed from the 
further analysis. At second, water bodies were detected using a density sliding method [Frazier and Page, 2000]. 
Therefore, each pixel in the image was assigned one of the following values: 0 - «No water» class, 1 - «Water» 
class, 2 - «No Data». Figure 5 shows the original and processed Landsat-5 image. 

Two approaches were used to estimate probability density function. They were different in how images were 

integrated within the single year. Let A be the set of all satellite images, i.e. A= {a}, where the image a is 

characterized by the following tuple: 

 

a = {y, doy, (i, j)}, (3) 

 

where a.y and a.doy are the year and day of the year the satellite image was acquired, and a(i,j){0, 1, 2} is the 
value of image pixel with coordinates i and j. 

Within the first approach, for each year we selected an image that was closest to the DOY with maximum 
discharge, and then aggregated these images into a probability of inundation map.  
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Within the second approach, for each year we aggregated all available images into the single image by assigning 
a pixel the “Water” class, if at least on one of the images it was identified as the “Water” class. The same was for 
the “No Water” class. Therefore, the pixel was assigned the “NoData” value only if on all images it had the 
“NoData” value. These yearly images were then into a probability of inundation map: 
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The main difference in these two approaches is the following. The image generated using the former approach 
will show flooded areas on the day of a peak discharge (or the closest day). Since the satellite images were not 
acquired on the day of maximum discharge we, obviously, will miss some flooded areas. Moreover, in the case of 
Katima Mulilo region there is latency between river flow at the gauge and flow coming to Liambezi Lake. In 
contrast, the latter approach allows us to identify all the pixels that were flooded during the flood season. Figure 6 
and Figure 7 show two maps that were generated using both approaches. We can see that main differences 
between images are in the south-west part of the area. First approach does not allow us to capture latency in 
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flood wave that is coming through the region to the Liambezi Lake and to the south, while the second approach 
does. 

 

 

 

Figure 5. Original (top) and processed (bottom) Landsat-5 image acquired in 2010, DOY=81 
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Figure 6. PI for the Katima Mulilo region, Namibia, obtained using Eq. (4)-(5) 

 

 

 

Figure 7. PI for the Katima Mulilo region, Namibia, obtained using Eq. (6)-(7) 
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Flooded area estimation 

Based on the yearly flood extent maps obtained from Eq. (6) we calculated the area of flooded territories. In order 
to predict the expected flooded area we built a regression that predicts the flooded area in dependence of 
discharge (Fig. 8). The figure shows a good correspondence between the flooded area and discharge with 
coefficient of determination of 0.83. The only outlier is the values for the year of 2000. It could be probably 
explained that for this year a single satellite image was only available, and no maximum discharge was recorded 
on the date of image acquisition (there was a 1 day difference). In contrast, in 2003, when a single image was 
also available, the satellite image was acquired on the day when maximum discharge was recorded.  

 

 

Figure 8. Dependence of the area of flooded territories from discharge 

 

Another issue to be addressed is that we used a pixel counting method for area estimation. Since our 
classification algorithm does not provide 100% accuracy, the pixel counting method is usually downward biased 
[Gallego, 2004]. Counting pixels and multiplying by the area of each pixel will result in biased area estimates and 
should be considered raw numbers needing bias correction. One way to tackle this problem is to provide area 
frame sampling (AFS) data and then use a regression estimator to improve estimates [Carfagna and Gallego, 
2005]. Since it is impractical to provide AFS using ground observations, AFS could be done by 
photointerpretation. Flooded waters can be reliably identified by visual inspection.  

Flood risk mapping 

The obtained flood hazard map was integrated with dwelling unit database to provide flood risk mapping. Such 
analysis allows us to identify the dwellings that are more likely to be inundated during the flood season, and 
specify probability of being flooded under different scenarios. Figure 9 shows integration flood hazard map with 
dwellings. 
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Figure 9. Flood risk map. Red squares show dwelling units 

Conclusion, discussion and future works 

In this paper we proposed a novel approach for flood hazard mapping by processing and analyzing a time-series 
of satellite data and derived flood extent maps. This approach is advantageous in cases when the use of 
hydrological models is complicated by the lack of data, in particular high-resolution DEM. Two approaches were 
investigated for generating flood extent maps for each year: by selecting an image with date of acquisition closest 
to the day when the maximum discharge was recorded, and integrating all flood extent maps available for the 
year. Due to the cloud cover and shadows the former method tends to miss areas that were flooded during the 
flood season, while the latter accounts for all areas that were flooded. Each pixel of the yearly flood extent map is 
viewed as Bernoulli distribution value, and maximum likelihood method was applied to estimate a success 
probability from sampling set. This parameter shows probability of inundation, and can be viewed as flood 
probability density function. Also, we believe that the derived flood extent maps will be very valuable in validating 
hydrological models once high-resolution DEM is available. 

The future works should be directed: (1) to account for uncertainties in pixels with the “NoData” value (which can 
be either “Water” or “No water”); (2) to build a model that based on flood extent maps, gauge records and low-
resolution DEM will predict flooded areas; (3) to provide flood risk mapping based on infrastructure facilities (e.g. 
roads, enterprises, etc); (4) to integrate radar satellite images with optical ones to reduce the effect of cloud 
cover. 
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