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Abstract: In this paper we study some problems involved in analysis of Pareto-distributed scientometric data 
(series of citations versus paper ranks). The problems include appropriate choices of i) the distribution type 
(continuous, discrete or finite-size discrete) and ii) statistical methods to obtain unbiased estimates for the power-
law exponent (maximum likelihood procedure or least square regression.). Since relatively low magnitudes of the 
power exponent (less than 2), are observed massively in scientometric databases, finite-size discrete Pareto 
distribution (citations, distributed to finite number of paper ranks) appears to be more adequate for data analysis 
than the traditional ones. This conclusion is illustrated with two examples (for synthetic and actual data, 
respectively). We also derive empirical relationships, in particular, for the maximum and the total number of 
citations dependence on the Hirsch index. The latter generalize results of previous studies. 
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Introduction 

It is hard to deny that, although not always and not everywhere welcome, scientometrics has entered the life of 
scientific community worldwide. The reasons for that are in much extent the tools it provides for assessment of 
quantity and quality of scientific output. Nowadays scientometric indicators are widely used for variety of 
purposes, including decision making in projects approval and evaluation, team building, scientific careers 
promotion, development of university and educational programs, scientific journals ranking, to mention just a few. 
Almost all of these indicators are based on two primary quantities, namely number of publications, considered as 
a measure of productivity and number of citations (appearing in the form of references to these publications), as a 
measure of impact, or popularity among the scientists. The attempts to find out a single score of scientific activity 
have brought to the world a variety of (secondary) scientometric indicators, the Hirsch index [Hirsch, 2005] being 
probably one of the most popular among them. Based on a simple model, this index suggests some compromise 
between productivity and impact.  

Due to their common origin, scientometric indicators are mutually related via theoretically derived or empirically 
obtained relationships. Studying these relationships is important not only for understanding which indicators 
indicate what and how (i.e. from pure academic point of view), but also for appropriate choice of indicators in 
various applications. The relations between the indicators essentially depend on the (form of the) ranked 
citations-papers distribution. The empirical dependence of the total number of citations on the Hirsch index 
appearing in [Hirsch, 2005] has been supported by the linear negative-slope distribution resulting from the model, 
while other theoretical studies [e.g. Glänzel, 2006; Egghe and Rousseau, 2006] are concentrated on Pareto-
distributed scientometric quantities. 
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In this paper we study several problems associated with the analysis of Pareto-distributed data (citations to paper 
ranks), suggest solutions to these problems and obtain relationships among indicators that are easy to obtain, or 
provided by the scientometric databases: total number of citations, number of publications, number of citations of 
the most cited paper, Hirsch’s h-index etc. The problem of fitting power-law data has been addressed, too. This 
problem is of crucial importance, in particular with the recent development in that field ([Goldstein et al, 2004], 
[Clauset et al, 2009]). 

The paper is organized as follows: in the first section we discuss the essential properties of Hirsch’s index and the 
associated model; the second section critically reviews the application of Pareto distributions in scientometrics 
and the problems that arise in fitting to power-law data. In the next two sections we use the discrete finite-size 
Pareto distribution for scientometric data analysis and obtain some useful relationships, including the dependence 
of the total number of citations on the Hirsch’s index. 

Hirsch’s model considerations 

We recall the well known h-index definition: ‘A scientist has index h if h of his or her N papers have at least  h 
citations each and the other N-h papers have no more than h citations each’, and continue with a brief description 

of the model [Hirsch, 2005] used as its basis. Under the assumption that an individual publishes ppyN  papers per 

year and each published paper is cited cpppyN  times every (subsequent) year, the total number of citations cN  

earned after yN  ( 1yN  ) years is: 

 2 21
1 1

2
( )c ppy cpppy ppy cpppyN N N N N h  , (1) 

where the h-index depends linearly on yN : 

 11 1( )ppy cpppy yh N N N  . (2) 

It is worth noting that the scientometric indicators involved in Eqs. (1) and (2) are provided by most bibliometric 
databases, e.g. Web of Knowledge (Thomson Reuters), Scopus (Elsevier), Google Scholar etc. 

For a time interval of yN  years this simple model yields a linear negative-slope distribution ( )C P of citation 

number C  to paper rank P , papers being arranged in descending order of number of citations, i.e. the most 

cited placed first. It follows from Eq. (1) that cN  depends quadratically on h : 

2cN Ah . (3) 

It is easy to see that 2A  ; it reaches its minimum for a straight line of slope -1 (Fig. 1). Moreover, for quite 

general negative slope concave type of ( )C P  distribution (Fig. 2) it can be shown that  

0

1
1 1 2

2
    ( ' ')A A C C ,  (4) 

where ' ( )P hC dC dP   is the slope of the distribution at P h . Values of 0A A  indicate negative slope 

convex type of distributions. It should be noted that Hirsch has empirically found 3 5A    as a typical value. 

Further on it is worth mentioning another (although rather artificial) distribution ( )C P  – the uniform distribution 

(Fig. 3 a,b) that could be considered as a limiting case of convex negative-slope type distribution. It clearly 
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Fig. 1. Illustration of linear negative-slope distributions: 
(1) slope 1  , 2A  ; (2) slope 1  , 2A   
(excess of citations); (3) slope 1  , 2A   (excess 
of papers). 

Fig. 2. Examples of negative slope concave (1) and 

convex (2) type of ( )C P  distributions 

 

demonstrates the limitations to h, i.e. h cannot exceed the maximum number of citations maxC  and the maximum 

number of papers maxP :  

 max maxmin( , )h C P ,  (5) 

and the total number of citations is: 

 .   (6) 

 

 

Fig. 3 a. Uniform ( )C P  distribution example: 

excess of citations, h-index limited by maximum 
number of papers P h  

 Fig. 3 b. Uniform ( )C P  distribution example: excess 

of papers, h-index limited by maximum number of 
citations C h  

 

max maxmax( , )cN C P h
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Pareto distributions in scientometrics 

The distributions of number of citations to papers’ rank ( )C P considered in the previous section concern rather 

sparse examples of data sets; the bulk of scientometric data is mainly characterized by negative slope concave 
type probability densities. One of the simplest types of such distributions has been used by Alfredo Pareto (1848-
1923) for solving problems in economics, as allocation of wealth etc. Pareto distribution is a special case of 
power-law distribution with negative exponent, defined as strictly zero below some (positive) number that we shall 
assume to be 1: 

11 1 1( ) ( ) , ( ) ,PDF X X CPF X X X         (7) 

Three examples for (continuous) Pareto distribution as well as one for its discrete version (called also Zeta 
distribution, defined for positive integers): 

 1 1 1 2 3( ) ( ( )) , , , , ,...Probability I I I       (8) 

are demonstrated on Fig. 4 a,b. In Eq. 8 ( )   is the Riemann zeta-function, tabulated in [Walther, 1926], [Janke 

et al, 1960] etc. 

 

 

 

Fig. 4a. Pareto distribution examples: probability 

density 1( ) ( )PDF X x     and cumulative 

probability function 1( )CPF x x    for   2, 3 

and 4. 

 Fig. 4b. Discrete Pareto (Zeta) distribution example: 

1 1 5( ) ( ( )) , .Probability I I      

 

Both (continuous and discrete) Pareto distributions should be handled with care bearing in mind that all moments 
of order k and above simply do not exist for 1k   . For instance, a (rather popular, see [Goldstein et al, 

2004] and [Clauset et al, 2009]) Pareto distribution with 2 5.   has infinite dispersion and does not meet the 

requirements of the Central Limit Theorem. Probability densities with 1 2   have no mean, and those with 

1   are no distributions at all. 

There are some questions and problems that appear in connection with Pareto distribution applications in 
scientometrics and we address them further on. The first one is: are citation numbers really Pareto-distributed to 
paper ranks? An acceptable answer to this important question could be found in [Clauset et al, 2009]: it states 
that power law is a plausible choice, just as log-normal and stretched exponential (see, e.g. [Hirsch, 2005]) are; 
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all other statistical hypotheses could be rejected. Testing of power-law hypothesis is a tough problem that 
remains beyond the scope of this study and further on we assume that data is apriori Pareto distributed. 

Another point of Pareto distributed data analysis, namely data fit and derivation of unbiased power-law exponent 
estimate seems to be a ‘hot potato’, too (see [Goldstein et al, 2004], [Clauset et al, 2009]). The analyses of 
synthetic data described in above mentioned papers reveal that the straightforward log-log ordinary least square 
regression (OLSR, see e.g. [Weisberg, 2005]) gives essentially distorted estimates for the power-law exponent; 
the authors recommend the use of maximum likelihood estimate (MLE) instead. For continuous Pareto-distributed 
data the latter looks like: 

1

1

1
1 ( ln )

n

est i
i

x
n

 



   , (9) 

while for discrete Pareto-distributed data one has to solve a transcendental equation: 

 
1

1'( ) ( ) ( ) ln
n

est est i
i

n x   


   .  (10) 

In Eqs. (9) and (10) '( )   is the first derivative of the Riemann zeta-function ( )  , (see Fig. 5), est  is the 

MLE for the power-low exponent and 1 2{ ; , ,..., }ix i n  represents a sample containing n independent data. 

Again we refer to [Clauset et al, 2009] for estimates of the MLE standard error. 

 

Fig. 5. Riemann zeta-function ( )   and its logarithmic derivative '( ) ( )    . 

 

The last but not least important item of our list of questions and problems is the (estimated) value of the power-
law exponent  itself. Theoretical studies on Pareto-distributed scientometric data (e.g. [Glänzel, 2006]) consider 

samples with essentially infinite number of papers N and finite mean (i.e. first moment, 1k  ). As we have 
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already mentioned, this imposes a restriction 2   for most results obtained there. The point is, whether citation 

data resulting from such distributions exist in any extent of importance. One could argue that data sets with 90 
percent of citations concentrated in the first four papers (as it follows from a distribution with 2  ) are 

extremely rare to find in bibliometric databases. Usually 2  , and values close to (and even less than) 1 could 

be found, too. For example, Schreiber’s dataset [Schreiber, 2007] used for analysis of self-citations effect on the 

h-index is characterized by 1 35.   (MLE) and 0 70.   (log-log OLSR estimate with 2 0 98.R  ). Hence it 

is necessary to find out a scheme that can be used to analyze scientometric data in the ’twilight zone’1 2  , 

evading the pole of ( )   at 1   and moments that diverge even for the lowest orders. 

Finite size discrete Pareto distributions 

Introducing some kind of upper limit (cut-off) for all summations or integrations is usually considered as universal 
remedy (‘painkiller’) for the problems similar to those we discussed in the previous section. It is not a secret for 
anyone trying to compute directly the zeta function that millions of terms must be summed up to achieve 
somewhat acceptable accuracy. This, however, does not correspond to the simple fact that individual scientist’s 
production normally does not exceed several hundred papers. Therefore, it does not make much sense in 
merging slowly converging tails to the actual probability density by approximating it with discrete infinite-sized 
Pareto distribution. The latter could be replaced by a finite size distribution: 

1 1 2( , ) ( / ( , )) , , ,...,Probability I N S N I I N   , (11) 

where N  is the number of papers cited at least once (or its estimate) and the incomplete zeta function (Fig. 6) is: 

1

( , )
N

I

S N I  



   (12) 

Since ( , )S N  depends slowly (within an interval from several tens to several hundreds) on N , we can perform 

the standard maximum likelihood optimization to obtain the MLE for  : 

 
1

1'( , ) ( , ) ( ) ln
n

est est i
i

S N S N n x 


   ,  (13) 

where '( , ) ( , ) /S N S N     (Fig. 7.). Figs 6 and 7 give a notion for why and where the standard discrete 

Pareto analysis fails to give acceptable (unbiased) estimates for the power exponent . 

In order to illustrate how this scheme works we have chosen two examples: a synthetic data one (Fig. 8) and one 
with actual data (Fig. 9). Synthetic data have been computed by using  

 1 2 max( ) nint( ), , ,...,c cI I I I I N ,  (14) 

where the maximum number of citations, i.e. the number of citations gained by the first rank paper is estimated 

for given total number of citations cN  and power-law exponent   as 

 1  max ( ) ( , )c c cI I N S N .  (15) 

Thus rounding error was the only one introduced by the computation. The actual data have been adopted from 
Thomson Reuters Web of Knowledge database. Four kinds of analysis have been performed in both cases, as 
follows: 1. C+U MLE denotes maximum likelihood estimate for continuous, infinite-size (i.e. unlimited) argument 
Pareto distribution, by using Eqs. (7) and (9); 2. D+U MLE denotes MLE for discrete infinite-size (unlimited) 
argument discrete Pareto distribution, obtained via Eqs. (8) and (10); 3. D+L MLE corresponds to MLE for 
discrete finite size (limited argument) Pareto distribution according to Eqs. (11)-(13) and 4. log-log OLSR stays for  
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Fig. 6. The function ( , )S N  versus   for various N . Note that it closely approaches ( )   for 2  . 

 

Fig. 7. The function '( , ) / ( , )S N S N  . Note that it closely follows '( ) ( )     for 2 5.  . 
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log-log ordinary linear regression. The results of these analyses are summarized in Tables 1 and 2 for the 
synthetic and actual data, respectively. 

Table 1. Estimates of  and maxcI for synthetic data maxnint( )c cI I I  , 1 5.  , 213maxcI  , 56N   (Fig. 8) 

 C+U MLE D+U MLE D+L MLE log-log OLSR 

est  1.98 1.67 1.48 1.37 

maxcI  495 233 210 158 

n  506 506 506 2 0 97( . )R   
 

Table 2. Estimates of  and maxcI for real data ( )CI I  with 62maxcI  , 16N  , 234cN  , 8h   (Fig. 9.) 

 C+U MLE D+U MLE D+L MLE log-log OLSR 

est  1.94 1.65 1.09 1.37 

maxcI  220 108 76 112 

n  234 234 234 2 0 85( . )R   
 

 

Fig. 8. Synthetic data example: number of citations cI  versus paper rank I . 
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Fig. 9. Real world data example: number of citations Ic versus paper rank I. 

 

Both examples demonstrate the complete failure of the continuous infinite-sized Pareto distribution analysis (Eqs. 

(7) and (9)) to provide an acceptable unbiased estimate for  and maxcI  (for the synthetic data example) and 

maxcI  (for the actual data). The MLE, resulting from an infinite-size discrete Pareto distribution -Eqs. (8) and (10), 

is usually considered to be the best one and this might be true for 2  . In our synthetic data example, 

however, it tends to overestimate the prescribed power-law exponent ( 1 5.  ), while the log-log ordinary least 

square regression underestimates it. The latter phenomenon has been reported earlier in the simulation 
experiments of [Goldstein et al, 2004] and [Clauset et al, 2009]. We point out that, without any doubt, the discrete 
finite size MLE (Eqs. (11)-(13)) performs best for both synthetic and real life data. 

Empirical relationships for Pareto-distributed scientometric data 

Let us now consider some relationships between scientometric parameters following from the assumption for 

citations that are (discrete) Pareto distributed to paper ranks. From the definition of h-index ( )cI h h  we obtain 

 1
maxcI h  .  (16) 
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This relation holds for all types of Pareto distributions – continuous, discrete, infinite or finite-sized; it also 

matches quite well the actual scientometric data (Fig. 9). Note that in the Hirsch’s model maxcI  depends linearly 

on h: 

 1max ( )c cpppy ppyI N N h  .  (17) 

 By replacing maxcI  in (15) we arrive at  

 1( , )cN S N h   . . (18) 

Eq. (18) relates the total number of citations cN  the (1  )-th power of the h-index via the (slowly depending on 

the power law exponent  and on the number of publications cited at least once, N ) function ( , )S N . It 

represents a generalization of Hirsch’s relationship (3) for Pareto-distributed scientometric data. Moreover, one 

can see on Fig. 10 that for reasonable choice of N  (50-350) and   (1.05-1.50) the coefficient ( , )S N in (17) 

varies between 2.5 and 5.5, i.e. close to the Hirsch’s empirical result 3 5A    [Hirsch, 2005]. 

 

 

Fig. 10. ( , )S N  versus number of publications N  for various  .The area in grey roughly pictures the range of 

Hirsch’s empirical evaluation of A . 
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In the limit N   we have ( , ) ( )S N   . A brief inspection of Fig. 5 allows us to conclude that ( )   

might be considered as slowly varying for 2  . This however, implies dependence stronger than 3
cN h . In 

addition, the continuous version of Eq. (17): 

 1 11( )cN h     ,  (19) 

has severe problems for  close to unity and is obviously not applicable to analyze scientometric data. 

The Pareto assumption allows us to obtain another relation that might be useful when the sample under 

consideration contains publications, all of them with nonzero number of citations, i.e. 0( )cI I   for I=1,2,…,N. 

This means that the actual number of papers cited at least once is aN N . In order to estimate the actual upper 

limit of the discrete finite-size Pareto distribution one could take into account the fact that by definition the number 

of citations cI  is always a positive integer. Bearing in mind the nint (nearest integer) convention as well as Eqs. 

(14) and (16) we obtain  

 1 1 12 2/ / ( )/
max( )a cN I h     ,  (20) 

as a crude estimate for the actual number of publications with at least one citation. One could compare it with the 
maximum number of publications that follows from the Hirsch’s model: 

 1max ( )ppy cpppyN N N h   , (21) 

and linearly depends on the h-index. 

Summary and conclusions 

In this paper we have studied some problems appearing in the analysis of Pareto-distributed scientometric data in 
the form of series of citations versus paper ranks. These problems include appropriate choice of the distribution 
type (continuous, discrete or finite-size discrete) and of statistical methods to obtain unbiased estimates for the 
power-law exponent (maximum likelihood procedure or least square regression). Further on, we have 
theoretically derived relationships, in particular, the total number of citations dependence on the Hirsch index, that 
generalize results of previous studies and may be proved empirically. 

Our conclusions are summarized as follows: 

 Pareto-distribution analysis of citations versus paper rank data requires use of probability densities with 
power-law exponent of magnitude 2 or less. Therefore it is necessary to use finite-sized (i.e. defined for 
a finite number of papers) discrete Pareto distribution; 

 The maximum likelihood estimate of the power-law exponent for the finite-size discrete Pareto 
distribution seems to provide best fit to the data, while those resulting from the maximum likelihood 
procedure for infinite series discrete distribution and from the log-log ordinary least square regression 
give overestimated and underestimated values. The continuous Pareto analysis proves to be 
inappropriate for this kind of data; 

 The maximum number of citations gained by a paper (this is the paper of rank 1) is a power function of 
Hirsch’s index; the same holds for the total number of citations, however, with constant of proportionality 
weakly depending on power exponent and number of papers; 

 Papers of zero citation count are irrelevant for Pareto distribution analysis of scientometric data. The 
number of papers with at least one citation is power function of the Hirsch’s index, too. 
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