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SUB-OPTIMAL NONPARAMETRIC HYPOTHESES DISCRIMINATING WITH
GUARANTEED DECISION

Fedor Tsitovich, Ivan Tsitovich

Abstract: We study the problem of testing composite hypotheses versus composite alternatives when there is
a slight deviation between the model and the real distribution. The used approach, which we called sub-optimal
testing, implies an extension of the initial model and a modification of a sequential statistically significant test for the
new model. The sub-optimal test is proposed and a non-asymptotic border for the loss function is obtained. Also we
investigate correlation between the sub-optimal test and the sequential probability ratio test for the initial model.
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Introduction

The sequential probability ratio test (SPRT) was developed by Abraham Wald [10] under the influence of Neyman
and Pearson’s 1933 result. Further the test was modified for composite hypotheses testing using Bayesian approach.
But on practise this approach could not provide required probability of an error decision. This imperfection was
rectified by using tests those guaranteed a required significance level for all distributions from the alternative
hypotheses. Such tests were considered, for example, in [1], [3], and [2]. An asymptotically optimal sequential
test for nonparametric composite hypotheses having controlled observations and assuming an indifference zone
was obtained in [4].
In this paper we provide another modification of the SPRT which rectify the following. The SPRT relies on the
assumption that the real distribution f exactly matches with one of the distributions gi those determine the simple
hypotheses Hs

i . But this condition is not often met on practise. Due to avoid this problem we suppose to use
neighborhoods of the initial distribution those constrain new composite hypotheses. The way how to extend the
initial model (type of the neighborhoods of the distributions from the initial hypotheses) is a complex problem which
should be solve based on an experiment nature. In this paper we provides the test for neighborhoods those can be
applied in situation when sample data contain outliers.
In some case distribution tails also should be considered. In [6]–[8] there are results obtained for exponential and
heavy-tailed distributions.
The next reason why the composite hypotheses should be considered is disturbance of independency. Often
observations are considered independent due to simplification of the real situation, i.e it is just an approximation.
The optimal strategy from [4] requires an estimation of the dependance parameters. If the dependance is weak
(we call this case as Problem 1) this becomes very difficult task on practise, so that strategy can not be used as
is. A consideration of the new composite hypotheses can help avoiding incorrect decisions made because of a
dependency of observations.
If a dependence is more significant (Problem 2) the sequential test should include a stage of a consistent estimation
of the dependency parameters. Based on the result of this stage the observations may be transformed in such
way that the new observations are considered as independent. But by a discrepancy in the estimation the new
observations are not actually independent, instead they should be considered as weakly dependent, so this situation
can be reduced to the described above. More details could be find in [9].
The obtain test for the composite hypotheses is a robust against mentioned above deviations between the model
and the real situation. Out approach is applicable if the composite hypothesis are “small” in some sense, so the
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asymptotically optimal test from [4] can not be used as is, because it will extremely increase a sample size for
making a consistent estimate of the real distribution. Also, there is no need to estimate the distribution from the
extended composite hypotheses. We just need to find what the closest to real distribution from the initial model
is and accept that hypothesis. So the main objective of the sub-optimal approach is to provide the robust test of
choosing the proper hypothesis form the initial model. Also, the obtained sup-optimal procedure converges to the
asymptotically optimal sequential test when the neighborhood size converges to 0.

Setting of the problem

Let (Ω,F ,P) be a probability space and x1, x2, . . . be identical distributed random variables with values in a
subset X ⊂ R. Let f(x) be their common density with respect to some nondegenerate measure µ. The data
x1, x2, . . . generate the statistical filter

{
Fn

}
, Fn = σ(x1, . . . , xn). Let gi(x) be densities with respect to µ,

those denote simple hypotheses

Hs
i : f = gi(x), i = 1, . . . ,m. (1)

If x1, x2, . . . are independent and a sample can contain outliers then we are going to modify the initial simple
hypotheses into composite in the following way. Let us define the neighborhoods

Ogi :=
{
g : g = gi(x)(1 + h(x))

}
, (2)

where functions h(x) are satisfy the following conditions:

1) sup
x∈X

|h(x)| ≤ ε < 1, (3)

2)

∫
X

g(x) dµ(x) = 1. (4)

The first condition indicates that the neighborhoods are small in some sense. The second condition just means that
each function from Ogi is a density. Let Pi be a set of measures with densities from Ogi . Those neighborhoods
are used as the new extended composite hypotheses:

Hi : P ∈ Pi (5)

It is shown in [5] the way of neighborhoods using when the sample may contains outliers.
If x1, x2, . . . are dependent let fn+1(x|x1, . . . , xn) be the conditional distribution of xn+1 given Fn. Let Pi be
the set of measures on (x1, x2, . . .), that satisfy the following conditions:

∀ P ∈ Pi, EPfn+1(x|x1, . . . , xn) = gi(x), |fn+1(xn+1|x1, . . . , xn)− gi(xn+1)| ≤ ε P a.s.

Defined above hypotheses can be applied in cases of:

1. Weak dependance.

2. Strong mixing condition for densities.

It was shown in [9] that described above model for dependant sample can be reduced to the model (1) with
neighborhoods (2).
A determination of the neighborhood type is a complex problem. It should be defined according to the experiment
characters. One of them is neighborhoods those can be applied in a situation when sample data contain outliers.
The next reason, why we consider those neighborhoods, is caused by the fact that often statisticians use limiting
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theorems for setting hypotheses testing problems. In this case, the model distribution is just an approximation of the
real distribution and the approximation accuracy is estimated according to the rate of convergence known for the
used limiting theorem for setting of the problem.
The condition (3) is natural only for a compact set X . If, for example, X = R then it is necessary take into account
distribution’s tails and the condition (3) may be too strong from practical point of view. Instead of (3) we impose the
condition that densities on distribution tails are bounded from above by the known functions t−i (x) and t+i (x), i.e.
densities g̃i(x) from modified Ogi should satisfy the following conditions:

|g̃i(x)− gi(x)| ≤ ε gi(x), a
−
i ≤ x ≤ a+i ; (6)

g̃i(x) ≤ t−i (a
−
i − x), x < a−i ; (7)

g̃i(x) ≤ t+i (x− a+i ), x > a+i ; (8)

and the condition (4) is substituted by

Gi :=

a+i∫
a−i

gi(x)dµ(x) < 1, (9)

inf
x∈Ai

gi(x) ≥ g0i > 0, (10)

where Ai := [a−i ; a
+
i ] is the segment where the main part of probability is concentrated.

A sequential test d consists of a stopping time τ and a Fτ -measurable decision rule δ, δ = r means that Hr,
r = 0, . . . ,m, is accepted.
Definition 1. We call a strategy d admissible if it satisfies the following conditions:

∀ i ̸= j, sup
P∈Pj

P(δ = i) ≤ α, 0 < α < 1. (11)

The conditions (11) means that the test is α level significant for each distribution from P := ∪m
i=1Pi. The class of

such strategies is denoted by D(α).
As a loss function we use a sample size, this brings to the following definition of a risk function.
Definition 2. The risk function of d = ⟨τ, δ⟩ is RHi(d) := sup

P∈Pi

EPτ.

We take this risk function because we do not estimate the probability low P and the strategy d needs to be good for
any low from Pi if the hypothesis Hi is true.
In this paper we will analyze how extension on the initial model impacts the risk function. Define the main term of
the risk function as

JHi(d) = lim
α→0

RHi(d)

| lnα|
.

Definition 3. A strategy d∗ ∈ D(α) is called sub-optimal for the hypotheses (5) discriminating if

lim
ε→0

JHi(d
∗) = lim

ε→0
inf

d∈D(α)
JHi(d).

Sub-optimal strategy d0 description

For a simplicity of notations, we suppose that m = 2, i.e. we test H1 versus alternative H2. For P ∈ P Define
A(P) as the alternative hypotheses, i.e. A(P) := P2 if P ∈ P1 and A(P) := P1 if P ∈ P2. Let I(f, g) be the
Kullback–Leibler information number, i.e.

I(f, g) := Efzf,g(x) :=

∫
X
zf,g(x)f(x)dµ
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where zf,g(x) := ln f(x)
g(x) , x ∈ X.

Let us define statistics Li(n) that will be the base for out stopping rule:

lgi(g;n) :=

n∑
k=1

zgi,g(xk), Li(n) := inf
g∈A(gi)

lgi(g;n). (12)

Then the stopping time τ0 is

τ0 := min{n : max
i=1,2

Li(n) ≥ − lnα}

and the decision rule δ0 is defined by the following δ0 = i if Li(τ) ≥ − lnα. This definition is correct because
if L1(n) > 0 then L2(n) < 0 and conversely.
If X is compact then

L1(n) =

n∑
i=1

ln
g1(xi)

g2(xi)
− n ln(1 + ε) = lg1(g2;n)− n ln(1 + ε)

and L2(n) = −lg1(g2;n)− n ln(1 + ε).

We can see that the statistics Li are similar to the statistics used in stopping rule of the SPRT of simple hypotheses
Hs

i , but for each observation a new term in Li(n) is less on ln(1 + ε) than the corresponding term of the Wald’s
statistic because of uncertainness in the probability low definition.
For the unbounded X and defined by (6)–(9) composite hypotheses we get more complicated formulas for the
statistics Li(n):

L1(n) =

n∑
i=1

ln
g∗1(xi)

g̃∗2(xi)
, L2(n) =

n∑
i=1

ln
g∗2(xi)

g̃∗1(xi)

where

g̃∗i (x) =


t−i (x− a−i ), if x < a−i ;

gi(x)(1 + ε), if a−i ≤ x ≤ a+i ;

t+i (x− a+i ), if x > a+i

g∗i (x) =


t∗−i (x− a−i ), if x < a−i ;

gi(x)(1 + ci), if a−i ≤ x ≤ a+i ;

t∗+i (x− a+i ), if x > a+i .

(13)

Here functions t∗−i and t∗+i satisfy to (7) – (8), ci is obtained from the equation

+∞∫
−∞

g∗i (x)dµ(x) = 1

should satisfy to the condition |ci| ≤ ε.

Results

The lower bound for an admissible strategy is obtained in the following

Theorem 1. If d ∈ D(α) then

RH1(d) ≥
(1− 2α)(| lnα|+ ln(1− α))

inf
pi(x)∈Gi

inf
p(x)∈A(gi)

I (pi, p)
.
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The test d0 defined above is admissible according to the following result.

Theorem 2. d0 ∈ D(α) .
For the test d0 we derived the non-asymptotic upper bound for the risk function.

Theorem 3. Assume the conditions (3) and (4), define

I−(g1, g2) := (1−ε)Eg1(zg1,g2(x))
+−(1+ε)Eg1(zg1,g2(x))

−.

If Eg1 | ln
g1(x)
g2(x)

| 1+b ≤ C1 < ∞ for b such that 1 > b > 0, then the risk function of the test d0 is bounded from
above as followed

1. • if 0 < b < 1
2 then RH1(d0) ≤

| lnα|+K1| lnα|1−b +K2| lnα|1−2b +K3

I−(g1, g2)− ln(1 + ε)
,

• if b = 1
2 then RH1(d0) ≤

| lnα|+K1| lnα|
1
2 +K ′

2| ln | lnα||+K ′
3

I−(g1, g2)− ln(1 + ε)
,

• if 1
2 < b < 1 then RH1(d0) ≤

| lnα|+K1| lnα|1−b +K3

I−(g1, g2)− ln(1 + ε)
.

2. If Eg1

∣∣∣ln g1(x)
g2(x)

∣∣∣2 ≤ C1 < ∞ then RH1(d0) ≤
| lnα|+K4

I−(g1, g2)− ln(1 + ε)
where the constant K4 does

not depend on α and g1-distribution from P1.

3. If infx∈X gi(x) =: G−
1 > 0, supx∈X gi(x) =: G+

i < ∞ then RH1(d0) ≤
| lnα|+K4

I−(g1, g2)− ln(1 + ε)

and K4 =
G+

1

G−
2

.

In this formulas

K1 :=
(1 + ε)

b(1−b)(I−(g1, g2)− ln(1+ε))
, K2 :=

(1 + ε)(1− b)C2

b(1−2b)(I−(g1, g2)− ln(1+ε))
,

K ′
2 :=

(1 + ε)C2

I−(g1, g2)− ln(1 + ε)
,

K3 :=
(1 + ε)

I−(g1, g2)− ln(1 + ε)

[(
u0 +

1

bub0

)
(u0 + C2u

1−b
0 )− u1−b

0

b(1− b)2
− C2u

1−2b
0

b(1− 2b)

]
,

K ′
3 :=

(1 + ε)

I−(g1, g2)− ln(1 + ε)

[(
u0 +

2
√
u0

)
(u0 + C2

√
u0)− 8

√
u0 −

C2 lnu0
2

]
,

u0 := C
1

1+b

1 , a1 = Efνu0 , C2 :=
(1 + ε) a1
b(1− b)u0

.

Theorem 4. On propositions of the theorem 3 the strategy d0 is sub-optimal, i.e.

lim
ε→0

JHi(d0) =
1

I(gi, gj)
= lim

ε→0
inf

d∈D(α)
JHi(d),



International Journal "Information Models and Analyses" Vol.2 / 2013, Number 1 67

and

JHi(d0) ≤
1

I(gi, gj)
+

1 + I(gi, gj)

I(gi, gj)
2 ε+ o(ε).

Define for p1 ∈ G1 and p2 ∈ G2

I1(p1) :=

∫ +∞

−∞
ln

(
g∗1(x)

g̃∗2(x)

)
p1(x)dµ(x), I1(p2) :=

∫ +∞

−∞
ln

(
g∗2(x)

g̃∗1(x)

)
p2(x)dµ(x).

Theorem 5. If desctrubitions from P satisfy to (6)–(8) and Ep1 | ln
g∗1(xi)
g̃∗2(xi)

|1+b ≤ C1 < ∞ uniformly for all

p1 ∈ G1, then

RH1(d0) ≤
| lnα|+K1| lnα|1−b +K2| lnα|1−2b +K3

I1(p1)
,

where the constants K1, K2, and K3 do not depend on α and distribution p1 ∈ P1.
If Ep1 | ln

g∗1(xi)
g̃∗2(xi)

|2 ≤ C1 < ∞ uniformly for all p1 ∈ G1, then

RH1(d0) ≤
| lnα|+K4

I1(p1)
(14)

where the constant K4 does not depend on α and distribution p1 ∈ P1.
If supx∈X ln

g∗1(xi)
g̃∗2(xi)

≤ K5 where the constant K5 does not depend on α and distribution p1, then

RH1(d0) ≤
| lnα|+K5

I1(p1)
. (15)

In contrast with Theorem 3, the upper bounds obtained in Theorem 5 may be not close to the lower bound in
Theorem 1 even if ε and 1−Gi are very small.

Some numerical results

In this section we present some simulation results for the suboptimal tests described above. Here we consider the
case when X is a compact. Let X be the segment [0; 1]. Let densities g1 and g2 be such that

g1(x) = 1, if x ∈ [0; 1], g2(x) =

{
0, 2, if x ∈ [0; 0, 5] ;
1, 8, if x ∈ (0, 5; 1] .

The neighborhoods of the hypotheses gi(x) are

G1 =
{
g̃1(x) | ∀ x ∈ [0; 1], |g̃1(x)− 1| ≤ ε

}
,

G2 =
{
g̃2(x) | ∀ x ∈ [0; 0, 5] , |g̃2(x)− a| ≤ ε,∀ x ∈ [0, 5; 1] , |g̃2(x)− (2− a)| ≤ ε

}
.

Let z1, z2, . . . be a sequence of uniformly distributed random numbers on [0, 1]. A sample x1, x2, . . . is calculated
based on z1, z2, . . . according to the formula

xi :=

{
zi(1 + ε), if zi ∈ [0; 0,5],
1− (1− zi)(1− ε), if zi ∈ (0,5; 1].

The distribution function of xi satisfies to the condition (3).
Define the following notations: RSPRT is the expected sample size of SPRT; R is the expected sample size of the
suboptimal test; PSPRT is the error probability of SPRT; P is the error probability of the suboptimal test.
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Table. Numerical results based on 10000 simulations

α ε RSPRT R PSPRT P

0.01 0.05 13.11 16.73 0.0056 0.0034
0.001 0.05 18.12 20.14 0.001 0.0001
0.01 0.1 14.4 18.38 0.01 0.0029
0.001 0.1 20.16 25.93 0.0016 0.0001
0.01 0.15 15.86 26.51 0.0178 0.0023
0.001 0.15 22.52 36.74 0.0032 0.0001

The simulation results mentioned in the table above shows that probability errors made by the SPRT test can
increase the significance level α in the case of the uncertainty (2) (driven by ε). That can not be explain by statistical
error because PSPRT does not get into the confidence interval of level 0.995. Let us note that the error fraction
increases if α decreases, i.e. if ε = 0.15 and α = 0.01 then PSPRT is 1.7 times greater than the significance
level α. If ε = 0.15 and α = 0.001 then PSPRT is 3.2 times greater than the significance level α. On the contrary,
the suboptimal test provides the required error probability, because the additional term ln(1 + ε) compensates the
uncertainty in the model.

Conclusion

If there is deviation in the hypotheses discrimination problem then the initial model should be extended due to reflect
the known a priori information about possible deviation. This approach leads us to considering nonparametric sets
of probability distributions those are neighborhood of the initial distributions. A statistically significant test for the
obtained composite hypotheses becomes robust for the initial problem.
In the case of a compact codomain of observations X it is possible to use as the neighborhoods all densities those
relative error against the known densities are uniformly bounded from above (see (3)). In the case of an unbounded
X it is necessary to consider the distributions tails decrease rate because it may significant impact the decision
rule.
The special approach called sup-optimal was introduced. It allow get a robust stoppling rule with a risk function
close to the risk function of the optimal tests.
An influence of dependence sample elements is essential and impact the error probability. If the test is applicable
only for independent observations, but indeed a sample is dependant, then error probability can be greater then the
promised value α. Developing a statistic of a robust test we should consider a priory information on dependence.
In case of the Problem 2 ε becomes a random value and if we are going to make a robust test with level of
significance α we can get ε0 such that P(ε < ε0) < α/2 and construct d0 ∈ D(α/2) assuming ε = ε0. A
sample size required for robust desction d0 increases when ε decreases, but number of observations required for
estimation of the dependence parameters decrease when ε decrease, therefore there is a problem of finding the
optimal value of parameter ε0 in the case of Problem 2.
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