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Introduction 

Mathematical models of problems of constructing linear and non-linear classifiers and methods of constructing, 
based on these models, have been considered in many papers (see, e.g. [1-3]). In the present time the method of 
support vectors machine (SVM) is the most widely used. 

For such problems it is convenient to represent mathematical models in the form of convex optimization 
problems. In [7] the technique using effective methods of non-smooth optimization for solving these problems was 
considered. The results of computational experiments were given for special large-scale test problems with 
linearly separable sets. A comparison was carried out with well-known program implementation LIBSVM of the 
method of support vector machine. 

In this paper the models and approaches proposed in [4, 5] are further developed. We formulate an improved 
model of the empirical risk minimization problem and its continuous relaxation. The possibilities and complexity of 
the development of approximation algorithms to minimize the empirical risk are discussed. The continuous 
relaxation of the formulated problem is compared with the mathematical model used in the support vectors 
method. The results of numerical experiments comparing different models for problems with linearly inseparable 
sets are presented. 

1. A brief description of problems of constructing classifiers 

Let there be given a linear function 0( , ) ,f x W w x w  , where nx R  is a vector of features, 

1
0( , ) nW w w R    is a vector of parameters. Function ( , )a x W  of the following form is called linear 

classifier: 

1, if ( , ) 0,
( , )

2,  if  ( , ) 0.

f x W
a x W

f x W


  

 (2) 

Classifier ( , )a x W  refers each point nx R  to one of the two classes of  1, 2 . 
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Consider a set of finite non-overlapping sets (training sample) that consists of points of nR : 

 :ti ix t T   , 1,2i  , 1 2T T T  . 

The problem of constructing (training) classifier ( , )a x W  is to determine the values of the parameters W  

based on the training sample , 1, 2i i  . 

It is said that the classifier ( , )a x W correctly separates the points of , 1, 2i i  , if ( , )a x W i  for all 

, 1, 2ix i  . Classifier gap at a point tx is the following value 

1

2

( , ), if ,
( )

( , ), if .

t
t

t

f x W t T
g W

f x W t T

  
 

 (4) 

The value  ( ) min ( ):tg W g W t T   is called a gap of classifier ( , )a x W  on the collection of sets 

, 1, 2i i  . Classifier ( , )a x W  correctly separates the points of the sets , 1, 2i i   if ( ) 0g W  . 

The sets , 1, 2i i   are called separable in the class of linear classifiers, if there is a linear classifier, correctly 

separating the points of these sets. 

Classifier ( , )a x W  is invariant with respect to the multiplication function f  (vector W ) by a positive number, 

the gap ( )g W is linear with respect to this multiplication. The value of ( )g W  can be used as a quality criterion 

for classifier ( , )a x W  (the larger the value of ( )g W , the more reliable the points of , 1, 2i i   are 

separeted), but we must also take into account some normalization of the vector W , which we denote ( )W  

and will call the norm of the classifier ( , )a x W . 

We consider the problem of constructing an optimal classifier (determination of the values of parametres W ) for 

the sets, , 1, 2i i  ,  which are separable in the class of linear classifiers, in the following form:  to find 

 1max ( ) : ( ) 1, n

W
g g W W W R      (5) 

As the norm of the vector W  we use the function 2

1

( ) ( )
n

j
j

W w


   . 

Problem (5) can be rewritten in the equivalent form 

 min ( ) : ( ) 1, L

V
V g V V R      (6) 

 min ( ) : ( ) 1, ,t L

V
V g V t T V R       (7) 

This equivalence is understood in the sense that  if W   is an optimal solution of problem (5), then for optimal 

solutions V  of (6) or (7) the equalities 
**

*
WV

g
 , *

*
1
g

   are satisfied [8]. Note that 0g   for the 

sets which are  separable in the class of linear classifiers. 

2. Minimization of Empirical Risk  

In the case of linearly inseparable samples the natural criterion for the choice of the classifier is the minimization 
of  the empirical risk, i.e. number of points of training sample which the classifier separates incorrectly. 
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We assume that parameter 0   of the reliability of separating points of training sample , 1, 2i i   is given. 

The points ,tx t T  are separated by classifier ( , )a x W  unreliably if the gap ( )tg W   . Empirical risk with 

the reliability [5], defined by parameter  , equals to the number of points of training sample, which the classifier 

separates incorrectly or unreliably. 

The problem under consideration is to determine the minimum number of points which should be excluded from 
the training sample that the remaining points are separated reliably. It is natural to require that after excluding in 
each class at least one point is remained. This is possible if  

 1 2max : ,sx x T s T      (8) 

Further we will assume that this condition is valid. It can be shown that there are sufficiently large positive 

numbers ,tB t T  (in [5] it was assumed that all tB  are the same) for which the empirical risk minimization 

problem with the reliability can be represented as the following: to find 

,
min t
w y

t T

Q y



 
  

 
  (9) 

subject to constraints 

( ) ,t
t tg W B y t T      (10) 

, 1w w   (11) 

1, 1,2
i

t i
t T

y T i


    (12) 

0 1,ty t T    (13) 

 0,1 ,ty t T   (14) 

Variable ty  determines whether a point 
tx  is taken into account in the formulation of the problem. We say that 

numbers ,tB t T  satisfy the correctness condition if in case of 1ty   the point tx  is excluded from the 

training sammple, i.e. constraints (10) are satisfied for all feasible values of the other variables of the problem. 

Constraints (12) define the condition that at least one point from each set i  should be included in the problem. 

The problem (9) - (14) is NP -complete. In this regard, approximate algorithms for solving such problem must be 

developed for practical use. For small values of the problem dimension the existing general purpose optimization 
software can be used (the possibility of such approach will be considered in Section 4).  

As approximate algorithms one can consider the algorithms based on the ideas of directed enumeration 
(sequential analysis of variants, the branch and bound methods), local search methods. Developing such 

algorithms it is essential to have effective procedures for calculating lower bounds for Q  and the construction of 

feasible solutions of the problem (9)-(14). To implement these procedures we will use continuous relaxation of 

(9)-(14). It is clear that all integer formulations of the problem (9)-(14) for sufficiently large values tB   (satisfying 

the correctness condition) are equivalent. However, the continuous relaxation of the problem and the value of the 

lower bound for Q
 essentially depend on the values of tB , since with increasing tB  the range of feasible 

solutions of continuous relaxation of the problem (9)-(14) is expanding. To obtain the best estimate for Q
 you 

must use the lowest possible values for tB . 
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Let t T , 1s T , 2T  , ,s t  . Consider the problem 

 max ( )s t
t g W     (15) 

( ) , ,jg W j s     (16) 

, 1w w   (17) 

Denote 

 1 2max : , , , ,s
t tB s T T s t t T         (18) 

Theorem 1. Numbers ,tB t T  satisfy the correctness condition for problem (9) - (14) if 

,t tB B t T   (19) 

Proof. Let an index t T  be fixed. The point 
tx  is excluded from training sample in case of 1ty   when the 

constraint (10) for this index is valid for any feasible values of the remaining variables. 

Denote ( , )y y T   , Y  - the set of all y  satisfying the constraints (12), (14), ( )D y  - the set of all 

vectors W  satisfying the constraints (10) and (11) for a given value of vector y . Consider the vector y Y  

such that 1ty  . Let  

   ( ) min : ( ) , ( ) max ( ) : ( )t t
t y g W W D y g W W D y            . 

Denote  max ( ) : , 1t t ty y Y y     . It is evident that the inequality t tB    is the condition of 

exclusion of the point tx  from the training sample when 1ty  . Let 1s T , 2T  , ,s t  . Denote 

 , , 0, 0, 1, ,s
t s jy y t T y y y j s

       . It is easy to see that for any y Y  such that 

0, 0sy y   ( ) ( )sD y D y   is performed, i.e. ( ) ( )st ty y    . Hence 

 1 2max ( ) : , , ,s
t t y s T T s t        . Taking into account that ( )s s

t ty     , i.e. t tB   , we 

obtain the statement of the theorem. 

 Let 1t T . Consider in more detail the problem (15) - (17).Taking into account (4), we can rewrite this problem 

as 

 
0

0
,

min ,s t
t

w w
w x w       (20) 

0 1, ,sw x w s T     (21) 

0 2, ,w x w T      (22) 

, 1w w   (23) 

If the system of constraints (21) - (23) is inconsistent, then s
t
   . This occurs if sx x   . By (8) 

there is always a pair ,s   such that sx x   . 

It is easy to see that in the optimal solution of problem (20) - (23) constraints (21), (23) must be satisfied as 
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equality, and constraint (22) can be either active or inactive. Consider the case when the constraint (22) is 
inactive in the optimal solution. Using the Lagrange multiplier rule, we obtain for optimal solutions 

s t

s t

x x
w

x x





 , 0 , sw w x   , s s t

t x x   . For the resulting vector 0( , )w w  constraint (22) 

should be satisfied. If this constraint is not satisfied, then the optimal solution should constructed on the fact that 

the constraint (22) is active. The obtained relations allow relatively easy to determine the values of ,tB t T  . 

Consider the problem (9)-(13) - the continuous relaxation of the problem of minimization of the empirical risk. 

Denote  1
( ) max 0, ( )t t

t
d W g W

B

 
   

 
 and fix some values of the variables W . It is easy to see that if 

for these values W  a solution of problem (9) - (13) exists, then ( )t ty d W . Hence we obtain the problem of 

minimization in the variables W : to find 

min ( )t

W t T

q d W


   (24) 

subject to 

, 1w w   (25) 

( ) 1, 1,2
i

t
i

t T

d W T i


    (26) 

( ) 1,td W t T   (27) 

Value q  is a lower bound for the minimum value of the empirical risk Q  and the vector W  obtained by 

solving the problem (24) - (27) defines an approximate solution of the problem (9) - (14). ( )td W  - convex 

piecewise-linear functions. To solve the problem (24) - (27) it is appropriate to use effective methods of non-
smooth optimization [6]. 

3. Method of Support Vector  

In the method of support vectors (SVM) for the case 2m   the following problem is solved: to find 

0,
min , t

v v t T

v v C



      
  

  (28) 

subject to  

0 1, 1 ,t tv x v t T      (29) 

0 2, 1 ,t tv x v t T       (30) 

0,t t T    (31) 

The method of support vector (SVM) is used for finding an optimal classifier for linearly separable classes, and 
also for the classes which are linearly inseparable.  

Note that constraints (29) and (30) correspond to the constraint ( ) 1,tg V t T  . In the case of linearly 

separable classes it follows from theorems of non-smooth penalties (see, for example, [6]) that for a sufficiently 
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large value of C  the problems (7) and (28) - (31) have the same solution. In the case of linearly inseparable 

classes the problem (28) - (31) is interpreted  as some regularization of the empirical risk minimization problem. 

We will show that there are certain relationships between the problem (28) - (31) and the continuous relaxation 
(9) - (13) of empirical risk minimization problem.  

Relax the constraints (10), setting : maxtB B B


   and exclude the constraint  (12). We obtain the following 

problem: 

,
min t
w y

t T

q y



 
  

 
  (32) 

subject to  

0 1, ,t
tw x w B y t T       (33) 

0 2, ,t
tw x w B y t T        (34) 

, 1w w   (35) 

0,ty t T   (36) 

Here, the constraint (11) is replaced by the equivalent pair of constraints (33) and (34). It is clear that q q  . 

Let make a  change of the variables 0 0,w v w v    , 1 2,t tBy t T T  


 . The problem takes the form 

0, ,
min t

v v t T

q
B



 

      
  
  (37) 

subject to  

0 1, 1 ,t tv x v t T      (38) 

0 2, 1 ,t tv x v t T       (39) 

2
1,v v 


 (40) 

0,t t T    (41) 

Let 0   be a dual variable for constraint (40). Consider the Lagrangian function 

2
1( , , ) ( , )t

t T

L v v v
B 


       

  and Lagrangian relaxations of the problem (37) - (41): to find 

0, ,
( ) min ( , , )

v v
L u


      (42) 

subject to (38), (39), (41).  

Since ( )   is the optimal value of the Lagrangian relaxation of (37) - (41), then ( ) q    for any 0   

(see, e.g., [6]).  Given a penalty factor C  in (28) - (31), choose   from the condition C
B





. We obtain 

2
( , , ) , t

t T

L u v v C


           
  

  , 
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i.e. the problem (42), (38), (39), (41) is equivalent to (28) - (31) with accuracy to an additive constant and a fixed 
factor in the objective function value for the above choice of the dual variable.  

Thus, the problem (28) - (31), which is solved by the method of support vectors can be obtained as a result of 
relaxing constraints of (24) - (27), which in turn is a continuous relaxation of the problem of minimization of the 
empirical risk. 

4. The results of numerical experiments 

The quality of solutions obtained by using the empirical risk minimization model (9) - (14), the continuous 
relaxation of (9) - (13) and the model SVM (28) - (31) is compared in the computational experiments. Quality 
criterion is the error of classification - the number of training sample points that are classified incorrectly. The well-
known software package CPLEX is used to solve the generated problems. Points in the training sample for each 
class were generated on the basis of a uniform distribution in the unit cube. These cubes are shifted relative to 
each other in the first coordinate so that the distance between them is 0.1. Family of linearly inseparable sets is 
formed iteratively, by moving at the current iteration a single point of each class to the opposite one. 

Model (9) - (14) is NP-complete, so problems of low dimension were generated for numerical experiments. Fig. 1 

shows the results for the case when 25, 1, 2i i   , ( i  - points of the training sample for the class i ) n = 

5 ( n  - dimension of the feature space nR ). For 25 iterations all points of a class move to the other, and vice 

versa. On X-axis the number of moved points of a class is indicated, the vertical axis - the classification error, 
MER - empirical risk minimization model (9) - (14), RMER - the relaxed model of minimization of the empirical risk 
(9) - (13). The complexity of the exact solution of the empirical risk minimization problems (9) - (14) for the family, 
shown in Figure 1, reached 90 min. Solving problems of larger dimension we obtained the messages of the 
package CPLEX for failure of computing resources. 
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Figure 1. The dependence of the classification error on the number of displaced points n = 5, 

25, 1, 2i i   . 
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In this regard, the comparison for the large-scale problems was realized only for the relaxed model of 
minimization of the empirical risk RMER and model SVM. Fig. 2 shows the results for the case 

100, 1, 2i i   , n  = 30. It is essential to analyze the possibilities of the different models for the problems in 

which the value , 1, 2i i   are significantly different. For this case it is necessary to estimate the value of the 

error of classification separately for each class. Fig. 3 shows the results for the case 1 230, 200    , n = 

30. The number of iterations for constructing a family of problems is 30.  

Conclusion 

The paper discusses various approaches to solving the problems of classification in the case of two classes. For 
linearly inseparable sets a mixed-integer model of the problem of minimization of the empirical risk and the 
continuous relaxation of the model are considered. It is shown that at weakened constraints of the proposed 
continuous relaxation the mathematical model used in the method of support vectors can be obtained.  

The results of numerical experiments comparing approaches considered for the case of linearly inseparable sets 
are given. Classification error obtained by using the model of minimization of the empirical risk is much smaller 
than the error obtained when using continuous relaxation of this model and SVM method. This comparison was 
made for the problems of low dimension due to NP-completeness of the first model. Comparison of the second 
and the third models was also performed for large-scale problems. The resulting classification errors were about 
the same. 

From the obtained results one can make a conclusion that it is appropriate to develop the approximate algorithms 
for solving the problem of minimization of the empirical risk based on the ideas of directed enumeration 
(sequential analysis of variants, branch-and-bound methods), local search methods, to improve the quality of 
generated classifiers. 
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Figure 2. The dependence of the classification error on the number of displaced points n = 30, 

100, 1, 2i i   . 
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Figure 3. The dependence of classification error on the number of displaced points for each class, n = 30 

1 230, 200    , SVM 1 - a model of SVM, set 1 , SVM 2 - a model of SVM, set 2 , RMER 1 - the 

relaxed model of minimization of the empirical risk, set 1 , RMER 2 model RMER, set 2 . 
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