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ON THE ALGORITHMIC ASPECT OF THE MODIFIED WEIGHTED HAUSDORFF
DISTANCE

Evgeniy Marinov

Abstract: In this paper we introduce three formulas for calculation of the weights of the MWHD through the notion of
a degree of friendship/relationship Γ. Further investigations and applications of this decision making procedures are
also proposed, which are based on the few versions of weights determination procedures in the the MWHD formula
stated in the current paper. As an application example we employ this formulas for Intuitionistic Fuzzy Distances.
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Preliminaries

In this section we give some preliminary information about modified distances and in particular, the modified
Hausdorff distance. It has been used as a basis for the introduction of the modified weighted Hausdorff distance
(MWHD), firstly introduced in [Marinov et al., 2012]. At the of the section we provide a brief introduction to
intuitionistic fuzzy sets (IFS) and distances between them, as an example of application of the derived formulas.

01 Modified Hausdorff distance.

Let us introduce now the definition and provide some information about modified distance and in particular, the
modified Hausdorff distance.

Definition 1. A mapping ρ : Y × Y → R≥0 is told modified metric or modified distance in Y if there exists a
function ϕ : Y → R≥0 (see [Kuratowski, 1966], p. 209) with the following conditions satisfied for all x, y, z ∈ Y :

1. ρ(x, y) ≥ 0, and equality holds iff x = y

2. ρ(x, y) = ρ(y, x)

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) + ϕ(z)

In the last definition, the third axiom is known as the ϕ-modified triangular inequality. One easily remarks that if
ϕ ≡ 0, then the mapping ρ turns into a usual metric in Y . Dubuisson and Jain, investigating different properties of
the (directed) Hausdorff metric, introduced 24 different distance measures classified according to their behaviour in
presence of noise in image matching and pattern recognition. They introduced in [Dubuisson M. & Jain A.1994] a
new definition of the directed Hausdorff distance h, for which the corresponding

H(A,B) = max(h(A,B), h(B,A))

does not produce a usual metric but modified metric, called modified Hausdorff distance.
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Definition 2. Let (X, d) be a metric space and F(X) ⊂ P(X) the collection of finite subsets of X . The directed
modified Hausdorff distance from A = {ai}|A|

i=1 to B = {bi}|B|
i=1 (A,B ∈ F(X)) is given by:

h
′
X(A,B) =

1

|A|
∑
a∈A

min
b∈B

d(a, b) (1)

and the formula for the modified Hausdorff distance (MHD) between A and B by:

H
′
X(A,B) = max{h′

X(A,B), h
′
X(B,A)}. (2)

A complete proof that the so defined H
′
X(A,B) provides a modified distance, where ϕ(C) = sup{d(x, y) |

x, y ∈ C} from Definition 1 is the diameter of the considered subset C ∈ F(X), can be found in a more general
case in [Marinov et al., 2012]. Taking into account that d(a,B) = min{d(a, b) | b ∈ B}, the directed modified
distance takes the form h

′
X(A,B) = 1

|A|
∑
a∈A

d(a,B). From the last expression we get that the directed modified

distance between two finite subsets A and B is exactly the arithmetic mean of the distances from all points a ∈ A
of the first subset to the second subset B.

Remark 1. In the above notations suppose now that A has a point a′ that is pretty far from his nearest point of B,
i.e. d(a′, B) is considerably larger in comparison with the distance of the other elements of A to B. In such a
case the usual directed distance hX(A,B) is exactly d(a′, B), even if all points of A except a′ are much closer
to B. On the other hand, the modified directed distance h

′
X(A,B) won’t be affected in such a degree if there is

one (or only a few) isolated points too far from B, which provides a more realistic similarity measure for the distance
between A and B.

In practice and applications it is important to be able to compare portions of subsets (objects, images, shapes)
instead of looking for exact matches. That is why the above introduced modification of the Hausdorff distance
compared to the usual Hausdorff distance provides an improved measure, which is less sensitive to noise. More
detailed discussions about its applications and results are given in [Dubuisson M. & Jain A.1994; Takács1998].

02 Degree of friendship

Let us remind the formulas for realistic and adequately calculation priorities/weights assigned in the points of
elements of F(X) (the collection of all finite subsets of X), on which the modified weighted Hausdorff distance
(MWHD) has been introduced. The reader may refer to [Marinov et al., 2012] for more detailed information about
the MWHD, its properties and application in intuitionistic fuzzy decision making procedures.
Let us consider again (X, d) and A,B ∈ F(X) as in Definition 2, in order to recall the definition of MWHD.

Definition 3. Let (X, d) be a metric space and P0 ⊂ F(X) such that ∀A ∈ P0 we choose {ρAa }a∈A ⊂ (0, 1]
such that

∑
a∈A ρAa = 1. Thereby, we are given the pair (P0, ρ) and for any A,B ∈ P0, let us define

hρ(A,B) :=
∑
a∈A

ρAa d(a,B) (3)

the weighted directed distance between A and B with weights ρAa in a and ρBb in b. We also introduce the modified
weighted Hausdorff distance (MWHD) Hρ in P0 between A and B as:

Hρ(A,B) := max{hρ(A,B), hρ(B,A)}, (4)

which gives us obviously a map Hρ : P0 × P0 −→ R≥0.

One can easily remark that H
′
(A,B) is actually a special case of Hρ(A,B) where P0 coincides with F(X) =

{U ⊂ X|card(U) < ∞} and for every A ∈ P0 all points of A have the same weights, namely ∀a ∈ A : ρAa =
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1
|A| . Thus, all the points a ∈ A of any A ∈ P are given the same weights/priorities in a regarding the membership
of a to A. Taking now B ∈ P0 such that a ∈ A ∩ B, it is clear that the weight in a regarding its membership to
A(ρAa = 1

|A|) and its membership to B(ρBa = 1
|B|) respectively are not equal if |A| ̸= |B|. In the general case,

where the weights in the points of A are not homogeneous, ρAa may be interpreted as the degree of importance or
the priority of membership of the element a to the set A.

Remark 2. In decision making procedures, for instance, we may have a group of experts A ∈ P0 (P0 - the
collection of all groups) and a ∈ A is any individual expert belonging to the group A. Then, the opinions of the
experts may differ between each other according to the priority of every expert in the given group, i.e. they have
different weights. As in the above example, we may have a ∈ A ∩ B, which means that an expert belongs to
two different groups simultaneously and regarding his membership to any of the group his opinion has a priority
ρAa in the group A but priority ρBa in the group B. The priorities of all members from any expert group of P0 are
normalized, i.e. have sum equal to 1.

Considering a member a of the group A we can ask what would be the priority of his opinion/decision/judgment
about any given problem? We may suppose that there is some kind of selforganization within the group. The
decisions of some members are more influential, whereas other members are of little importance. Intuitively, we say
that the experts, whose decisions are most important stay in more central positions than others. And literally that
is the geometric meaning regarding the defined metric d in the underlying set X .

1. If for an expert a there are many other members of A ⊂ X , which are very close to a with respect to d, we
mean that a has relatively influential decision.

2. On the other hand, if the expert a is more isolated, i.e. d(a,A \ {a}) is relatively large or there are only a
few members that are close to a, we conclude that he is not very important as a member of the group.

In the train of thought from the above interpretations let us introduce a very natural and intuitive method for
generation of the priorities/weights.
Suppose we are given a function:

γ : (0,∞) −→ [0,∞] (5)

that is non-increasing or decreasing.

Definition 4. On the base of (5) and the underlying metric space (X, d), let us introduce the degree of relationship
or degree of friendship through the following map:

Γd,γ : X ×X \DX −→ [0,∞]
(x1, x2) 7→ γ(d(x1, x2)).

(6)

Whereas DX = {(x, x) | x ∈ X} is the diagonal of the Cartesian product of X.

The above expression means that Γγ,d := (γ ◦d). Thereby, if x1 and x2 are close then the value of Γγ,d(x1, x2)
is large. Otherwise, if they are far away from each other the value is small. And moreover, the value of Γγ,d(x1, x2)
is supposed to be close to 0 or equal to 0 only if x1 and x2 are extremely far from each other. One may note that
for all x ∈ X we have that (x, x) /∈ Dom(Γγ,d) because d(x, x) = 0 /∈ Dom(γ). Thereby, the function Γγ,d

is correctly interpreted as degree of relationship or degree of friendship. When it is not misleading, we will write just
Γ and omit the index γ and/or d as well .
As an example for γ can be taken γ(z) = 1

z and therefore for the above defined degree of friendship Γγ,d we
would have

Γγ,d(a1, a2) =
1

d(a1, a2)
, (7)

which satisfies (5) and (6). Actually, (5) can be seen as an generalization of the last defined (7).
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Definition 5. The set A ∈ P0, with P0 as described at the beginning of the paragraph, will be called Γγ,d-
degenerated or just degenerated if

(∀a1, a2 ∈ A)(Γγ,d(a1, a2) = 0) (8)

i.e. Γγ,d ≡ 0 on A×A, which means that all members of A are too isolated from each other. On the other hand,
if all sets from P0 are non-degenerated we say that P0 is non-degenerated, that is:

(∀A ∈ P0∃a1, a2 ∈ A)(Γγ,d(a1, a2) ̸= 0)

Remark 3. In our interpretation example with the groups of experts a degenerated group A can be described as
a very strange group, where all experts of A would have pretty different judgments and do not respect each other.
They may in this case be experts with competencies in different areas of knowledge.

We suppose that only the weights {ρAa }a∈A are yet unknown and namely that is what we want to define. We will
then state practical algorithms assigning appropriate weights on the basis of the given distance function d and γ.
We allow some (but not all) of the normalized weights ρAa , such as non-normalized weights wA

a of A (to be defined
below) to be zero. The members of A with zero weights correspond to very isolated points that can be regarded as
unimportant and therefore can be neglected in the calculation of the directed modified weighted Hausdorff distances.
Such points a ∈ A : ρAa = 0 can be omitted in the calculation of the directed distance from A to any other set B.
But they can not be removed completely from the underlying set as they may belong to any other set B where their
weight in regard of their membership to B may be positive. That is, they may appear to be important in the set B.

03 Intuitionistic fuzzy sets and distances

As opposed to a fuzzy set in X [Zadeh, 1965], given by

A
′
= {< x, µA′ (x) > |x ∈ X} (9)

where µA
′ (x) ∈ [0, 1] is the membership function of the fuzzy set A

′
, an intuitionistic fuzzy set (IFS)

[Atanassov, 1999] A is given by

A = {< x, µA(x), νA(x) > |x ∈ X} (10)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (11)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of x ∈ A,
respectively. (Two approaches to the assigning memberships and non-memberships for IFSs are proposed in
[Szmidt & Baldwin, 2006]).
An additional concept for each IFS in X , that is not only an obvious result of (10) and (11) but also relevant for
applications, we will call

πA(x) = 1− µA(x)− νA(x) (12)

a degree of uncertainty of x ∈ A. It expresses a lack of knowledge of whether x belongs to A or not (see
[Atanassov, 1999]). It is obvious that 0<πA(x)<1, for each x ∈ X .
Distances between IFSs are calculated in the literature in two ways, using two parameters only
(e.g. [Atanassov, 1999]) or all three parameters (see [Szmidt & Kacprzyk, 2000; Atanassov et al., 2005;
Szmidt & Baldwin, 2003; Szmidt & Baldwin, 2004; Deng-Feng, 2005] and [Narukawa, 2006]) describing elements
belonging to the sets. Both ways are proper from the point of view of pure mathematical conditions concerning
distances (all properties are fulfilled in both cases). One cannot say that both ways are equal when
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assessing the results obtained by the two approaches. In [Szmidt & Kacprzyk, 2000; Szmidt & Baldwin, 2003;
Szmidt & Baldwin, 2004] it is shown why in the calculation of distances between IFSs one should prefer
all three parameters describing IFSs. Examples of the distances between any two IFSs A and B
in X = {x1,x2, . . . , xn} while using three parameter representation (see [Szmidt & Kacprzyk, 2000;
Szmidt & Baldwin, 2003; Szmidt & Baldwin, 2004]).
A normalized distance or normalized metric d in X is a metric such that d : X × X → [0, 1] ⊂ R≥0.
Sometimes it is more convenient and easier to work with normalized metrics. Every metric can be normalized
(see [Adams & Franzosa, 2008]). For more detailed general properties and proofs about distances for IFSs the
reader may refer to [Marinov et al., 2012].

Definition 6. Let A,B ∈ IFS(X) be two intuitionistic fuzzy sets on the finite universe X . We can state the
following standard distances between IFSs

1. With two parameters:

• Hamming distance:

l2,IFS(A,B) =

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|)

• Normalized Hamming distance:

L2,IFS(A,B) =
1

2n
l2,IFS(A,B)

• Euclidean distance:

e2,IFS(A,B) =

√√√√ n∑
i=1

(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2

• Normalized Euclidean distance:

E2,IFS(A,B) =

√
1

2n
e2,IFS(A,B)

2. With three parameters:

• Hamming distance:

l3,IFS(A,B) =
n∑

i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|)

• Normalized Hamming distance:

L3,IFS(A,B) =
1

2n
l3,IFS(A,B)
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• Euclidean distance:

e3,IFS(A,B) =√√√√ n∑
i=1

(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2 + (πA(xi)− πB(xi)2)

• Normalized Euclidean distance:

E2,IFS(A,B) =

√
1

2n
e3,IFS(A,B)

Remark 4. It is almost evident that for the above defined distances the following inequalities hold:

0 ≤ l2,IFS(A,B) ≤ l3,IFS(A,B) ≤ 2n
0 ≤ L2,IFS(A,B) ≤ L3,IFS(A,B) ≤ 1

0 ≤ e2,IFS(A,B) ≤ e3,IFS(A,B) ≤
√
2n

0 ≤ E2,IFS(A,B) ≤ E3,IFS(A,B) ≤ 1

Formulas for the weights determination in MWHD

Let us now introduce a few formulas for calculation of the weights in the MWHD degree of friendship algorithm
through the above stated function γ and friendship degree Γ.

04 First version of weights determination formula

The following

wA
γ,d,a0 :=

 1 if |A| = 1∑
a∈A\{a0}

Γγ,d(a0, a) if |A| > 1 (13)

we call non-normalized weight in a0 regarding d, γ and its membership to A and

WA
γ,d :=

∑
a0∈A

wA
γ,d,a0 =

∑
a′ ̸=a′′∈A

Γγ,d(a
′, a′′) (14)

will be called general sum of A with respect to d and γ, where d and γ will be omitted if it is not misleading. But
as ∀x1, x2 ∈ ∪P0 : Γγ,d(x1, x2) = Γγ,d(x2, x1), i.e. Γγ,d is symmetric, and rewriting (14) we get that WA

γ,d

equals
∑

a0∈A
(

∑
a∈A\{a0}

Γγ,d(a0, a)). If |A| = n and A = {a1, . . . , an} to emphasize the algorithmic aspect the

expression of WA
γ,d may be stated in the following form:

WA
γ,d = 2

( ∑
1≤i<j≤|A|

Γγ,d(ai, aj)
)

(15)

because ∀a′, a′′ ∈ A : a′ ̸= a′′ the value of Γγ,d(a
′, a′′) is taken twice in the calculation of WA

γ,d, first in regard
of a′ and second in regard of a′′ in the sum (14). For the normalized weights let us introduce now the formula:

ρAγ,d,a :=
wA
γ,d,a

WA
γ,d

=
wA
γ,d,a

2
( ∑
1≤i<j≤|A|

Γγ,d(ai, aj)
) (16)
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Remark 5. Suppose now that γ (5) is constant, therefore Γ (6) is constant as well, i.e. Γγ,d ≡ α > 0. Applying
this in (16) we get that for any A ∈ P0 :
WA

γ,d = 2(
∑

1≤i<j≤n
α) = 2α.C2

n = 2α.n(n−1)/2 = α.n(n−1), where C2
n is the number of 2-combinations

without repetitions from a collection of n elements. As for any a ∈ A : wA
γ,d,a =

∑
a′∈A\{a}

α = α.(n − 1), for

the normalized weight in a we get ρAγ,d,a = α.(n− 1)/α.n(n − 1) = 1/n = 1/|A|, which is expected for the
particular case with equal weights imposed on the elements of A.

Supposing now that P0 is degenerated with respect to Γγ,d, i.e. there are degenerated subsets A ∈ P0, for which
∀a ∈ A : wA

γ,d,a = 0 and therefore WA
γ,d =

∑
a∈AwA

γ,d,a = 0. The last expression implies that the formula
(16) for ρAγ,d,a could not be applied for degenerated subsets of X .

05 Second version of weights determination formula

There may be some cases, when we would like some groups of experts to be designated as "degenerated" or to
impose some penalty value P0 ≥ 0 on the too isolated members belonging to a group. Then we will certainly have
that

P0 = Γγ,d(x1, x2)

for all x1, x2 ∈ ∪P0 such that d(x1, x2) ≥ d0. Where d0 is an appropriately chosen large enough positive
constant. Therefore, we can assume for Γγ,d that the following inequality is satisfied

0 ≤ P0 ≤ min{Γγ,d(x1, x2) | x1, x2 ∈ ∪P0} (17)

The meaning of the penalty value P0 is that if for a ∈ A, d(a,A\{a}) is too large, say greater or equal to d0 > 0,
then automatically

∀a′ ∈ A \ {a} : γ(d(a, a′)) = P0,

i.e. γ([d0,∞)) = {P0}. Note that the introduction of penalties may significantly improve the performance and the
quality of results in algorithms for practical applications (see [Takács1998]). That way we have slightly modified the
function γ imposing the additional condition γ ≥ P0 on its domain of definition. Therefore, for the so modified γ
and Γγ,d in particular we can use (13), (15) and (16) to define the non-normalized weights, general sums and the
normalized weights, respectively. Note that as in the first version of the weights generation algorithm every expert
group has to contain at least one element.

06 Third version of weights determination formula

Let us give now another version of the above formulas for the weights. Suppose that we want to define the function
γ from (5) in the point 0 as well, i.e.

γ : [0,∞) −→ [0,∞] (18)

In (18) γ is supposed to be non-increasing in (0,∞) and γ(0) has to be defined in an appropriate way if applied in
real problem solutions. The expression (6) and the above introduced γ provide that Dom(Γd,γ) = X ×X , i.e.
DX ⊂ Dom(Γd,γ). Therefore, we have that

• ∀x ∈ X : γ(d(x, x)) = γ(0) = supRange(γ)

• ∀x ∈ X : (x, x) ∈ Dom(Γγ,d) and Γγ,d(x, x) = γ(0)
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By analogy of (13) –(16 ), let us introduce

w̃A
γ,d,a0 :=

∑
a∈A

Γγ,d(a0, a), (19)

which we also call non-normalized weight in a with respect to d, γ and its membership to A and

W̃A
γ,d :=

∑
a0∈A

w̃A
γ,d,a0 =

∑
a′,a′′∈A

Γγ,d(a
′, a′′) (20)

is the general sum of A corresponding to d and γ. Again because of the symmetry property of Γγ,d, we have that

W̃A
γ,d = 2(

∑
1≤i<j≤|A|

Γγ,d(ai, aj)) +
|A|∑
i=1

Γγ,d(ai, ai) and therefore the normalized weights could be defined in

the following way

ρ̃Aγ,d,a :=
w̃A
γ,d,a

W̃A
γ,d

=
w̃A
γ,d,a

2(
∑

1≤i<j≤|A|
Γγ,d(ai, aj)) +

|A|∑
i=1

Γγ,d(ai, ai)

. (21)

It is obvious that the closest point of x0 ∈ X is x0 itself. Thereby, if we like γ to be non-increasing on the whole
domain [0,∞), γ(0) should take the maximum value of its range. And so in the sum (19) the member Γγ,d(a0, a0)
has the greatest impact in the determination of the weight in a0.
In the so introduced weights, if needed, we can apply the penalty value from the second version of the algorithm.
Let us now check what happens when one applies the above expressions for a degenerated set A ⊂ X whereas
P0 = 0. First of all, let us recall that for the chosen maximal diameter M0 > 0, P0 = 0 and S0 := γ(0) =
supRange(γ) = supRange(Γγ,d) = Γγ,d(x, x) for any x ∈ X . The degeneration of A provides that
∀a′, a′′ ∈ A : a′ ̸= a′′ ⇒ Γγ,d(a

′, a′′) = 0. Thereby,

∀a ∈ A : w̃A
γ,d,a = S0 and W̃A

γ,d = |A|S0,

and hence, ρ̃Aγ,d,a = 1/|A| which is exactly what we expect.

Remark 6. Let us take any A,B such that A is degenerated and B is non-degenerated. It follows almost
straightforward, that

• ∀a ∈ A : w̃A
γ,d,a = S0 ≤ w̃B

γ,d,a

• W̃A
γ,d = |A|S0 < W̃B

γ,d

As in Remark 5 the reader can easily check that the above introduced formula for the normalized weights is
again a relevant generalization for the standard modified Hausdorff distance (with equal weights) when A is non-
degenerated and γ is a constant function.

Conlusion

In this paper we have introduced few versions of algorithms for calculation th the weights through the above stated
function γ and friendship degree Γ. As a start point we employ the modified weighted Hausdorff distance (MWHD)
notion, which was firstly defined in [Marinov et al., 2012]. Let us remind how we can apply the MWHD notion and
especially the introduced here algorithms in IFS models.
Supposing that there is a problem to be estimated with respect to a few criteriaC = {C0, . . . , Cn}. The criteria will
be considered as a universe for IFS. That is, every intuitionistic fuzzy set E ∈ X = IFS(C) can be considered
to an expert estimation about the problem with respect to the above criteria. Taking a finite subset of the power set
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of X : P0 ⊂ P(X) to be a group of estimations of the chosen experts, one could estimate how far from each other
are the decisions of the the different groups of experts.
As another exmple, we can take the universe P = {P0, . . . , Pn} to be a collection of problems to be estimated. In
this situation every intuitionistic fuzzy set E ∈ IFS(P ) can be considered as an expert estimation of the collection
of the chosen problems P and groups of expert estimations with respect of P can be also modeled through the
introduced MWHD formulas in this paper.
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