
International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

136

COMPARATIVE ANALYSIS OF THE LANGUAGES FOR BUSINESS RULES

SPECIFICATION

Krassimir Manev, Neli Maneva

Abstract: One of the goals of authors of the Business Rules Approach, besides making the process of

specification of software more precise and adequate, was to provide a rigorous basis for reverse engineering of

business rules from existing software systems. By different reasons this goal was no more a subject of interest of

the involved researchers. One of the general problems of using business rules (BRs) in the reverse engineering

of software is the selection of language to present the rules, extracted from the source code. In principle, it is not

impossible to use for this purpose the languages dedicated for the straightforward task – using BRs for

specification of software systems. The current paper presents an overview of different such languages in order to

decide whether they are appropriate for rules extraction and to outline those features which will be helpful in

language comparison and selection of a specific language for BR.

Keywords: software development, software modernization, software reengineering, business rules, languages

for specification of business rules, automated business rules extraction, comparative analysis.

ACM Classification Keywords: D.2.1 Requirements/Specifications, D.2.7 Distribution, Maintenance, and

Enhancement.

1. Introduction

In the fundamental report [Hay & Healy, 2000] the researchers from the Business Rules Group (formerly known

as the GUIDE Business Rules Project) postulated, among the other goals of their project, the following:

 To provide a rigorous basis for reverse engineering business rules from existing software systems.

Then, involved too much in activities to achieve the main purpose of the project – to develop and implement the

idea for specification of corporative software systems with business rules (BRs) – they did not implemented an

approach for reverse engineering and extracting BR from existing systems.

Meanwhile, the necessity of modernization of huge amount of stable and helpful but created on old or/and

outdated platforms, called legacy systems, became more and more important. One possibility for modernization

of a legacy system is to extract (rather automatically than manually) the business logic of the system embedded

in its program code (as well as in its database definitions and queries, if they exist) in form of BRs. This process

has been called here automatic BR extraction (ABRE). After that the extracted rules could be (also automatically)

“wearied” in the dialect of the specific domain and could be used by the client for reengineering of the legacy

system or for a formal specification of a new one. For this purpose, the ABRE has to present the obtained BRs

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

137

with sentences of some formal (or at least well structured) BRs extraction language (BREL) in order to embed

them in the ontology of the client’s domain.

It seems quite natural to use as BREL some of the languages for the straightforward problem – specification of

systems with business rules. Unfortunately, due to different reasons, the languages proposed for specification of

systems with BRs are either subset of some general purpose specification languages or specialized, but

becoming more and more complicated and inappropriate for ABRE from legacy code. Anyway, in our efforts to

create good BREL, we have no other possibility than to use some features of the languages dedicated to

specification of software systems with BRs.

In this paper we will consider some of these languages in order to outline their features, from the point of view of

ABRE process that will be helpful in the process of creating a language for ABRE. Section 2 presents briefly

some of the languages used for specification of software systems with BRs. Section 3 describes the basic

principles of the comparative analysis (CA) method and its application for comparison of specification languages.

The performed experiments and their results are presented. In Conclusion the pros and cons of the analysis are

summarized and a few ideas for future research and development work are mentioned.

2. Languages for specification with BRs

Тhe necessity of some language for writing BRs was stressed even in the mentioned above report of the GUIDE

Business Rules Project [Hay & Healy, 2000]. There, on page 12, we read:

“Note also that each BUSINESS RULE may be expressed in one or more FORMAL RULE

STATEMENTS. A FORMAL RULE STATEMENT is an expression of a BUSINESS RULE in a specific

formal grammar. A FORMAL RULE STATEMENT must be in the convention of a particular FORMAL

EXPRESSION TYPE, which is to say one of the formal grammars for representing BUSINESS RULES.

Examples of a FORMAL EXPRESSION TYPE are structured English, IDEF1X, Oracle’s CASE*Method,

Object Role Modeling, Ross’s notation, and so forth.”

So we will consider some examples of formal (or at least structured) languages which are candidates to be used

in ABRE, including the pointed by the GUIDE Business Rules Project.

2.1. “Programming languages” - like

The most popular instrument from the group of languages that are similar to programming languages is the

structured English. It is not a formal language. But something which is very similar and very helpful is popular in

the domain of Computer science under the name pseudo code, especially for presenting of algorithms at some

informal, high level. Really, each author of book on algorithms or professor teaching Algorithms is using her/his

own pseudo code and structured English has to be the core of all such pseudo codes.

As there is no formal specification for this instrument, for our discussions we will use the description, which could

be considered as commonly accepted [Structuted, 2013]. By this description the structured English “… aims at

getting the benefits of both the programming logic and natural language. Program logic helps to attain precision

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

138

while natural language helps in getting the convenience of spoken languages.” Additionally it is mentioned that:

“Structured English or "pseudo code" consists of the following elements:

 Operation statements written as English phrases executed from the top down;

 Conditional blocks indicated by keywords such as IF (N.B. the couple of keywords IF … ENDIF, indeed),

THEN, and ELSE;

 Repetition blocks indicated by keywords such as DO, WHILE, and UNTIL.

and propose to …use the following guidelines when writing Structured English:

 Statements should be clear and unambiguous;

 Use one line per logical element;

 All logic should be expressed in operational, conditional, and repetition blocks;

 Logical blocks should be indented to show relationship;

 Keywords should be capitalized.

We will accept without serious objection only the first of the requirement, extending it with “as much as possible”

because including of operational instructions in English, formulated by even most experienced human being,

could not be without any ambiguity.

For the third requirement we have a serious objection. From [Hay & Healy, 2000] it is clear that “fathers” of

BR-approach did not even imagine a possibility to have BRs with cyclic structure. It is not expected the

person that analyses business processes of an enterprise and formulates the rules governing it, to know the

conception of Iteration (as well as recursion). So, for the purposes of the BR-approach we probably have to drop

the possibility to use the repetition constructors DO, WHILE, and UNTIL.

The other three requirements could be classified as optional. They are a matter of syntax and the same result

could be obtained in another ways, too. About the last one, it is important the keywords IF, ENDIF, THEN and

ELSE to be easy recognizable and not mixed with the same words, used in operational statement as regular

English words. But this could be achieved by placing a special character in front of each keyword also. For

example, underscore character – _if, _endif, _then and _else. The fourth requirement is pure “cosmetic” and is

dedicated just to make the specification more readable. The second requirement also seems cosmetic but in fact

it is semantically important. It is introduced to separate clearly different operational statement one from the other.

Practically it could be reformulated in that sense, including the possibility to use, beside a new line character,

other separators, too. For example, such separator can be the common accepted in programming languages

semicolon sign (;).

Let us consider as an example the rule for an employer of the enterprise to obtain paid leave of absence: In order

to obtain a paid leave of absence the employer has to receive the approval of her/his closest chief which is not in

absence herself/himself and the number of remaining paid absence days of the employer to be at least as much

as the asked days of absence. This rule expressed by structured English will look as follows:

IF remaining days are at least as much as asked days THEN

 IF there is approval from closest chief not in absence THEN

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

139

 Issue an order for leave of absence

 ELSE

 Refuse leave of absence

 ENDIF

ELSE

 Refuse leave of absence

ENDIF

Another very popular language which is “programming language” - like is the language of flowcharts. Essential for

this language are two kinds of blocks:

 Rectangles with many inputs and one output represent operation statements, including a unique start

point and one or more end points of the diagram. The corresponding sentence is written inside the

rectangle;

 Rhombs with many inputs and two outputs labeled with true and false, respectively, representing

conditions. The condition itself is written inside the rhomb.

Figure 1. Presenting the business rule by a block-diagram

Rectangles and rhombs are linked with arrows that control the “flow” through the chart. The flowchart in Figure 1

represents the same rule, specified above with structured English.

There are no principle differences in expressive power of the structured English and the flowcharts language. So

the structured language is more appropriate for ABRE process and flowcharts are more appropriate for

visualization of the extracted rules.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

140

2.2. “Entity relationship” - like

The languages IDEF1X [IDEF1X, 1993], Case*Method (of Oracle) [Barker, 1990] and Object-Role Modeling

language, mentioned in [Hay & Healy, 2000] are representatives of a class of languages, the main purpose of

which is to specify the data model (or data scheme) of an information system. To the same class could be added

also the Bachman notation, Barker's Notation, EXPRESS, Martin notation, Z-notation (of Jean-Raymond Abrial),

UML, Merise, etc. These languages are very popular under the general name Entity-relationship languages. The

descriptions created with these languages are called Entity relationship diagrams (ERD) [Chen, 1976]. That is

why we will consider very briefly the possibility to extract BRs in form of ERD.

Basically, the entity relationship languages are graphical. ERD is a graph with labels on the vertices and edges.

Vertices represent entities of the modeled domain and the edge that links two vertices represents the existing

between them relationship. The label of a vertex usually includes the name of the entity and its structure when the

entity is a complex object. The label of an edge contains the name of the presented relationship and its type (one-

to-one, one-to-many, and so on). The part of the data model of a corporative system concerned with “leave of

absence asking” example, presented with ERD, is shown in the Figure 2.

It is obvious that graphical languages are very helpful for visualization of the data model of an information system

and for manual processing but could not be used as input or output of some automated procedures. The relation

between ERDs and the specifications which are more appropriate for automated processing has been studied in

[Chen, 1997]. There the author made very interesting parallel of “ER vs. structured English” relationship and the

relationship between Chinese characters (hieroglyphs) and European alphabets (which are to very high degree

phonetic). In the same paper the author proposed a simple procedure for translation of an ERD to specification,

written in structured English.

Figure 2. ERD presentation of a business rule

A similar approach could be found in the document, describing the IDEF1X language [IDEF1X, 1993]. In the

Annex B of this document, called Formalization (page 130), for each IDEF1X is proposed to map it “to an

equivalent set of sentences in a formal, first order language. “The author statement is that in such a way ERD

could be “considered a practical, concise way to express the equivalent formal sentences”.

Obviously, the graphical form of specifications with the numerous ER languages is not intrinsic negative. The

serious negative feature of these languages is that they are rather “static”, dedicated to specify the structure of

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

141

the data of the system, not the operations with data. Of course, looking at the ERD of Figure 2 an experienced

system designer could imagine what the rule for approving an employer’s leave of absence request is. But in

principle it will be better for the adequateness of the design not to rely on the designer’s imagination.

2.3. Ross’s notation

Ronald Ross is considered as a “father” of the Business Rules approach. His first works on the concept appeared

in the middle of 90’s of the past century, before joining to the GUIDE Business Rules Project. In parallel with

developing of the concept for specification of systems with BRS, he was working on creating of a language,

especially dedicated for writing BRs. As a result he has created a description tool called in that time Ross’

notation or Ross’ method. With the developing and ameliorating of the approach Ross developed and ameliorated

his own description tool. Nowadays the notation created by Ross is popular under the name RuleSpeack (a

trademark of the created and ruled by Ross company Business Rules Solutions, LLC).

The idea of RuleSpeak is, besides putting a particular structure on the English sentences, to introduce some

limitations on the used word in order to make the structured English sentence clearer and less ambiguous. For

example, it is strongly recommended to use only the word must instead of sophisticated phrases of obligation as

is strictly required, as well as only must not instead of sophisticated phrases of defending as is not allowed. The

notation RuleSpeak, also, strongly recommends avoiding the word can that gives the impression for existence of

some degree of freedom. Instead it is recommended to replace the word can with … may …. only if … to

eliminate any freedom.

Another principle of RuleSpeak is to keep the sentences as short as possible. So, in our example, the rule under

consideration will be expressed in RuleSpeak as follows:

The employer may take leave of absence only if received the chief’s approval.

and

Asked days leave of absence must be no more than remaining days.

2.4. OMG Semantic and Vocabulary of Business Rules

Soon after publishing the report of the GUIDE Business Rules Project it attracted the attention of the specialists

from the powerful OMG which decided to support the project and to make Business Rules approach a standard of

OMG for specification of systems knows as Semantic and Vocabulary of Business Rules (SVBR) [SVBR, 2008].

This standard incorporates three different specification tools – structured English, RuleSpeac and Object-Role

Modeling language. With this act OMG really confirmed the expectations that a simple language concept will not

be expressive enough for writing BRs.

2.5. Other BR-related languages and their comparison

A study of some BR modeling languages is presented in [Rima, 2013]. A number of BR specification languages

(Simple Rule Markup Language, Semantics of Business Vocabulary and Rules, Production Rule Representation,

Semantic Web Rule Language, Object Constraint Language) and Business Process specification languages

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

142

(Unified Modeling Language, Data Flow Diagram, Colored Petri Nets, Event-driven Process Chain, IDEF3,

Business Process Modeling Notation) have been briefly described. The main purpose of the performed

comparative analysis has been to show the representational capabilities of the selected BR specification

languages and to describe which modeling aspects have been covered by them within the three layer framework,

proposed for BR-based software modeling.

We think that a more flexible approach to comparison of BR languages should be developed. Next follows a brief

description of our ideas.

3. An approach to comparison of languages for specification with BRs

The results of the performed study can be summarized as follows:

 There is a variety of BR specification languages, used to achieve specific goals at different stages of the

software systems life cycle;

 Most of BR specification languages are especially designed and used for the purposes of the

straightforward task – when a new software system should be developed from scratch and the process

of requirements elicitation is just started.

 None of the existing BR specification languages has been recognized as a universal and accepted as a

standard till now.

Taking into account these conclusions, we try to select a procedure for comparison of BR languages so as to

meet the following requirements:

 Comparison should be flexible, easily adjusted to the context - particular circumstances, in which it is

accomplished;

 The analyzed and evaluated characteristics (i.e. quality content of the BR languages) and the set of

compared languages should be defined in accordance with the currently defined context;

 Comparison should be supported by a formal method and a systematic procedure for its application.

Next follows a brief description of our approach, based on the Comparative analysis method and an example,

illustrating its feasibility.

3.1. The essence of the Comparative Analysis method

The method of Comparative Analysis (CA) has been introduced in [Maneva, 2007]. It shares the main objectives

and methods of the Multiple Criteria Decision Making theory, trying to specify and apply them systematically.

Generally speaking, the Comparative Analysis method is a study of the quality content of a set of homogeneous

objects and their mutual comparison so as to select the best, to rank them or to classify each object to one of the

predefined quality categories.

For CA use in practice, we distinguish two main roles: the Analyst, responsible for all aspects of CA

implementation, and a CA customer - a single person or a group of individuals, tasked with making a decision in

a given situation. Depending on the identified problem to be solved by a customer at a given moment, a case

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

143

should be opened to determine the context of the desired comparative analysis. Each case is specified by the

following 6 elements:

case = { View, Goal, Object, Competitors, Task, Level}

The View describes the CA customer’s role and the perspective from which the CA will be performed. Taking into

account the responsibilities and some typical tasks of the main participants in the BR extraction, the following

Customer’s roles have been identified [Maneva & Manev, 2011]: Business Analyst, Policy Maker, Software

Architect, and Software Developer. Thus a lot of cases for comparison of BR specification languages can be

further described, reflecting the specific participant’s point of view to the analyzed case.

The Goal expresses the main customer’s intentions in CA accomplishment and can be to describe, analyze,

estimate, improve, or any other, formulated by the Customer, defining the case. All of these goals can be stated

for the CA of languages for specification with BRs.

The Object represents the item under consideration. For each object for CA application a quality model should be

created – a set of characteristics, selected to represent the quality content in this context, and the relationships

among them. For the problem under consideration, the investigated Object is a BR specification language.

According to the stated goal, the set C of Competitors, C = {C1, C2, …, Cn} – the instances of the objects to be

compared – should be chosen. When the Goal is to perform the CA so as to obtain the ranking of a number of

objects, the set C comprises those competitive objects.

The element Task of a case can be Selection (finding the best), Ranking (producing an ordered list),

Classification (splitting the competitors to a few preliminary defined quality groups) or any combination of them.

There are no special considerations, when we define the element Task of a case for BR language comparison.

The Depth Level defines the overall complexity (simple, medium or high) of the CA and depends on the

importance of the problem under consideration and on the resources needed for CA implementation.

3.2. Comparison of languages for specification with BRs – a quality model

It is obvious, that the above described approach meets all stated requirements, especially for flexibility, because

by definition of a case we can describe completely the current situation, specifying who, why and what exactly

should be analyzed in order to make a reasonable choice to support the corresponding decision.

One of the most difficult steps in the CA use is the creation of a model, adequate to the quality content of the

studied object. As we have already stated, the model comprises different quality characteristics, identified as

significant for the performed comparative analysis. Usually the Analyst is responsible for object modeling made

with help and guidance of the Customer, ordered the CA. For the purposes of language comparison, we have to

start with constructing a quality model for the object “BR specification language”. From practitioner’s point of view

it is important to mention, that we will stick to the incremental object modeling, described in [Maneva, 2007].

When the object “BR specification language” appears in a case for the first time, a quality model for it is created

and saved as a basic (generic) one in a repository. When the same object reappears in another case, its generic

quality model is invoked and modified according to the context, defined by this new case. The modification can be

to add some new quality characteristics at any level of the hierarchy or to delete some characteristics. The

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

144

changed version of the model is saved as a derivative model, together with the generic model, which can be

enriched with some additional quality characteristics. In this way the generic model is always the complete

hierarchical structure, comprising all quality characteristics ever considered.

In Table 1 is shown an initial quality model for the object “BR specification language”. It comprises two groups of

quality characteristics - external and internal. Of course, for complete description of the quality model we have to

provide precise definitions of all characteristics and to describe the metrics for leaves of the constructed

hierarchical structure, allowing quantitative evaluations, necessary for CA Task accomplishment. So far this is

beyond the scope of this paper.

Table 1.

External stability

 fidelity

 usability

 availability of automating tools

Internal expressiveness

 understandability

 validity

 cognitive complexity

 transformability

 degree of automation

3.3. Comparison of languages for specification with BRs – an example

The CA use can be illustrated by the next real-life example: The team, involved in a real-life modernization

project, has to choose one specification language for Business rules, extracted from the source code of a legacy

system.

With the help of the Analyst, a case has been defined:

case = { View, Goal, Object, Competitors, Task, Level},

where the elements, determining the context of the desired Comparative analysis, are:

 Goal: To compare some BR specification languages, recognized as appropriate.

 View: The identified point of view for this situation belongs to those participants in the modernization

project, who are supposed to use a BR specification language, namely the Business Analyst and the

Policy Manager.

 Object: A BR specification language.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

145

For this case a simple linear quality model has been constructed. It comprises only three quality

characteristics, considered as equivalent (i.e. having equal weights – coefficients of importance):

 Expressiveness – the capability of the BR language to represent concepts and communicate ideas

about business organization and management;

 Usability – the capability of the BR language to be understood, learned and used;

 Efficiency - the capability of the BR language to provide appropriate results relative to the amount of

the resources used.

 Competitors: The set C of Competitors comprises the languages, identified as appropriate, e.g.

mentioned above in Section 2.

 Task: Selection – finding the most appropriate among the compared languages.

 Level: Simple.

Following the described in [Maneva, 2007] procedure for CA use, we can find the most appropriate (in

accordance with the selected quality characteristics) specification language.

Conclusion

The paper explains the need of some languages for specification with BRs for the purposes of reverse

engineering of legacy system. An overview of such languages has been made. In order to facilitate the selection

of a BR specification language, which is the most appropriate in a given situation, some requirements to the

method of comparison have been defined. The proposed method of CA is presented and illustrated by an

example.

A few possible directions of further research are:

 To study each of the identified as appropriate languages for specification with BR so as to select only a

few of them to be further used (separately or in a combination);

 To continue the quality content modeling for other objects related with the CA use in the process of the

BR extraction: products as additional sources of BR information (documentation, developer’s and user’s

stories, test data and scenarios), processes like BR tracking, change management in reverse

engineering, etc.

Acknowledgments

This work is supported by the National Scientific Research Fund of Bulgaria under the Contract ДТК 02-69/2009.

Bibliography

[Barker, 1990] R. Barker, Case*Method: Entity Relationship Modelling, Addison-Wesley, 1990.

[Chen, 1976] P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. In: ACM Transactions on Database

Systems, v. 1, 1976, pp. 9-36.

[Chen, 1997] P. Chen. English, Chinese, and ER Diagrams. In: Data & Knowledge Engineering, v. 27, 1997, pp. 5-16

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

146

[Hay&Healy, 2000] D. Hay and K. A. Healy (eds.). Defining Business Rules What Are They Really? GUIDE Business Rules

Project Final Report, rev. 1.3., July, 2000.

[IDEF1X, 1993] INTEGRATION DEFINITION FOR INFORMATION MODELING (IDEF1X), Federal Information Processing

Standards, Publication 184, December 1993. http://www.itl.nist.gov/fipspubs/idef1x.doc, last visited on 13.12.2013.

[Maneva & Manev, 2011] N. Maneva, Kr. Manev. Extracting Business Rules – Hype or Hope for Software Modernization. Int.

Journal “Information Theories & Applications, vol. 18-4/2011, pp. 390-397.

[Maneva, 2007] N. Maneva. Comparative Analysis: A Feasible Software Engineering Method, Serdica J. of Computing, 1(1),

pp. 1-12.

[Rima, 2013] A. Rima, O. Vasilecas, A. Smaizys. Comparative Analysis of Business Rules and Business process Modeling

Languages. Computational Science and Techniques online J. Volume 1, Number 1, 2013, 52-60.

[Ross, 1994] R. G. Ross, The Business Rule Book: Classifying, Defining and Modeling Rules, Boston, Massachusetts:

Database Research Group, Inc., 1994.

[Stineman, 2009] B. Stineman, IBM WebSphere ILOG Business Rule Management Systems: The Case for Architects and

Developers. IBM Software Group, November 2009. http://www-01.ibm.com/software/websphere/products/business-rule-

management/, last visited on 15.02.2012.

[Structured, 2013] Structured English, Wikipedia. The Free Encyclopedia, last visited on 13.12.2013.

http://en.wikipedia.org/wiki/Structured_English

[SVBR, 2008] Semantics of Business Vocabulary and Business Rules (SBVR), v1.0 OMG Available Specification, 2008.

Authors' Information

Krassimir Manev – Assoc. Professor, Ph.D., Department of Informatics, New Bulgarian University,

21 Montevideo str., Sofia 1164, Bulgaria; e-mail: kmanev@nbu.bg

Major Fields of Scientific Research: Discrete mathematics and Algorithms, Formal Methods in

Software Engineering, Source Code Analysis, Competitive Programming and Education in

Informatics.

Neli Maneva – Professor, Ph.D., Institute of Mathematics and Informatics, Bulgarian Academy of

Sciences, Acad. G. Bonchev str., bl. 8, Sofia 1113, Bulgaria; e-mail: neman@math.bas.bg

Major Fields of Scientific Research: Software Engineering, Software Quality Assurance, Model-

driven software development.

	01-IMFE-Atanasov-formatted.pdf
	Operations ``reduction" over an IMFE
	Operation ``projection" over an IM
	"Inflating operation" over an IM
	Operation "substitution" over an IM

	03-Evgeniy.pdf
	 Modified Hausdorff distance.
	Degree of friendship
	Intuitionistic fuzzy sets and distances
	First version of weights determination formula
	Second version of weights determination formula
	Third version of weights determination formula

