
International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

147

METHOD OF BEHAVIORAL SOFTWARE MODELS SYNCHRONIZATION

Elena Chebanyuk

Abstract: A method of behavioral software models synchronization is represented in this paper. Implementing

this method behavioral software models, which are changed after communication with customer, are

synchronized with other software models that are represented as UML diagrams. Method of behavioral software

artifacts synchronization makes the Model-Driven Development (MDD) approach more effective. For

synchronization of different behavioral software models, transformation approach in the area of Model-Driven

Architecture (MDA) is proposed. Synchronization operation is executed using analytical representation of initial

and resulting models. Initial behavioral software model is represented by UML Use Case Diagram. Resulting

behavioral software model is represented as UML Collaboration Diagram. Analytical representation of UML Use

Case diagram allows considering data flows. For this representation set-theory tool operations are used. As a

Collaboration Diagram usually contains more information in comparison with Use Case one, method defines two

types of Use Case diagram fragments. From the beginning Use Case diagram fragments that can be transformed

directly to resulting diagram constituents are considered. Then the rest of Use Case diagram fragments are

processed to represents rules of placement Collaboration Diagram messages. These rules help to designate data

flows, represented in Collaboration Diagram, more accuracy.

Method, proposed in this article, can be used both separately and be a part of more complex transformation

technics, methods and frameworks solving different tasks in MDA sphere. Also the example of proposed method

realization for solving task “designing of Vector hodograph of density lying function” (VHDLF) is represented. A

process of designing Collaboration Diagram, considering Use Case diagram and ontology knowledge analysis is

represented. The constituents of Collaboration Diagram, which are designed using different sources, namely Use

Case diagram, ontology knowledge and requirements specification are defined.

Keywords: Software model transformation, Use Case diagram, Set-theory tool, behavioral software model

synchronization, Vector hodograph of density laying function.

ACM Classification Keywords: D.2.2. Design Tools and Techniques, D.2.11. Software Architectures

Introduction

Today software development process according to agile methodology becomes more widespread. One of the

peculiarities of Agile is possibility to change software requirements in every development iteration.

When requirements are changed often it’s necessary to design methods for quick synchronization of software

models that are renewed after communication with a customer and other software artifacts. Among software

artifacts that are renewed after communication with customer are UML Use Case diagrams or their varieties (user

stories).

Central software models in MDD approach are Collaboration Diagrams. These diagrams can both represent

processes and define objects that are used for executing these processes. Collaboration Diagrams also are

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

148

sources for refinement of algorithms, generation of test cases, analysis of objects, editing of processes and

designing of static software models (Class and Packages diagrams).

Use Case and Collaboration Diagrams are examples of behavioral software models [Gupta, 2012]. They are also

called Computation Independent Models (CIM) in MDA approach. The purpose of CIM models in MDA approach

is to represent processes and algorithms of solving software tasks and an order of objects collaboration

[Marín, 2013].

It is very important after every requirement changing to obtain actual Collaboration Diagram. As Collaboration

Diagram contains more information in comparison with Use Case diagram, it is necessary to use additional

sources for executing synchronization operation of these diagrams. Other sources of information for designing

Collaboration Diagrams are domain knowledge, requirement specification and other behavioral software models

that are represented as UML diagrams (Figure 1). Keeping this condition one can obtain a Collaboration Diagram

satisfying Model Driven Engineering (MDE) approach requirements.

Figure 1. Information sources for designing of Collaboration Diagram

Application of approaches, allowing behavioral software models transformation helps to raise effectiveness of

solving the next tasks:

 Design model transformation tools, methods and technics in MDA sphere;

 Develop techniques of software models processing and analyzing;

 Synchronize software artifacts.

An analytical representation of information about behavioral software models can be used for successful solving

of the next tasks:

 Maintaining history of artifacts changing;

 Designing tools and frameworks for checking whether software model corresponds to MDE

requirements;

 Checking, merging, reusing and executing other operations of software models processing;

 Designing new and extending existing notation of formats for saving information about software models

(for example XMI);

 Requirements elicitation process and other activities.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

149

That is why the task to design a method for synchronization of Collaboration Diagrams with artifacts that are

changed after communication with customer using an analytical representation of input and resulting software

diagram is actual.

Related works

Necessity for software artifacts synchronization is a cause of appearing series of papers that are devoted to this

question.

Authors [Tombe, 2014] proposed using UML Use Case diagrams for maintaining requirements specification to

capture scenario requirements as per the software maintenance tasks to be performed. Then Use Case diagrams

are translated into Use Case model, from which the analysis model is derived, and then the models of the

subsystem are designed from the analysis model to map into the existing architectural design of the ready

system.

Paper [Daud, 2014] presents review of requirement engineering tools. Using this tools one can execute tracing

requirements activities for software development process.

Authors proposed to divide the requirement engineering tools available in the market into two main categories:

the commercial Requirements Engineering (RE) tools and the RE research tools. The requirement engineering

tools for the comparison analysis comprises of three commercial requirement engineering tools, namely the

RAQuest, QPack Tool and Enterprise Architect and four requirement engineering research tools which are the

EA-Miner Tool, LRS Requirements, WikiReq system and Nocuous Ambiguity Identification (NAI). Main fourth

requirement engineering activities were defined by authors, namely requirements elicitation and analysis,

requirements validation and requirements management. Both the commercial and research requirement

engineering tools support just a part of the requirement activities and focus on a partial solution for a particular

requirements management activity.

Also involving both analytical representation of behavioral software model and transformation approaches into

software development process [Chebanyuk, 2014] simplifies operations of static and behavioral software models

synchronization, model transformation operations, improves model checking process, requirement validation and

verification operations.

Research, presented in paper [Goknul, 2014], and has been devoted to relating requirements and design artifacts

from source code. This paper presents an approach for generation and validation of traces between requirements

and architecture. The approach directed for improving the currently observed practices by providing a degree of

automation that allows faster trace generation and improves the precision of traces by validating them.

First, by using architectural verification, traces that otherwise would be missed in case of manual assignment and

informal reasoning are discovered. Second, by using trace validation, we may reveal traces that are false positive

traces.

An analytical background of approach that helps to trace requirements includes a representation of processes as

subsets of Cartesian products of different sets. Other operations from the set theory tool give the schematic view

of the relations between requirements and architecture. The definition of the requirements trace types formalizes

the intuition that a part of software architecture is an implementation of a set of requirements. Approach proposes

some iteration. Number or links may be increased after every requirements elicitation operations.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

150

It is necessary to notice [Diskin, 2014], that the task of software artifacts synchronization is considering in MDD

approach as vival. MDE approach poses several challenges for transformation tools, e.g. support of

bidirectionality, instrumentality, informational symmetry, and ultimately concurrent updates. Having taxonomy of

synchronization behaviors, with a clear semantics for each taxonomic unit, could help to manage these problems.

Authors of paper presented a taxonomic space of model synchronization types and provided it with formal

semantics. They considered computational and form a taxonomic plane classifying pairs of mutually inverse

transformation operations. Also they proposed to classify relationships of organizational dominance between the

models to be kept in synchronization. This allows infer the requirements for model transformations stools and

theories to be applied to the problem. This knowledge can be useful both for MDE tools users and MDE tools

builders for specifying MDE tools capabilities and behavior.

Collaboration Diagram designing using both Use Case diagrams and other knowledge sources

Analytical representation of Use Case diagram

Use Case diagram consists from subsystems. A set of all subsystems is denoted as follows: . Consider a Use

Case diagram subsystem  and its constituents, namely: precedents, actors, precedents with marks

<<include>> precedents with marks <<extends>> and comments.

Introduce the following notation:

A set of actors in subsystem  is denoted as follows A .

A set of precedents in subsystem  is denoted as follows P .

A set of precedents in subsystem with <<include>> mark is denoted as follows)(includeP .

A set of precedents in subsystem with <<extends >> mark is denoted as follows)(extendsP .

A set of comments in subsystem is denoted as follows K .

A set of conditions transition between subsystem elements in subsystem  is denoted as

follows  .

A set of associations between elements in subsystem  is denoted as follows  .

Define  as a subset of Cartasion product of the following sets: A , P ,)(includeP ,)(extendsP

, K ,  ,  .

,

}

,)(,)(,,
,,,{)()(

)()(

42

75654131412211

2111111121




















pp

pppppextendsppincludeppppp

pkppkapappextendsPincludePAKP

extendsPincludePAKP

signsign








(1)

where)()(,,,7,...,1, 311 includePincludepAaKkiPpi
  ,

)()(3 extendsPextendsp  ,  1 ,  T1 .

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

151

The expression)()(extendsPincludePAKP   describes an analytical representation of all

possible combinations of constituents for subsystem  .

Preparing an analytical representation using expression (1) in is necessary to consider that the order of

constituents in “<” and “>” brackets corresponds to the order of Use Case diagram elements.

Matching of constituents when a Use Case diagram is transformed to Collaboration one is denoted as follows

(Table. 1):

Table 1. Matching of Use Case diagram constituents to Collaboration Diagram constituents

Use Case diagram constituent Collaboration diagram constituent Reasoning of matching

Actor Object Both actors and objects make actions

Precedent Message Both precedent and messages serve for

representing actions

Comment Comment The same meaning

When a Use Case diagram is transformed to Collaboration Diagram the next rule of precedent arrangement in

Use Case diagram is used: the order of precedent placement should repeat the sequence of processes that

should be realized in software. If the Use Case diagram precedent has less number the process, matching to this

precedent should be executed before process or part of the process represented by precedent with bigger

number.

Before transforming a Use Case diagram to Collaboration one, all the Use Case Diagram precedents should be

numbered according to this rule. Also messages in resulting Collaboration Diagram are numbered according to

this rule too.

Rules of placement messages for designing Collaboration Diagram from the Use Case one

When a Use Case Diagram precedent matches to a Collaboration Diagram message (Table 1) three cases can

be considered:

 One precedent corresponds to one message;

 ONE precedent corresponds to several messages;

 Several precedents correspond to one message.

Also a precedent in Use Case diagram does not define all messages in Collaboration Diagram because a

Collaboration Diagram contains more information in comparison with Use Case diagram (Figure1). Transforming

Use Case diagram precedents to Collaboration Diagram messages we define rules for placement of

Collaboration Diagram messages sequence. In order to do this notation of meta-language for description of

problem domain processes is used [Chebanyuk, 2013].

According to this notation a sequence from n operations that are executed for solving some task is denoted as

follows:

}...{ 21 npppH  (2)

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

152

where ip - is an operation from the sequence H. The sign  shows that sequence of operations is important.

Consider a fragment of a Use Case diagram that consist from two precedents 1p and np connected by a link

(Figure 2a). Define such a fragment as 1nP .

a) b) c)

Figure 2. Use Case diagram fragments

Analytical representation of fragment nP1 (Figure 2a) corresponds to the next expression:
PppwhereppP nn

n  ,11
1 .

As Use Case Diagram precedents correspond to Collaboration Diagram messages (Table 1), an analytical

representation of Use Case Diagram fragment nP1 (Figure 2a) is denoted as follows:

}{ |
1 npPpH  (3)

where |P - is a set of operations that can be executed between operations 1p and np . Existence of the set
|P is

explained by the fact that Collaboration Diagram contains more information in comparison with Use Case

Diagram.

The first rule of Collaboration Diagram messages placement is formulated as follows: when fragment nP1

(Figure 2a) of Use Case diagram is transformed to Collaboration one, message 1p should be placed before

message np . In some cases the set |P can be empty.

Formulate the second rule of Collaboration Diagram messages placement. Consider precedents that are located

as it is represented in Figure 2b. From precedent 1p , n brunches are started. Every brunch links the precedent

1p with one of the precedents ip 1 , ni ,...,2 . Denote this fragment as
)...23(1 nP . An analytical form for

representation such a fragment is denoted as follows:

   nn
n ppppppppppP 32113121
)...23(1 (4)

In expression (4) the order of multipliers matches with the order of precedents arrangement (see Figure 2b). In

other word from the beginning operation 1p is executed then one operation from the set }...{ 32 nppp is

executed.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

153

Brunching of the precedents shows that every pair of precedents 1p and npp ii ,...,2,  can be represented

using expression (3). But it is necessary to take into account the fact, that the choice of transition variant is

determined by some condition. This condition is defined by peculiarities of concrete task. A set of all possible

conditions providing transition from the precedent 1p to precedent npp ii ,...,2,  is denoted as follows:

1pT T . Using (3) and 1p
k T where 1pT T an analytical representation of the Use Case Diagram

fragment)...23(1 nP (Figure 2b) is formed:






















}{
.
.
.

}{

}{

|
1

32
|

12

21
|

11

nnkn

j

i

pPpH

pPpH

pPpH






 (5)

Every row of the expression (5) shows that if some condition from the set 1pT T is “true”, then the sequence

of operations iH , i=1,…,n is executed.

The second rule of Collaboration Diagram Messages placement is formulated as follows: if in a Use Case

diagram precedent 1p is linked with precedents npp ii ,...,2,  pair wise then the message 1p should be

located before any message npp ii ,...,2,  in corresponded Collaboration Diagram. Also the set TT p 1

of conditions should be formulated.

Reasoning by analogy formulates an analytical representation of Use Case Diagram fragment 1)23(nP

(Figure 2c).

   13211312
1)23(...... ppppppppppP nn

n (6)

An analytical representation of the third rule of transformation a Use Case Diagram into Collaboration one is

denoted as follows:






















}{
.
.
.

}{

}{

1
|

12
|

32

11
|

21

pPpH

pPpH

pPpH

nnkn

j

i






 (7)

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

154

Also a set TT nppp ...32 of conditions, allowing passing from the precedent nipi ,...,2,  to precedent 1p

is formed.

The third rule of Collaboration Diagram Messages placement is formulated as follows: if in a Use Case

diagram precedents nipi ,...,2,  are linked with precedent 1p pairwise then in Collaboration Diagram

message 1p should be located after all messages nipi ,...,2,  . Also the set of conditions TT nppp ...32

should be formulated.

Consider cases of transforming Use Case Diagram fragment, looking as fragment in Figure 2a, but adding the

condition that links between precedents 1p and np contain marks <<include>> or <<extends>> (Figure 3)

a) b)

Figure 3. Use Case Diagram fragments that have different marks between precedents

Consider a Use Case Diagram fragment where two precedents are linked with <<include>> mark (Figure 3a).

An analytical form of representation such a fragment is:  npincludep)(1 .

Formulate an analytical representation of the fourth rule of transformation a Use Case Diagram into Collaboration

one. Consider expression (3). According to Use Case diagram notation if link between two precedents contains

<<include>> mark, actions 1p and np should executed consequently. That is why |P . As a result we

obtain expression:

}{ 1 nppH  (8)

The fourth rule of Collaboration Diagram Messages placement is formulated as follows: if in a Use Case

Diagram precedents 1p and np are linked with <<include>> mark then in corresponding Collaboration Diagram

messages 1p and np are located sequentially.

Consider a Use Case Diagram fragment where two precedents are linked with <<extends>> mark (Figure 3b).

An analytical representation of such a fragment is denoted as follows:  npextendsp)(1 .

An analytical representation of the fifth rule of transformation a Use Case Diagram into Collaboration one is

denoted as follows:














}{
}{

}{
}||{

24

13

212

121

p

p

pp

pp

H






 (9)

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

155

The sources of formulating the set TT npextendsp )(1 of conditions are Use Case Diagram requirement

specification document and domain knowledge, namely information about business processes.

true1 if messages 2p and 1p are executed in parallel.

true2 if message 1p is executed before message 2p .

true3 if existence of the message 2p in Collaboration Diagram is not obligatory.

true4 if existence of the message 1p in Collaboration Diagram is not obligatory.

If some conditions cannot be defined the variant }{ 21 ppH  is chosen by default.

The fifth rule of Collaboration Diagram Messages placement is formulated as follows: if in a Use Case

Diagram precedents 1p and 2p are linked with <<extends>> mark then in corresponding Collaboration Diagram

messages 1p and 2p are located sequentially. The order of execution and necessity of presents one of these

messages can be defined more exactly by means of conditions from the set TT npextendsp )(1 .

Consider a case when two Use Case Diagram precedents are linked by means one of some association type,

namely: (1 1), (1 *), (* 1) or (* *).

An analytical form of representation such a fragment is:  signsign pp 21 , where sign specifies the association

type, namely 1 or *.

An analytical representation of the sixth rule of transformation a Use Case Diagram into Collaboration one is

denoted as follows:

}{ 12 ppH signsign   (10)

The first mark “sign” specifies multiplicity for the precedent second respectively.

The sixth rule of Collaboration Diagram Messages placement is formulated as follows: if in a Use Case

Diagram precedents 1p and 2p are linked with multiplicity mark then sign=* can denote a collection of objects, to

which message is directed.

Variants of Use Case Diagram fragments transformation to Collaboration Diagram fragments and rules

Table 2 systemizes the variants of transformation Use Case Diagram fragments to Collaboration one (rows one

and two). Also the Table 2 gives an analytical representation of the rules of Collaboration Diagram Messages

placement (other rows). These rules are used when direct transformation doesn’t contain all necessary

information for obtaining Collaboration Diagram satisfying MDE requirements.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

156

Table 2 Matching Use Case Diagram fragments into Collaboration Diagram fragments and rules

Use Case diagram

fragment

An analytical

representation of this

fragment

An analytical representation of rule

defining Collaboration Diagram

Messages placement

Collaboration diagram

fragment

1 2 3 4

 ap -

 akp -

 21pp }{ |
1 npPpH  -

)...,(321 npppp






















}{
.
.
.

}{

}{

|
1

22
|

12

11
|

11

nnkn

j

i

pPpH

pPpH

pPpH






 -

 132)...,(pppp n






















}{
.
.
.

}{

}{

1
|

12
|

32

11
|

21

pPpH

pPpH

pPpH

nnkn

j

i






 -

 21)((pincludep }{ 1 nppH  -

 21)((pextendsp














}{
}{

}{
}||{

24

13

212

121

p

p

pp

pp

H






 -

The note: As comments’ are transformed definitely they are not considered in the Table 2 (except row 2).

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

157

Method of transformation a Use Case diagram into Collaboration one

1. An analytical representation of Use Case Diagram according to expression (1) is formulated.

Introduce the denotation for the representation of precedent brunches in Use Case Diagram. Example of

brunches is represented in the Figure 2b. The precedent 1p is denoted as a root precedent. The sequence of

linked precedents that are followed after the root precedent is denoted as follows:

),...,(21
_1  n
pip  (11)

where ip – can be root precedent for the new fragment or the last precedent in chain of precedents,  i - is

an element of chain number i, containing an analytical representation of a Use Case diagram fragment. n -
number of fragments in the chain.

2. Define constituents in analytical representation of Use Case diagram that are transformed to Collaboration
Diagram fragments directly (Table 2).

3. Define constituents in analytical representation of Use Case diagram that are used to formulate rules of
Collaboration Diagram messages placement (Table 2).

4. Design a Collaboration Diagram using all data obtained in pervious points and other sources of information,
namely requirements specification, domain knowledge, information about business processes.

5. Refine a Collaboration Diagram in order to define whether if satisfices to MDE requirements.

Designing Collaboration Diagram for solving task “Plotting of vector hodograph of density
laying function” for two details that have arbitrary shape of outer contour”

Consider a Use Case Diagram that was designed after communication with customer (Figure 4) for solving this
task.

Figure 4. Use Case Diagram of task designing VHDLF defining of polygons mutual alignment on the plane

As for designing Collaboration Diagram, that meets MDE requirements, it is necessary to involve both Use Case

diagram and other sources we represent ontology knowledge and business processes description of

investigated problem domain.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

158

Terms from the vocabulary of problem domain ontology

Pole of detail – any point inside of the detail.

Stationary detail – detail that does not move when VHGLF is defined.

Movable detail – detail that moves around stationary detail when VHGLF is defined.

Consider Figure 4. Triangle is movable detail, quadrangle is stationary ones.

Offset vector – vector that defines shifting of movable detail for defining the next point of VHGLF.

Peculiarities of business processes in considered problem domain

Represent a short description of an algorithm allowing designing VHGLF and functional requirements to

application that realizes described algorithm.

The Algorithm for designing VHGLF for two kinds of details which have an arbitrary form of outer contours:

1. Two details are packed densely (Figure 5a).

2. An offset vector for next position of movable detail is defined. The principles of an offset vectors defining are

shown in the Figure 5. In some cases the offset vector is defined by face of stationary detail. (Figure 5a, 5b, 5e).

When this kind of moving (Figure 5c) causes intersection of details the offset vector is defined by face of movable

detail (Figure 5d).

3. Movable detail is shifted on the offset vector.

4. The coordinates of movable detail pole are added into array of VHGLF coordinates.

5. Check whether the current coordinate of movable detail pole matches to the first hodograph point. If no then go

to the p.2 else the designing of VHGLF is finished.

a) b) c)

d) e)

Figure 5. VHGLF designing

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

159

Represent a short description of this Use Case Diagram (Figure 4).

Use Case Diagram represents main actions that are done when VHGLF is designed.

1. Two details, namely stationary and movable are packed in laying (Figure 5a). These actions are described by

Use Case diagram precedents “choose one detail” and “choose another detail” on Figure 4.

The packing of details can be done in interactive mode (fragment of the Use Case Diagram <<extends>>, and the

precedent “interactive mode”) or in automated mode. Both modes require checking of condition whether details

are touching in concrete point (fragment of the Use Case Diagram <<include>> and the precedent “Check

touching” (Figure 4)).

The note: to design density laying for the same kind of detail one detail is chosen twice.

2. The first hodograph point is defined. It is matches with point of details intersection.

3. The next hodograph points are defined. Doing these one of two operations can be done. One operation is

movement of movable detail face by stationary detail face (Figure 5a, 5b, 5e). Another one when face of movable

detail is moved by vertex of stationary detail (Figure 5d). These actions are represented in precedents “move

vertex face” and move “face face” of the Use Case diagram.

4. Defining whether current coordinates of movable figure pole match with the first hodograph point. This action is

matches to precedent “analyze next vertex” of the Use Case diagram (Figure 3). If coordinates match the VHGLF

designing is finished else go to the point 3.

Example of transformation Use Case diagram into Collaboration one

Analyzing Use Case diagram (Figure 4) consider that all its constituents are transformed to Collaboration

Diagram constituents definitely.

1. Formulate an analytical representation of the Use Case diagram.

Define elements of the set for subsystem  , namely A , P ,)(includeP ,)(extendsP , K ,

 and  .

}{ 0 useraA w  ,

}det,,det,det|,...,{ 21070 ailsofncombinatiopailanotherchoosepailonechooseppp 

vertexfacemovepfacevertexmoveptouchingcheckpncombinatioeractivep  6543 ,,,int
}7 vertexnextanalyzep  ,

})()({)(320 pincludepincludepinclude w  ,

})()({)(420 pincludepextendspextends w  ,

},,{ 210
www kkkK  .

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

160

Using (1) formulate an analytical representation of the Use Case diagram.

},

,,,)(,)(,)(

,,,,{)()(

5757

7657
5

756523232

21201000

76

65

10







pppp

ppppppppppextendsppincludep

pppppapaextendsPincludePAKP

pp

ppp

pp

2. Combining p2 and p3 of the method of transforming Use Case diagram into Collaboration one form the table of

Collaboration diagram fragments and rules of Collaboration diagram messages placement (Table. 3).

Table 3. Representation of Collaboration Diagram fragments and rules of message placement

Analytical representation of the

Use Case Diagram fragments
Collaboration Diagram fragments and rules of messages placement

1 2




10

00

pa

pa















57

57

76

57
5

75

21

20

7

6

6

5

1

0

,

,

,

,

,

pp

pp

pp

pp

pp

pp

pp

p

p

p

p

p

p

p









75777

65676

57565

45474

37353

22212

12101

},,,{
},,,{
},,,{
},,,{
},,,{
},,,{
},,,{

PpPpH

PpPpH

PpPpH

PpPpH

PpPpH

PpPpH

PpPpH

 32)(pincludep }{ 328 ppH 

 32)(pextendsp
false1 , false2 , false3 , true4 }{ 348 pH 

truencombinatioeractive int

)(652 ppp










ailstayofoffsetPpPpH

ailmovingofoffsetPpPpH

det,},{

det,},{

62
|

12
|

3610

51
|

11
|

259




International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

161

The resulting Collaboration Diagram after executing points 4 and 5 of the proposed method is represented on

Figure 6.

Figure 6. Collaboration Diagram of process designing of VHGLF

Represent an explanation of Collaboration Diagram messages

1. Message 1. Choose two details from an array of model’s details.

2. Message 2. Define the first point of VHGLF in interactive mode.

3. Message 3. Define the first point of VHGLF in automated mode.

4. Message 4. Add the first point to the array of hodograph points.

5. Message 5, 6, 7. Define an offset vector analyzing positional relationship of the details (Figure 5).

6. Message 8.1, 8.2. Moving detail1 (detail2) define the next point of VHGLF by means of calculation

coordinates of intersection point.

7. Message 9. Add a point to the array of hodograph points.

Objects and messages that are defined from the Use Case Diagram are marked by blue color.

Objects and messages that are defined from the ontology knowledge are marked by green color.

Objects and messages that are defined from the ontology vocabulary are marked by red color.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

162

Conclusion

The method of synchronization software artifacts that are changed after communication with customer is

represented in this paper. Input behavioral software models are represented as Use Case diagram or its varieties

and resulting model is Collaboration Diagram.

Involving this method into software development process let’s to achieve the next advantages in MDD approach:

 Obtain behavioral software models that correspond to requirement specification;

 Allow further synchronization of software artifacts that are changed after Collaboration Diagram

modifying [Chebanyuk, 2014].

An analytical apparatus for the representation of Use Case diagrams allows:

 Design tools for management software artifacts history;

 Generate new notation and formats for saving information about Use Case diagram;

 Design or modify techniques, tools and methods for merging, comparing, reusing, converting or

changing software models.

Rules of Collaboration Diagram Messages placement can be used for:

 Checking whether behavioral software models meet MDE requirements, namely completeness of future

software processes representation, validity and being non contradictory;

 Refinement other software artifacts, that describe software behavior;

 Save information about problem domain processes and interconnections between objects.

Using of the proposed approach for maintaining requirements specification to capture scenario requirements

[Tombe, 2014] lets to improve tools for forming of an analytical models and designing of UML diagrams.

The review of environments of requirement engineering tools, presented in paper [Daud, 2014] shows that both

the commercial and research RE tools support just a part of the requirement activities. Method of synchronization

software models helps both designing new and improving existing methods for behavioral software models

transformation and focus on a partial solution for a particular requirements management activity.

Involving analytical representation of behavioral software diagrams into requirement tracing activities one can

simplify model conversion operations improve model checking process, requirement validation and verification

operations [Goknul, 2014].

Further exploration

Design an analytical apparatus and a framework for matching software requirements to architecture constituents.

This framework will allow modifying architecture constituents after changing of requirements in automated mode.

In order to achieve this goal it is necessary to do the following:

 Design an analytical apparatus for representation both static and dynamic models;

 Propose, check and verify mechanism for defining fully and partially matching elements of different

software models types.

International Journal "Information Models and Analyses" Volume 3, Number 2, 2014

163

Bibliography

[Chebanyuk, 2013] E. Chebanyuk Metalanguage for description problem domain processes. Міжнародна конференція

“Сучасна інформатика. Проблеми, досягнення та перспективи розвитку”,11-13 вересня 2013 р. Київ. Ін-т

програмних систем С. 63-64.

[Chebanyuk, 2014] E. Chebanyuk. An Approach to Class Diagram Design. Proceedings of the 2nd International Conference

on Model-Driven Engineering and Software Development. Pages 448-453.

[Daud, 2014] N. Daud, M. Kamalrudin, S. Sidek, S. S. S. Ahmad. A Review of Requirements Engineering Tools for

Requirements Validation Software Engineering Process Vol 1, No 1 (2014)

[Diskin, 2014] Z. Diskin, A. Wider, H. Gholizadeh, K. Czarnecki. A Taxonomic Space for Increasingly Symmetric Model

Synchronization. Generative Software Development Laboratory University of Waterloo University Avenue West,

Waterloo, Ontario, Canada N2L 3G1 , Feburary 2014.

[Goknul, 2014] A. Goknil, I. Kurtev, and K. Van Den Berg. "Generation and validation of traces between requirements and

architecture based on formal trace semantics." Journal of Systems and Software 88 (2014): Pages 112-137.

[Gupta, 2012] S. Gupta, J. Singla. A component-based approach for test case generation. International Journal of

Information Technology 5.2,Pages 239-243, 2012.

[Marín, 2013] B. Marín, J. Pereira, I G. Giachett, F. Hermosilla, E. Serral. A General Framework for the Development of MDD

Projects. Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development.

Pages 257-260

[Tombe, 2014] R. Tombe, Dr. S. Kimani, Dr. G. Okeyo. Method for software maintenance risk assessment at architecture

level. Journal of international academic research for multidisciplinary ISSN: 2320-5083, Volume 2, Issue 1, February

2014.

Authors' Information

Elena Chebanyuk – lecturer in National aviation university, associate professor of software

engineering department, Ukraine; e-mail: chebanyuk.elena@gmail.com

Major Fields of Scientific Research: Model-Driven Architecture, Domain engineering, Code reuse.

	01-IMFE-Atanasov-formatted.pdf
	Operations ``reduction" over an IMFE
	Operation ``projection" over an IM
	"Inflating operation" over an IM
	Operation "substitution" over an IM

	03-Evgeniy.pdf
	 Modified Hausdorff distance.
	Degree of friendship
	Intuitionistic fuzzy sets and distances
	First version of weights determination formula
	Second version of weights determination formula
	Third version of weights determination formula

