
International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

233

METHOD OF DOMAIN MODELS DESIGNING

Elena Chebanyuk

Abstract: Method of domain models designing is proposed in this paper. Domain models are represented as
class diagrams. Initial information for domain models designing contains both analytical representation of domain
data streams and domain entities.

Domain data streams are defined using collaboration diagram. Analytical representation of domain data streams
as a subset of Cartesian product of the following sets: objects and messages are proposed. Also an approach of
decomposition collaboration diagram into fragments for defining data streams is represented.

Rules of defining relations between classes of domain model by means of analysis both analytical and graphical
representation of domain data streams are formulated. Both description of domain entities and interconnections
between them are represented in terms of algebra describing software static models.

Proposed method involves an iterative approach for domain model designing. Firstly it is necessary to obtain
information about class diagram constituents. Then information about methods of classes is complimented using
analytical representation of domain data streams. Using both analytical representation of domain data streams
and analytical description of entities relations between class diagram constituents are defined and clarified.

An example of designing domain model for domain “designing cutting schemas for leather goods details” is
represented. Also information about interconnections of domain entities and domain processes is represented.

Keywords: class diagram; collaboration diagram; model transformation; model driven architecture; set-theory
tool; transformation rules; cutting schemas designing.

ACM Classification Keywords: D.2.2 Design Tools and Techniques; D.2.11 Software Architectures

Introduction
Using models in software development processes increases productivity of various development activities, such
as domain analysis, automated code generation, designing domain specific languages, representation of a
software system with necessary details, testing, requirement analysis, software documentation, code reuse and
other tasks. It is a background for development of special technics and approaches for software models
transformation.
Often software models are represented as UML diagrams. Most of the models that are used in software
development process can be divided into static and dynamic (behavioral).
Static software models emphasize a structure of a software system using objects, attributes, operations, and
relationships. Examples of static software models are class diagrams, component diagrams, packages diagrams
and composite structure diagrams [Gupta 2012].
Dynamic of behavioral software models emphasize the dynamic behavior of a software system by showing
collaborations among objects, processes and data flows and changes to the internal states of objects. It includes
collaboration diagrams, sequence diagrams, activity diagrams and state machine diagrams [Gupta, 2012].

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

234

Important task of Model Driven Architecture (MDA) is designing of languages, technics, rules and other tools for
transformation of behavioral (dynamic) models into static software models. Using of such technics allows applying
an MDA approach for raising effectiveness of processes in software development life cycle according agile
methodology.
It is a background of appearing series of papers that are devoted to different aspects of software development
processes, creating of analytical tools, generating new artifacts from behavioral software models [Gupta, 2012],
estimation of code reuse effectiveness, tools for an analytical description of software static models
[Chebanyuk, 2013] and other aspects that are based on software models represented in a form of UML diagrams
[Acretoaie, 2013; Whittle, 2009; Kappel, 2012].
This paper is a continuation of researches that are presented in paper [Chebanyuk, 2013].

Related works
Paper [Gupta, 2012] represents an approach of generating test cases based on use case models that are refined
by state diagrams. State diagrams are transformed into usage graphs and then to usage models from which test
cases are generated. Also an automated approach of using Adaptive Agent to automatically generate test
scenarios from the UML Activity Diagrams is represented. Also the features of PETA tool for the solving of
automatic generation of test cases are presented. PETA tool is Java/eclipse based platform for automated
software testing.
But an operation [Gupta, 2012] of representation UML activity diagram as state table and writing it into in to some
file is rather consuming when activity diagram is large. Also mechanical errors are possible when test cases are
generated.
Recently, several approaches adopting the Model Transformation technics to software development processes
have been proposed [Whittle, 2009]. These approaches use the concrete syntax of the source and target models
to define transformation rules, and thus propose a change to the overall model transformation mechanism.
Namely, the transformation definition directly references the source and target models.
Paper [Acretoaie, 2013] is devoted to definition and implementation of a model transformation language focused
on usability. This language uses transformation templates and attributes for refactoring models. Before
refactoring a model must satisfy to some preconditions. And after refactoring some postconditions must hold true
too. But templates that are proposed in paper [Acretoaie, 2013] relate only to class diagram. Use of information
from behavioral models allows clarifying patterns, designing new templates, and increasing an effectiveness of
models refactoring procedure.
Also an approach originates in the Aspect Oriented Modeling (AOM) field. For example (MATA) [Kappel, 2012] is
an aspect composition language based on graph transformation rules expressed in concrete syntax.

Task and challenges
To design transformation rules in order to convert software models of one type (for example static model of one
type converts to static model of another type).
But more effective domain models can be designed using a complex approach considering initial information from
both types of software models static and dynamic. Also it is necessary to consider information about peculiarities
both data streams with and structural components of domain model.
Domain model that is designed according to the proposed method must meet the following requirements of
completeness, information content, accuracy and not contradictory. Also the format that is proposed for saving

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

235

information about domain models should be compatible with formats of ontology saving (for example RDF or
OWL), to allow transformation, refactoring, verification and other operations with models.
Task: to propose the method of domain models designing. Domain model must meet the following requirements:
completeness, information content, accuracy and not contradictory. In order to meet this requirements domain
model should be designed using information from both behavioral software models and structural components of
domain. In order to analyze domain processes and data streams to propose the rules of collaboration diagrams
analysis. To design rules for mapping fragments of collaboration and class diagrams.

Analytical representation of domain processes
Represent an analytical description of domain processes, using behavioral software models, namely collaboration
diagram. Appointment of a collaboration diagram is the next “Collaboration and sequence diagrams are used to
capture dynamic interactions between objects and system. A collaboration diagram consists of objects and
associations that describe how the objects communicate. An interaction occurs when two or more objects are
used together to accomplish one complete task [Gupta, 2012].
Introduce the following notation.
A set of collaboration diagram objects is denoted as Object.
A set of collaboration diagram messages is denoted as Messages.
Consider a process of some domain entity creation.
Data streams that are occurring before some domain entity creation are denoted as input data streams.

A subset of the set Object that contains objects that are used in input data streams is denoted as entityObject .
entityMessages - is a subset of the set Messages that are used in input streams of some domain entity

creation. This entity should be matched with some object in collaboration diagram, namely having the same
name.

Subsets entityObject and entityMessages contain only those objects and messages that are directly
interconnected with considering collaboration diagram object (or domain entity). This interconnection is
represented by arrows in graphical notation of collaboration diagram.

Consider any collaboration diagram element Objectobject ∈ . Describe a process of creating domain entity as

a subset of Cartesian product of the following sets: entityObject and entityMessages .













><><>=<×

=

=

×⊆

mn
entityentity

m
entity

n
entity

entityentity

messageobjectmessageobjectmessageobjectMessagesObject

messagemessageMessages

objectobjectObject
MessagesObjectEntity

...,
},...,{

},...,{

0100

0

0 (1)

Expression (1) shows that for creation of some domain entity objects and messages can interoperate in any
order. It allows usage of alternative data streams for domain entities creation.

Templates for input data streams analysis
Proving the condition of reliability collaboration diagram interconnections shows actual domain data streams.
Collaboration diagram analysis shows, that graphical notation proposes several types of input data streams. We

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

236

analyze them in order to represent templates for transformation of collaboration diagram fragments into their
analytical representation and class diagrams fragments.

Table 1. Templates for input data streams analysis
Graphical representation of input

streams
Interconnections between objects

1 2

Figure 1. The first type of input data

stream

Template one (Figure 1) shows the first type of input data stream.
Analytical description of this template is denoted as

bMessagea →→)1((2)

This template shows that in order to create object B it is necessary
to use an object A or any of its properties. This template
corresponds to composition relation between objects A and B.

Figure 2. The second type of input data

stream

Template two (Figure 2) shows the second type of input data
stream. Analytical description of this template is denoted as

bMessageca →→)1(, (3)

This template shows that in order to create object B it is necessary
to use objects A and C or any of theirs properties. This template
corresponds to composition relations between pairs of objects A, B
and B, C respectively.
The note If the number of input data streams will be more than two
an input data stream will be considered as template two.

Figure 3.1. The third type of input data

stream

Figure 3.2. The fourth type of input data

stream

Template three (Figure 3.1) shows the third type of input data
stream. Analytical description of this template is denoted as

bMessageMessageca →→)2,1(, (4)

Template three shows that there are alternative input streams for
creation of object B. This template corresponds to aggregation
relations between pairs of objects A, B and B, C respectively. The
note If the number of input objects data streams are more than two
an input data stream will be considered as template three.
Template four (Figure 3.2) shows the fourth type of input data
stream. Analytical description of this template is denoted as

bMessageMessageca →→)3,2(, (5)

Template four also shows that there are alternative input streams for
creation of object B. As analytical description of template four
matches with analytical description of template three we consider
that this template also corresponds to aggregation relations between
pairs of objects A, B and B, C respectively.

Prove that streams of the first and second types correspond to composition relations.

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

237

Consider a stream of the first type. A set from n operations that are executed by object B is denoted as
},...,,{ n

b opopop 21=Ε . Number of operations in the set bΕ is denoted as bN ; number of operations that are

depended upon object A or its properties is denoted as)(aNb .

In order to prove composition relations it is necessary to prove that bb NaN =)(.

Consider that bb NaN <)(. Then it is necessary to find at least one input interconnection between object B and
other collaboration diagram objects. Then an analytical representation of input stream will meet to (4) or (5).But
input stream corresponds to the condition (2). That is to create an object B we need to involve an object A or
some of its properties. This implies that the object B depends upon the object A or some of its properties and
equality is proved.
Proof that input stream of the second type is considering to composition relations between all object pairs of
objects A, B and A, C is similar. Data streams are considered pairwise.
Thus, analytical representation of the second type of data streams is denoted as follows:













>=<×

=

=

×⊆=

1

1

MessagecaMessagesObject
MessageMessages

caObject
MessagesObjectbbEntity

bb

b

b

bb

,,
}{

},{ (6)

 Prove that streams of the third and fourth types correspond to aggregation relations.

In order to define aggregation relations it is necessary to prove that bb NaN <)(. It shows, that there are some
operations, that are made by object B and these operations do not depend upon object A.
Consider a case with two input streams, then

bbb NcNaN =+)()((7)

As a collaboration diagram meet the following requirements: completeness, information content, accuracy and not
contradictory an object B can be created with the help of two operations, namely

(1) ,a Message b or→ → (8)

bMessagec →→)(2 (9)

Let us assume that the object B was created by means of operation (8). Then not all operations depend upon the
object C or its properties, otherwise the equality (7) is not proved.
Thus, analytical representation of the third and the forth types of data streams are denoted as follows:













>><=<×

=

=

×⊆=

21

21

MessagecMessageaMessagesObject
MessageMessageMessages

caObject
MessagesObjectbbEntity

bb

b

b

bb

,,
},{

},{ (10)

The note in order to denote a message its number on collaboration diagram is used.

Method of domain models designing
1. Obtaining information about domain entities in terms of algebra describing software static models.
Domain entities are described as classes of this algebra.

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

238

Define a class C as a subset of Cartesian product of the following sets: properties – A, fields – X and methods -B





><><><><=××
××⊆

}β,χ,α...β,χ,α,β,χ,α,β,χ,α{ΒΧΑ
ΒΧΑC

kmn121211111

 (11)

where n – is a number of class C properties, m – is a number of its fields, k – is a number of methods. Every triple
can contain one empty set. All properties and method of a class C with modifier private are denoted as follows

privateC , public -
publicC and protected -

protectedC respectively. Class C is denoted as follows:
protectedprivatepublic CCCC ∪∪= (12)

At least one set from the expression (12) can’t be empty.

All elements of a set X (fields of class C) are related to privateC , that is

XCC privateprivate ∪= (13)

If when the description starts the name of class is known class is denoted as follows)(nameC
[Chebanyuk, 2013].
A set of problem domain entities is denoted as follows:

})()(,)({ ,..., pnameCnameCnameC 21=Θ

where p – is the number of domain entities.
2. Designing a collaboration diagram showing processes and data streams of domain model
3. Forming a set P from those collaboration diagram objects that match with domain entities names.

∅≠Θ∅≠∅≠∩Θ= ,,, ObjectPObjectP (14)

The power of the set P shows how many domain entities match with names of the collaboration diagram objects.

4. For every Objectobject∈ analytical description of input data streams according to (1) is formed.

5. Clarification of domain entities description

Consider a class C(Name) satisfying the following conditions EntityNameCPNameC =∈)(,)(.

A set of methods)(NameCB of this class is supplemented by elements of a set entityMessages , namely

entitynameCnameC MessagesBB ∪=)(|)((15)

6. Defining association relations between domain entities.
Consider a pair of objects. A class C(Name) satisfying the following conditions

entityObjectNameCEntityNameCPNameC ∈≠∈)(,)(,)((16)

and collaboration diagram object named Entity. Association relations are set between all classes, that are
satisfied to the condition (16) and this object.
According to algebra, describing software static models association relationships are denoted as follows:

∅≠ΩΩ∪= ,)()(||
00 CFCF acc (17)

where accCF)(|
0 - is a functionality of class |

0C when it is interconnected by relationship of association with

class ||
0C . Classes |

0C and ||
0C , that are not interconnected by relationship of inheritance. Define a set of |

0C

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

239

methods in class that are called from class ||
0C asΩ . If classes |

0C and ||
0C are interconnected by relationship

of association, then the functionality of |
0C spreads on methods from the setΩ .

7. Clarifying association types between domain entities

Consider a class PnameC ∈)(. Denote a set of its properties as)(nameCA . Consider an element

Α∈)(nameCα . Denote a collaboration diagram object with the same name as property Α∈)(nameCα as OB.

Both graphical and analytical representations of object OB are analyzed. Then we compare input stream of object
OB with analytical (6), (10) and graphical representation (Figure 1-3) of input streams. If object OB input stream
matches to (6) or (10) representation we set proper type of association relation between classes OB and

PnameC ∈)(.

This operation is made for every element of the set P.
Analytical description of aggregation and composition relations was also proposed by algebra describing software
static models [Chebanyuk, 2013].

Functionality of a class |
0C when it is interconnected by relationship of aggregation with class ||

0C is denoted as
follows:

))(\)(()()(|||||| privateaggr CFCFCFCF 0000 ∪= (18)

where aggrCF)(|
0 - is a functionality of class |

0C when it is interconnected by relationship of aggregation with the

class ||
0C . When object of type ||

0C is created in a method of class |
0C , it is possible to call all methods of this

object ||
0C , excluding private.

Considering, that aggregation and composition relationships are differ by its content, not by structure when
classes |

0C and ||
0C are interconnected by relationship of aggregation, the functionality of class |

0C is spreads
similar to (14) and is denoted as follows:

))(\)(()()(|||||| privatecomp CFCFCFCF 0000 ∪= (19)

where compCF)(|
0 - is a functionality of class |

0C when it is interconnected by relationship of composition with the

class ||
0C .

The note if between some domain entities association relation was set and after that relation of composition or
aggregation was defined more strong relation remains, namely association changes to composition or
aggregation. Aggregation can be changed into composition.

Designing domain model for the domain “designing leather goods for cutting schemas”
1. Obtaining information about domain entities in terms of algebra describing software static models.
Consider main domain entities: details, linear effect – L, double grid – W, layout – Li, section – Sec and cutting
schema -Sh. Math apparatus for designing of single and double grid was described in paper [Chebanyuk, 2013].
Analytical description of classes)(LayingC ,)_(layingLeatherC and)__(twolayngLeatherC also
was proposed in this paper.
Consider domain entity – linear effect.

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

240

According to [Чупринка, 2011] defining of grid vectors is based on dense combinations of rectangles that have
been described around details. When two details are combined together there are six types of linear effects
(Figure 4).
The note: if detail is rotated on angle 180 by axis X it’s considered as detail of the second type.

Figure 4. Six types of linear effects when different details are combined together

Class Linear, namely , has the next properties – details that are used for defining a linear effect,
namely , ; grid for constructing of a laying, namely , vectors for designing of a
grid, namely and g [Chebanyuk, 2013] and a percent of material usage, namely P.

Methods of class – an estimation of a material usage percent, namely estimate(); creation of a
laying, namely - create(); saving of laying parameters, namely - save(); defining maximum linear effect for one
detail combination, namely – L1_Max();defining maximum linear effect for two details combination, namely –
L2_Max().
Analytical representation of a class :

(20)

Using grids layings are built. Domain entity was considered in paper [Chebanyuk, 2013]. Layings
are building blocks for constructing layouts.
Consider a domain entity – layout. Denote the height of material as – Height_m, length - Length_m. Layout – it is
rectangular area of a material, length Length_L (0< Length_L < Length_m) and height - Height_L (0< Height_L <
Height_m) with details that are systematically placed.
Class Layout, namely , has the next properties –length and height of layout, namely Height_L and
Length_L; details that are used in layout, namely and ; square of this details, namely
Sq1 and Sq2; double grid for designing of a laying , namely , density of layout den_L - and a layout
period, namely Period.
Methods of class – an estimation of a material usage percent, namely estimate(); creation of a
layout, namely - create(); saving of layout parameters, namely - save(); defining layout period, namely –
Define_Period(); defining density of layout – Define_density().
Analytical representation of a class :

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

241










=====
====

=====
=

sity}Define_deniod,Define_Persave, estimate, create,|,...,{=B
},Sq,_Рeriod,

С(W) ,С(detail2) ,C(detail1)Length_L, ,Height_L|,...,{=A
AxBC(Layout)

4321040

81765

4321080

βββββββ
αααα

ααααααα

2SqLden

(21)

H
ei

gh
t_

L

Length_L

Pe
ri

od
_L

X

X X

Y YY

Figure 5. Examples and parameters of layouts

A set of layouts is saved in data structure – List. Operations with the list of layouts are represented in class

)(LayC .

Consider a domain entity – section. According to definition section (Figure 6) combines details from some layouts
[Чупринка, 2011].

Figure 6. Examples of sections from one, two or three layings

Class Section, namely)(SectionC , has the next properties – length and height of section, namely Height_S and
Length_S; layouts that are used in section, namely list of)(LayC class; density of section den_S.

Methods of class)(SectionC – an estimation of a material usage percent, namely estimate(); creation of a
section, namely - create(); saving of section parameters, namely - save(); visualization of section, namely –
visualize().
Analytical representation of a class)(SectionC :









=====
====

=

gs}Swap_LayinVisualize,save, estimate, create,|,...,{=B
den_S} ,)LayС(Length_S, ,Height_S|,...,{=A

AxBC(Section)

4321040

321030

βββββββ
αααααα (22)

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

242

Cutting schema consist from sections [Чупринка, 2011]. Screenshot with an example of cutting schema is
represented on Figure 7.

Figure 7. Screenshot with an example of cutting schema

2. Designing a collaboration diagram showing processes and data streams of domain model. Collaboration
diagram must meet the following requirements of completeness, information content, accuracy and not
contradictory. As collaboration diagram was constructed after detailed analysis of domain entities (20)-(22) it
meets all this requirements.

Figure 8. Collaboration diagram, showing streams of domain “designing leather goods for cutting schemas”

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

243

3. Forming a set P (14) from those collaboration diagram objects that are matched with domain entities names.
},,,,det,|,...,{ SchemepSecpLipWpLppppP ======= 54321050 (23)

All collaboration diagram objects match with domain classes.

4. For every Objectobject∈ analytical description of input data streams according to (1) is formed.

Describe a process of domain entities creation (1).












><>=<×

=

=
×⊆=

155

155

211

21

.,,,,,
},.,{

},,{

gaaaMessagesObject
Messages

gaaObject
MessagesObjectLLEntity

LL
L

L

LL

 (24)

Consider the expression (24). LObject - is a set of objects that are used in input data stream when entity L is

created, respectively LMessages is a set of such messages. Elements of the set LMessages are the numbers
of proper messages. Other domain entities are created similarly.













><>=<×

=

=

×⊆=

177
177

21

21

.max,_,,,,
}.,{

max}_,,,,{

LgaaMessagesObject
Messages

LLgaaObject
MessagesObjectWWEntity

W

W

W

W

W

W

 (25)













>=<×

=

=

×⊆=

8
8

21

21

SSWMessagesObject
Messages

SSWObject
MessagesObjectLiLiEntity

LiLi

Li

Li

LiLi

,,
}{

},,{

(26)













>=<×

=

=

×⊆=

12
12

,
}{

}{

LayMessagesObject
Messages

LayObject
MessagesObjectSSecEntity

SecSec

Sec

Sec

SecSec

 (27)

5. Clarification of domain entities description.

5.1. Consider object L. Type of class L is Linear (Figure 8). According to (15) a set of methods LinearB is
complimented by elements and class Linear is complimented by methods:

654321 LLLandLLandLBB LinearLinear ______)(* ∪∪=

5.2 Consider object Li. Type of class L is Layout (Figure 8). Consider its input message CreateLayout (26). A set
of methods LayoutB contains a constructor. In this case the set LayoutB is not complimented.
5.3. Consider object sec. Type of class L is Section (Figure 8). Consider its input message FormSection (Figure
8). A set of methods tionBsec contains a constructor. In this case the set tionBsec is not complimented.
6. Defining association relations between domain entities.
6.1. Define relations between object L (object of type Linear) and other objects that are elements of the set P.
Classes 1a , 2a and g are properties of class L (21) and elements of the set `LObject . Considering pairs of
classes Linear and 1a , Linear and 2a , Linear and g .Between classes in this pairs association relations are set.
According to representation of association relation (17) we can write:

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

244





===Ω
Ω∪=

}____,__|,{
)()(

654321 1010 LLLandLLandL
LFLF acc

ββββ
 (28)

6.2. Define relations between object W and other objects that are elements of the set P.

All properties of class W match with elements of the set WObject (26). Considering pairs of classes W and 1a ,
W and 2a , W and g , W and L, W and L_max. Between classes in this pairs association relations are set.
According to representation of association relation (17) we can write:





==Ω
Ω∪=
}_{

)())((
WCreate

WFWCF acc

0β
 (29)

Analysis of other collaboration diagram objects is made similar.
7. Clarifying association types between domain entities
7.1. Consider properties of class Linear that are matched with elements of the set Piths properties are S1 and S2.
We analyze analytical and graphical representation of input streams for these objects. Input streams of objects
S1 and S2 corresponds to the first data stream (Figure 1). According to this analysis composition relation
between classes Detail and Linear is set.
Check this information using knowledge about domain. According to definition of linear effect it is not defined
without information about details (Figure 4) this fact proves composition relations between classes W and detail
(S1 and S2 are instances of this class).

{)))(det(\(det))(())(())((privatecomp CFCFLCFLCF ∪= (30)

7.2 Consider properties of class W that are matched with elements of the set P. These properties are gaa ,, 21 .
We analyze analytical and graphical representation of input streams for these objects. Input streams correspond
to the second data stream (Figure 2). According to this analysis composition relation between pairs of classes W
and 1a , W and 2a , W and g is set. Substitute weak association type to more strong. And composition relations
between all these three pairs are remained.
Check this information using knowledge about domain “designing cutting schemas for leather goods details”.
According to definition of double grid it is consisted from vectors. This fact proves composition relations between
following pairs of classes W and 1a , W and 2a , W and g.

But it is not necessary to use a procedure of calculating linear effects according to some algorithms of cutting
schemas designing. This fact proves association relations between classes W and L.
As a result represent an analytical description of relations is denoted as follows









∪∪∪=

==Ω
Ω∪=

)(\))((()(\))((()(\))((()())((

}_{
)())((

privateprivateprivatecomp

acc

gFgCFaFaCFaFaCFWCWCF

WCreate
WFWCF

2211

0β (31)

Analysis of other collaboration diagram objects is made similar. Represent the analytical description of relations
other collaboration object diagrams.
Analytical representation of class Linear relations.









∪∪=

==Ω
Ω∪=

)(\))((()(\))((()())((

}{
)())((

privateprivatecomp

acc

DetailFDetailCFDetailFDetailCFWCLiCF

utCreateLayo
LiFLiCF

2211

0β (32)

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

245

Analytical representation of class Section relations.









∪=

==Ω
Ω∪=

)(\))((())(())((
}{

)())((

privatecomp

acc

LayFLayCFSecCFSecCF

nFormSectio
SecFSecCF

0β (33)

Model of domain “designing cutting schemas for leather goods details” designed according to the proposed
method is represented on Figure 9.

detail

+Equals()
+Create()
+CompareTo()
+L1_L2()
+L3_L4_L5_L6()

L

+Max()

L:List

+Create()
+correct_vectors()

W

+Create()

vector a1,a2 and g
are entities of class vector

-Конец1

1

-Конец2

*

+Create()
+Define_percent()

Layout
+Max()
+Define_L1()
+Define_L2()
+Define_Percent()

Lay:List

-Конец1

1

-Конец2

*

+Create()
+Swap_Layings()
+Define_persent()

Section

-Конец1

1

-Конец2

*
+Create()
+Define_Percent()
+Save()
+Load()
+Swap_sections()

Schema

-Конец1

1

-Конец2

*

-Конец1

1

-Конец2

*

-Конец1

1

-Конец2

*

-Конец1

1

-Конец2

*

-Конец1

1

-Конец2

*

s1 and s2
are entities of class detail

-Конец1

1

-Конец2

*

-Конец11
-Конец2*

Figure 9. Model of domain “designing cutting schemas for leather goods details”

Conclusion
Review of papers that are devoted to model reuse shows that researchers mostly pay attention to design
transformation rules in order to convert software models of one type (for example static model of one type
converts to static model of another type).
The peculiarity of the proposed method of domain models designing is that it is necessary to use information both
from static and dynamic models. It allows obtaining more initial data that can be considered while domain model
designing. And also it influences to the quality of result.
Format of saving information about domain models is compatible with languages for ontology description (for
example RDF or OWL). It simplifies the procedure of model refactoring, describing new ontologies, splitting and
dividing models and other.
Rules of defining relations between entities that are based on domain streams analysis can be basic for designing
transformation technics when other dynamic models are transformed into static. Using of this technics allow to
help solving many actual task in MDA area.

Further exploration
Using the method of designing domain models and algebra describing software static models allows to represent
frameworks analytically by means of grouping class diagrams constituents according to design patterns and

International Journal "Information Models and Analyses" Volume 3, Number 3, 2014

246

propose a method of matching problem domain processes to constituents of a class diagram while designing
frameworks.
For this it is necessary to propose a concept of mapping processes characteristics and design patterns. This
concept also allows defining necessary components from a framework can be reused while analyzing
applications functional requirements.

Bibliography
[Acretoaie, 2013] V. Acretoaie. Delivering the Next Generation of Model Transformation Languages and Tools, Europian

conference of object oriented programming, pp. 2-10, 2013.
[Chebanyuk, 2013] E. Chebanyuk Algebra describing software static models, INFOS 2013 - "Intelligent Information and

Engineering Systems", in press, 2013.
[Gupta, 2012] S. Gupta, J. Singla. A component-based approach for test case generation, International Journal of

Information Technology 5/2, pp. 239-243, 2012
[Kappel, 2012] Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M., Model transformation by-example: a

survey of the _rst wave, in: Conceptual Modeling and Its Theoretical Foundations, pp. 197-215, 2012.
[Whittle, 2009] Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Ara_ujo, J., MATA: A United Approach for Composing

UML Aspect Models Based on Graph Transformation, In: Transactions on Aspect-Oriented Software Development VI -
Special Issue on Aspects and Model-Driven Engineering, Springer, 2009, pp. 191-237.

[Чупринка, 2011] В.І. Чупринка, О.В. Чебанюк, Автоматизоване проектування раціональних схем розкрою рулонних
матеріалів на деталі виробів шкіргалантереї, Вісник Східноукраїнського національного університету ім; Даля
№7(2), 2011,c. 46-50.

Authors' Information

Elena Chebanyuk – lecturer in National aviation university, associate professor of software
engineering department, Ukraine; e-mail: chebanyuk.elena@gmail.com
Major Fields of Scientific Research: Domain analysis, Domain engineering, Code reuse.

mailto:chebanyuk.elena@gmail.com�

	Introduction
	The analysis finitly small influences in linear models
	Sequential analysis of variants
	The method of basis matrices (MBM)
	Features representations of numbers in the computer
	Computer experiment in LM of low-dimensional
	Computer experiment on the analysis of small perturbations in the middle dimension LM
	Conclusion
	Acknowledgements
	Bibliography
	Authors' Information
	Introduction
	Research methodology
	Data Collection
	Results
	Discussion
	Study limitations
	Conclusion and future work
	Bibliography
	Appendix A
	Authors' Information
	Introduction
	Related works
	Task and challenges
	Analytical representation of domain processes
	Templates for input data streams analysis
	Method of domain models designing
	Designing domain model for the domain “designing leather goods for cutting schemas”
	Conclusion
	Further exploration
	Bibliography
	Authors' Information
	Introduction
	Used Data and methods
	Chronological distributions
	Concluding remarks
	Bibliography
	Authors' Information
	Introduction
	The general approach to the consideration of telecommunication technologies life cycle
	Conclusion
	Bibliography
	Authors information
	Introduction
	Description of the subsystem of planning of an agricultural enterprise
	The classification of types of plans
	General technology of planning
	Brief characteristics of tasks
	Planning of annual agricultural work in the context of each field and all stages of agrocampaign
	Designing of the executive plan and its providing with technological maps of operations
	Supporting and binding the technological maps of operations to the passport information of fields, crops and weather conditions
	Planning of resource needs, terms of their purchase and transportation to storage
	Correcting of the executive plan of work
	The role of the cartographic system
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Domain formalization for automate model construction
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Routing Protocols in Ad Hoc Networks
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Material and methods
	Discussion
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Proposed solutions
	Description of the Knowledge Base
	Knowledge Extraction
	Decision making
	Knowledge base construction
	Conclusion
	Acknowledgement
	Bibliography
	Authors' Information

