178 International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

THE EXPERIENCE OF THE AGENT-BASED SIMULATION SYSTEM DEVELOPING

Elena Zamyatina, Danil Karimov, Artiem Mitrakov,

Abstract: This paper discusses the problems of the agent-based simulation system design. It is well
known that agent models extend the capabilities of simulation for solving some problems that can’t be
solved by the methods of system dynamics and discrete event simulation. Particular attention in the
design and the implementation of agent-based simulation authors pay to the problems of distributed
simulation and the problems of intelligent agent’s implementation and the use of ontologies at all stages
of the simulation experiments.

Keywords: simulation, agent-based model, distributed simulation, intelligent agent
ACM Classification Keywords: .6 SIMULATION AND MODELING 1.6.8 Types of Simulation -

Distributed : 1.2 ARTIFICIAL INTELLIGENCE 1.2.5 Programming Languages and Software - Expert
system tools and techniques

Introduction

The problems encountered in everyday life (in industry, commerce, management, etc.) become more
complex, so it is necessary to develop new and to improve existing methods for solving these problems.
One of the methods for solving complex problems in various areas of activity is a simulation method.

It is well known that simulation is very important in the investigations of complex dynamical systems.
Simulation methods application are rational if it is very difficult to formalize a problem or in the case
when analytical and numerical methods require strong abstractions to avoid some sufficient details.

Two classes of simulation systems exist: continuous and discrete-event simulation (DES). But some
problems can't be described by continuous and discrete-event simulation models. This is true with
respect to the economic-mathematical models for example (these models describe the processes
occurring in the, ecological and economic systems in the form of equations and inequalities). Modern
models are dynamic and they have large dimensions. So designed simulation models may be valid but
contradictory.

So the application of new techniques that allow us to solve the problem of managing the complex
objects becomes relevant. One of the methods is the method of agent-based modeling. The essence of
the agent-based modeling is that the local behavior of agents operating under their own rules defines
the global behavior of the whole system (the concept of designing "bottom-up"). This differs from
traditional approaches to a simulation model design. The traditional approach supposes «top-down»
design. Investigator defines a set of global laws of the system behavior and the elements of this system
operate on basis of these global laws. But global functioning of the agent-based simulation system is not
known to the investigator. Two or three simple rules can already lead to very diverse forms of behavior

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 179

in a group of agents. An example is a boids-modeling and cellular automata theory [Macal & North,
2005; Macal & North, 2009].

The need for the development, analysis and a business process reengineering is another argument in
favor of the agent-based simulation [Klyshinskii, 2000]. Some operations in a business process are
executed by the objects that determine their own behavior (decision makers, automated and robotic
systems, objects that are managed by humans). The behavior of the object is determined by a set of
rules. The behavior of this object may differ due to particular situation: it should consider the impact of
other objects and the impact of the external environment.

So let us entertain the hypothesis that an agent is an independent (autonomous) system having the
opportunity to take effect from the outside world, to determine its reaction to this effect and to carry out
its reaction, and an intelligent agent - an agent which has some knowledge about itself and the world
around it, at that its reasonable behavior is determined by its knowledge. There are many works that
show the relevance of the application of agent-based approach in the marketing of [Ivashkin, 2003], in
the simulation of situations that occur in the auction [Gribanova, 2006], inventory management, supply
chains, etc.

Currently there are many software systems (most often - the software libraries) that implement agent-
based simulation. We'll discuss the various software systems below. These systems are both domestic
and foreign, both paid and freeware. This paper considers the specific features of architecture of agent-
based simulation systems and suggests some approaches to improve the adaptability of the software
product, the effectiveness and reliability of the agent-based simulation experiment.

Review of existing agent-based simulation systems

Let us discuss the specific characteristics of agent-based simulation systems and special libraries for
the creation these systems:

o Anylogic. AnyLogic [Borshchev, 2014, Borshchev et al, 2012] is one of the famous agent-
based simulation systems in Russia, and it is well known all over the world. AnyLogic permits to
use not only continuous modelling but discrete-oriented and agent-based modelling too. It has
graphical interface and the set of standard libraries. These tools make the process of simulation
model design simpler and allow designing simulation models for more wide class of problems.
AnyLogic was implemented on the base of Java language (so it is possible to say that Anylogic
is a cross-platform system), moreover the power of Anylogic may be extended if the investigator
includes into a simulation model some modules developed with the help of Java.

It is possible to develop Java-applets. These applets can be opened by various browsers.

So the program tools of AnylLogic allow designing, implementing and documenting the
simulation models, it is possible to collect a set of statistical data during the simulation run, to
analyze a simulation model and to optimize it. But intellectual agents not implemented in
AnyLogic and it isn't a distributed one (we must notice that some publications [Borshchev et al,
2012] concerning the developing of program tools supporting distributed simulation in AnyLogic
appeared).

180

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

BPSim. BPSIM - it is another agent-based simulation system [Aksienov, 2013]. This simulation
system is dedicated to the simulation of business processes. BPSIM is the program realization
of the resource consumption multi-agent conversion model. The agents control the process
objects of resource conversion. The agents analyze a current situation, refer to the knowledge
base, find a solution, control the purpose gaining and exchange messages.

The program tools BPSIM allow to develop a conceptual model, dynamic model, to carry out a
simulation experiment and to export the results to EXCEL. The system contains (a) reactive
agents, (b) reactive-intelligent agents, (c) intelligent agents (their behavior is described by the
planning system, the knowledge is stored in the knowledge frame base, applied for construction
of complicated advising expert system and so on), (d) hybrid agents (construction of
complicated planning systems).

But one can hardly speak that BPSim is cross-platform software (code is generated in Delphi).
Moreover BPSim software does not support a distributed (parallel) simulation.

REPAST: REcursive Porous Agent Simulation Toolkit (Repast) [Repast, 2015] — it is an open
source and freely available libraries for large-scale agent-based modeling. Repast supports the
development of flexible agent-based models and it may be used in modeling of social
processes, in marketing and logistics. A modeler builds simulation model including components
from open source libraries into his program. One can use Visual Repast. There are three
versions of Repast: Repast for Python (Repast Py), Repast for Java (Repast J) and Repast for
the Microsoft NET framework (Repast .NET). Repast use MatLab, SQL, Excel for the
processing of the results of simulation experiments. Repast is very powerful program tool but
user must be skilled programmer.

NetLogo:NetLogo [NetLogo, 2015] -simulation environment designed to create models
describing the natural and social phenomena. This system allows the models to operate "on the
fly" dynamically changing the behavior of the system under the influence of various conditions.
The system is quite simple and it allows the users without programming skill to open and run
models saved in libraries. These models can be used again, or modified. Moreover users may
build their own simulation models. NetLogo modeling environment is cross-platform.

Mason: Agent-oriented simulation system Mason [Mason, 2015] - is a multi-agent simulation
environment and it is represented as a set of libraries in Java (cross-platform). Mason supports
discrete-oriented modeling paradigm (released under Academic Free License, version 3.0).
Mason includes powerful visualization software (2D, 3D). MASON system is protected from
cyber-attacks. However Mason does not support distributed simulation (but currently developers
try to create a distributed version). Moreover users have to know programming language Java
rather seriously, so Mason is not convenient for the inexperienced users.

Ascape: Simulation system Ascape [Ascape, 2015] is another cross-platform agent-based
system, written in Java and it is freely available. Users without programming skills may learn
many aspects of modeling.

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 181

e Swarm: Swarm [Swarm, 2015] was first program tool for the creation of agent-based
applications and was implemented in 1994. Moreover Swarm attempts to create distributed
platform.

The requirement for the agent-based simulation systems

So the review being mentioned above suggests that not only users skilled in programming can create
the simulation model but the ordinary users skilled in specific domains may do it too. Due to this fact it is
advisable to develop special software and visual languages to create and change a simulation model.
Moreover it is advisable that agent-based simulation system should have the following characteristics:
(a) agent-based simulation system should be cross-platform (the developers of simulation software use
Java and C languages in order to achieve this property), (b) agents are developed as the objects
sending messages from one to another, (c) users have a possibility to change adjusting parameters of a
simulation model during a simulation run [Vlasov, 2013; Zamyatina, 2012].

The authors of this paper discuss the developing of agent-based simulation systems. The authors
attempt to take into account the experience of the other developers. Their agent-based simulation
system has to meet the following requirements:

e Operations with a simulation model. It is advisable to have a possibility to change a set of
interacting agents and to change links between agents.

e Hierarchical representation of simulation model. Simulation model should be hierarchical
because it is necessary to consider model in details or in contrary to change the group of
agents by one agent. This new agent must simulate the behavior of a group of agents
[19,20,21].

e The highlighting of the structure of collaborating agents. It is advisable to develop software
for highlighting structure of agent’s connections in the simulation model. One can carry out the
analysis of highlighting structure of the agents, their relationships, examining its structural
characteristics (it is possible to use the methods of graph theory) [Mikov, 1995; Zamyatina &
Mikov, 2012)].

e Data collection and data processing. The statistical data collection and data processing must
be carried out by special agents that act as sensors, monitors and form "the researching
algorithm". This algorithm should be separated from most of the simulation models [Mikov,
1995].

o Verification and validation of simulation models. Most of simulation systems either do not
have the special program components for the verification and validation of simulation models or
the functionality of these components is limited. So it is advisable to develop special software
for debugging and testing the simulation models in order to obtain a reliable and valid model
[Mikov et al, 2013]

e Adaptability. Simulation systems solve the problems dealt with various specific domains.
Moreover simulation model may be described in various «terms». Indeed, let us consider
computer networks. One may investigate computer network using the theory of graphs, or the

182

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

theory of Petri Nets, or theory of queueing network. So it is advisable to describe computer
network as a queuing network or as a graph (a set of nodes and a set of arcs connecting these
nodes) or as a Petri Net (bipartite multigraph: a set of nodes (the nodes of two types: positions
and transitions) and a set of arcs connecting these nodes (the nodes of different types). It is
useful to carry out the description of simulation model using appropriate domain specific
language (DSL). The designers of simulation systems apply ontological approach to adjust it to
the particular specific domain. One may read the related papers in [Mikov, 2009; Mikov et
al.,2009; Sukhov, 2013; Zamyatina et al, 2013).

Reducing the time of the simulation experiment. It is well known that simulation systems
deal with complicate time consuming problems, so it is necessary to reduce the time of
simulation experiment and to use a set of compute nodes of supercomputer or cluster or
computer network, so it is useful to provide parallel (distributed) simulation, hence optimistic or
conservative algorithms providing causality of events of distributed simulation experiments must
be implemented [Fujimoto, 2003]. Load balancing is the second method to reduce the time of
distributed simulation experiments [Wilson, 1998].

Safety and fault tolerance of simulation systems. Distributed simulation experiment
demands additional software. This software provides safety and fault tolerance of a simulation
system. It is assumed that software have to find failed compute node and to transfer agents to
alive compute node.

Remote access. It is advisable to provide the remote access to the simulation system by
developing the appropriate Web-services. Remote access will not only allow users to get
quickly simulation results and create models using graphical or text editor, but also collaborates
users who are geographically located at a remote distance from each other.

Processing of simulation results. The user receives a large number of unstructured
information as a result of simulation experiment. It is advisable in this case to perform additional
processing of the simulation results, using the methods of Data Mining and Knowledge
Discovery. Additional processing of the simulation results will optimize simulation experiment,
identifying dependencies and relationships between the input parameters [Kolevatov &
Zamyatina, 2012)].

The intelligent agents. In order to reflect more adequately the simulated processes in
economics, marketing, logistics it is very important to implement the intelligent agents. Most of
the above systems provide the user with the tools to describe the reactive behavior or quite
simple one. But it is essential to teach the intelligent agents following the changes in external
environments, to pursue goals, to choose a particular strategy depending on the role these
agents.

In this version of the agent-based simulation system the authors focused on the development of
tools that support distributed modeling (distributed simulation experiment) and on the
development of intelligent agents.

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 183

An implementation of agent-based simulation system

The current version of the multi-agent simulation system is made in the language Scala [Odersky,
2015]. Scala language was chosen as the programming language to implement agent-based modeling
platform. Scala language is object-functional programming language that combines functional
programming and OOP (object-oriented programming) and specializes in building easily scalable
component-oriented software. Scala was founded by Martin Odersky in the University EPFL (Lausanne,
Switzerland) in 2004. It is currently available for the Java platform and the .NET Framework.

The Scala language includes the following key features: a single object model, the presence of traits,
the method of pattern matching, lambda-calculus, type views bounds, type linearization, parametric and
functional polymorphism, variation of types, case classes and etc. Moreover there are numerous tools to
create new language constructs and list processing. Generalized block diagram of the simulator is
shown in Figure 1.

Thus the architecture of the simulator is not a multi-component but multi-layered. This is achieved due
to the fact that a module that provides some basic functionality may be "mixed" with other components
extending the structure, behavior and semantics.

Analyzer

ModelObservable

Optimistic Sunchronizator

Communicator

Simulator

Figure 1. A Multilayer architecture of the simulator

184 International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

Trait Simulator is the base module, which is interfered with the other elements, specifying it's behavior.
Actually, Simulator, - is a frame for a logical process. Traits Communicator is a module for applying the
system of actors. It contains a copy of the actor engaged in sending/receiving messages. Traits
OptimisticSynchronizator is a key element for the organization of parallel (distributed) discrete-event
simulation (PDES). It implements an optimistic synchronization algorithm Time Warp.

Trait ModelObservable is intended to implement “information” procedures — program unit for data
collection during a simulation experiment.

Tpent Analyzer is intended to make the synchronization algorithm more “intellectual”.

Particular attention is paid to the synchronization algorithm of the developed distributed simulation
system. It is known that the distributed model is a collection of logical processes executing on the
different computing nodes of high-performance computing system. Logic processes exchange
messages among each other. It is important to maintain the causality of events in the distributed
systems. The causality of events is supported by classic distributed algorithms. These algorithms are
divided into two groups: the conservative and optimistic. Conservative algorithms involve the promotion
time only after it becomes apparent that the next event is safe. The event is safe, if you are sure that no
other event will be with less "time stamp" [Fujimoto, 2003; Bryant, 1977,Chandy & Misra, 1979].
Optimistic algorithm is as follows: the process is performed by moving from one event to another for as
long as it does not receive a message from another process with a smaller time stamp than the time
stamp of the next event [Jefferson, 1985].

An optimistic synchronization algorithm based on knowledge of the simulation model is implemented in
present simulation system (KBASA). There is a number of works [Zamyatina & Ermakov, 2011], which
use knowledge of the simulation model in order to reduce the execution time of distributed simulation
experiment.

The authors implemented efficient synchronization algorithm controlled by expert system based on rules
in order to reduce the runtime of distributed algorithm. On the other hand the reduction of time is
obtained through the load balancing [Wilson, ;Zheng, 2015; Mikov & Zamyatina, 2010].

Classic algorithms also use "knowledge" about the model: lookahead in conservative algorithms,
lookback in the algorithm Work Flow, etc. Using the knowledge of the agent-based simulation model
derived from ontologies, have yielded good results in the implementation of synchronization algorithms.
Experiments were performed with the same model many times having the same parameters. The total
duration of the simulation was 300 (x 15) units of modeling time.

The results of the experiments have shown that the metrics of the algorithm KBASA, based on
knowledge of the model are substantially reduced in comparison with the metrics of the optimistic
algorithm Time Warp. In fact, (a) the number of rollbacks decreased from 71.2 to 3.8 (Fig. 2). (b) The
total number of not deep rollbacks reduced almost to zero (on average 0.1-0.2 vs. 7-11). (c) The number
of deep rollbacks also decreased from 19.4 to 3.2. (d) The number of antimessages decreased from
108.4 t0 12.8.

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 185

The implementation of intelligent agent

It is well known that the creation of intelligent agents is a very complex task that requires a theoretical
foundation. There are various models of intelligent agents. These models describe knowledge, the
methods of reasoning, the strategy of the behavior and actions of agents in various ways. One may
consider these models from two points of view: in terms of the analysis of the properties and behavior of
agents during their functioning; from the point of view of the design of the properties of the agents and
their internal processes (acquisition of knowledge, goals definition, decision making, etc.).

There are three types of architectures: (a) deliberative architecture and model; (b) reactive architecture
and model; (c) hybrid architecture and model.

Reactive approach allows the application of a set of rather simple scenarios. We mean the scenario of
the agents behavior. These scenarios are a reaction to the appearance of an event in the external
environment.

Deliberative model allows the application of rigorous formal methods and well-proven technologies of
traditional artificial intelligence, makes it easy to represent knowledge in a symbolic form and use them
in the agent-based systems. The hybrid type of architecture combines the advantages of the
architectures mentioned above. Thus, the intelligent agent has a high-level inference engine and low-
level reactive abilities.

Thus the development of agent-based simulation system involves the development of a set of base
classes to represent the intelligent agents. It was decided to present the architecture of the agents in the
form of hybrid schemes and deliberative one.

The inference engine is implemented with the help of production systems and neural networks. It is
known that neural networks have the ability to self-learning, which is important for the implementation of
intelligent agents, which have to adapt to changes in the external environment and change their
behavior in order to make a decision. Three types of neural networks were used: multilayer perceptron,
Hopfield network and the Hamming network [Khaikin, 2006; Kruglov, 2002]. A genetic algorithm is
proposed for training the neural network.

The developed programming tools were tested. The task of searching of attractions in the park
[Zamyatina & Chudinov, 2010; Dubiel & Thimsini, 2005] and "Artificial Life" were chosen in order to test
implemented agents based on deliberate and hybrid schemes.

The problem of searching the attractions may be formulated as following: a person is looking for some
attractions in the park and trying to get information about his location with the help of maps and
informers. Having received information from an informer, a person will go to tram station, rather than
solely on foot to get to the sights of interest. When the source data card is used, the person gets to the
destination on foot, etc. The problem of "artificial life" is well known.

The results of the test tasks "Searching of attractions" are in the table below.
It has been made 100 test runs of the model. The simulation results were obtained indicating the
possibility of using this type of agents (see Table 1).

Agent model based on neural networks was implemented as a 2-layer perceptron having 6 neurons of
input level and 2 neurons of output layer. Following input data for the input layer of the network was

186 International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

presented: (a) the fact that an informer is in sight of person looking for attractions (info); (b) the distance
to the informer (when there are not only one informer it is necessary to take into account the distance to
the nearest one) (dinf); (c) the distance to the target (df) and etc.

100 test runs were carried out during verification and validation of the agent-based simulation model.
The simulation results were obtained indicating the possibility of using this type of agents (see Table 2).

Table 1. The results of simulation experiment “searching the attractions in the park” (agents with

production rules”

The Number of agents- Average time to search the
informers target (in seconds)
1 29.6
3 27.9
5 19.5

Table 2. The results of simulation experiment “searching the attractions in the park” (agent - neural

network)
The Number of agents- Average time to search the
informers target (in seconds)
1 37.6
3 33.5
5 25.1
Conclusion

So, authors designed and implemented the prototype of an agent-oriented simulation system. Authors
tried to follow all the recommendations for the designers of the agent-based simulation systems (cross-
platform, hierarchical representation of simulation model, adaptability, operations with simulation model

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 187

(add new agent, delete agent, add new links connecting agents), distributed simulation experiment).
Developed simulation system is cross-platform because authors used Scala language as a base
language.

Particular attention was paid to the development of the synchronization algorithm, which supports
distributed simulation. It is known that the distributed model is a collection of logical processes located
on different computing nodes. Logic processes must be synchronized to ensure the causality of the
events in a distributed model. Authors developed synchronization algorithm based on classical
optimistic algorithm. The synchronization algorithm is knowledge-based because it uses the knowledge
about simulation model. The investigations have shown that the use of knowledge about the model
significantly increases the efficiency of the algorithm. Authors used a model of actors as a formal model
of an agent-based simulation system, because it is the most appropriate model showing the behavior of
agents in a distributed (parallel) environment.

Another important element in building an agent-based simulation system is the development of
intelligent agents. Most agent-based simulation systems do not have the modeling tools that support the
functioning of intelligent agents (these system support only the functioning of reactive agent which can't
adapt to the changing external environment. The presence of intelligent agents in the simulation system
makes it possible to build more appropriate models of real processes and situations.

Intelligent agents which were implemented in agent-based system are based on the production rules
and artificial neural networks. Two test models were built (searching of attractions in the park and well
known “artificial life”) and almost 100 simulation runs were carried out in order to test the functioning of
each model. The results of experiments showed the correctness of the developed tools and the
decisions taken in their design.

Implementation of works on the design of agent-based simulation system is relevant, because now the
question of a wide practical application of simulation expertise [Vlasov et al, 2013] is discussed. It is
believed that any design work on the establishment and modernization of any systems (objects) must be
preceded by simulation studies "to give practical conclusions and guidelines regarding the
appropriateness of existence, building, functioning and modernization of the system."

Bibliography

[Macal & North, 2005] Macal, C. M., and M. J. North. 2005. Tutorial on agent-based modeling and
simulation. //Proceedings of the 2005 Winter Simulation Conference. eds. M. E. Kuhl, N. M. Steiger,
F. B. Armstrong, and J. A. Joines. 2-15. Piscataway, New Jersy: Institute of Electrical and
Electronics Engineers

[Macal & North, 2009] Macal, C. M., and M. J. North. 2009. Agent-based modeling and simulation.
/IProceedings of the 2009 Winter Simulation Conference. eds. M. D. Rossetti, R. R. Hill, B.
Johansson, A. Dunkin, and R.G. Ingalls. 86-98. Piscataway, New Jersy: Institute of Electrical and
Electronics Engineers.

188 International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

[Klyshinskii, 2000] KnbiwuHckun 3.C. [lpoekTMpoBaHWE SMEMEHTOB MPUHATUS PELLEHUMA B
WMWUTALMOHHBIX Moaensx OusHec-cucteMm. ABTopedepaT Ha COUCKAHWE Kand. AuccepTauuw.
[OnekTpoHHbIN pecypc] [Pexum pgoctyna: http://www.dissercat.com] [[poeepeH0:25.10.2015]

[lvashkin, 2003] MawknH A.O. MynbTuareHTHOe UMMUTALMOHHOE MOAENUPOBaHUE MAapPKETUHIOBbIX
cutyaumin. AsTopedbepaT Ha COMCKAaHWE KaHh. AuccepTauun. [OneKTpoHHbIA pecypc] [Pexum
pocrtyna: http://www.dissercat.com] [[posepeHo: 25.10.2015]

[Gribanova, 2006] [pubGaHoBa E.b. Anroputmbl M KOMNAEKC nporpaMmm [Ans pelleHns 3agad
WMMTALMOHHOTO MOAENMpoBaHUs 0OGBEKTOB NPUKNaaHON 3KOHOMUKM. ABTOpedepaTt Ha CouMcKaHue
kaHZ. guccepTauuu. [OnekTpoHHbIM pecypc] [Pexum pgoctyna: http://www.dissercat.com]
[MpoBepeHo: 25.10.2013]

[Borshchev, 2015] Bopwés A. OT CUCTEMHOM [OUHAMUKM W TPAAUUMOHHOTO WUMWUTALMOHHOTO
MOJENWUPOBAHNS K MPAKTUYECKUM areHTHbIM MOZENAM: MPUYMHbI, TEXHOMOTUS, WHCTPYMEHTI.
[OnekTpoHHbIN pecypc] [Pexum poctyna: http://www.gpss.ru/paper/borshevarc.pdf] [[TpoBepeHo:
25.10.2019]

[Borshchev, 2002] Borshchev A., Karpov Y., Kharitonov V. Distributed Simulation of Hybrid Systems
with AnyLogic and HLA. // Parallel computing technologies. — 2002. Ne 18(6). — P.829-839.

[AnyLogic, 2015] Cuctema mopenupoBaHus “AnyLogic’ [OnekTpoHHbIN pecypc] [Pexum goctyna:
http://www.xjtek.ru] [MposepeHo: 25.10.2015]

[Repast, 2015] Cuctema mopgenupoBaHns “Repast’ [OnekTpoHHbI pecypc] [Pexum poctyna:
http://repast.sourceforge.net] [[posepeH0:25.04.2014]

[NetLogo, 2015] Cuctema mogenupoaHus “NetlLogo” [OnekTpoHHbIn pecypc] [poBepeH0:25.04.2014]

[Mason, 2015] Cucrema wmogenupoBaHus “MASON’ [OnekTpoHHbIM pecypc] [Pexum gocTyna:
http://cs.gmu.edu/~eclab/projects/mason] [[posepeH0:25.04.2014]

[Ascope, 2015] Cuctema mogenupoBaHus “Ascape” [OnekTpoHHbIM pecypc] [Pexum gocTyna:
http://ascape.sourceforge.net/index.html#Contact] [[poBepeH0:25.04.2014]

[Swarm, 2015] Cwuctema wmopenupoBaHus SWARM. [3neKkTpoHHbIA pecypc][pexum
poctyna:www.swarm.org] [[poBepeH0:25.04.2014]

[Vlasov et al, 2013] Bnacos C.A., [leatkos B.B., Haamees M.M. UmuTaumoHHas akcnepTuaa: onbIT
npuMeHeHns u nepcnektusbl // COOPHUK JOKNALOB WECTOM BCEPOCCUMCKON HayYHO-MPaKTUYECKOM
KOH(bepeHUmn «MMuTaumoHHoe mogenupoBaHue. Teopus v npaktuka» (MMMO[-2013). Tom 1. //
ISBN 978-5-9690-0221-0 // U3gaTenbctBo «PIH» Akagemun Hayk PT, Kasanb, 2013, ¢. 54-63.

International Journal "Information Models and Analyses" Volume 4, Number 2, 2015 189

[Zamyatina & Mikov, 2012] 3amsaTuHa E.B., Mukos A.W. MNporpamMmmHble cpefcta cUCTEMbI UMUTALUN
Triad.Net gns obecneyeHus ee aganTMpyemMocTn M OTKPLITOCTU. MHdopmaTusaums n ceasb. Ne5,
2012, AHO «Pepgakuus xypHana «MHgopmaTusaums u ceasby, ISSN 2078-8320, C.130-133.

[Mikov, 1995] Mikov A.l. Simulation and Design of Hardware and Software with Triad// Proc.2nd
Intl.Conf. on Electronic Hardware Description Languages. Las Vegas, USA, 1995. P. 15 20.

[Mikov et al, 2013] Mikov A.,Zamyatina E.,Mikheev. Linguistic and Program Tools For Debugging and
Testing Of Simulation Models Of Computer Networks. International Journal “Information Models and
Analyses, V.2., N 1,2013, ITHEA, ISSN 1314-6416, Sofia., 1000., P.O.B. 775, Bulgaria, pp. 70-80

[Mikov et al, 2009] Mikov A., Zamyatina E., Kubrak E. An Ontology-based Approach to the Incomplete
Simulation Model Analisis and its Automatic Completion. International Journal “Information
Technologies & Knowledge”, 2009, Volume 3, Number 2, pp. 169-186.

[Sukhov, 2013] Cyxoe A.O. TpaHcchopmaums BuayanbHbix Mogenen B cucteme Metalanguage /
CoBpeMeHHble nNpobnembl MaTemaTvkn U ee npuknagHble acnektbl — 2013. COOpHMK Te3ncoB
KoH(bepeHumn. — [lepmb: [lepMCKUA rOCY4apCTBEHHbIA HALMOHAMbHBIA - UCCeaoBaTENbCKIUIA
yHueepcuteT, 2013. - C. 44,

[Zamyatina et al, 2013] 3amsaTuna E.B, JIagosa J1.H., Cyxos A.O.. MynbTus3bikoBOe MOAeNMpoBaHme ¢
ucnonb3osaHnem DSM nnatcopmbl MetaLanguage. WHopmatusaums v cesasb. Ne5, 2013, AHO
«Pepgakuus xypHana «MHgpopmaTusaums u ceasby, ISSN 2078-8320, C.11-15.

[Fujimoto, 2003] Fujimoto R.M. Distributed Simulation Systems. In Proceedings of the 2003 Winter
Simulation Conference S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds. The 2003 Winter
Simulation Conference 7-10 December 2003. The Fairmont New Orleans, New Orleans, LA, pp.
124-134

[Bryant, 1977] Bryant R.E. Simulation of packet communication architecture computer systems.
Technical Report MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[Chandy & Misra, 1979] Chandy K.M, Misra J. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering, SE-5(5): p.440-
452, September, 1979.

[Jefferson, 1985] Jefferson D.R. Virtual Time. ACM Transactions on Programming Languages and
Systems, 1985. 7(3): p.404-425.

[Wilson, 1998] Wilson L. F., Shen W. Experiments in load migration and dynamic load balancing in
Speedes // Proc. of the Winter simulation conf. /Ed. by D. J. Medeiros, E. F.Watson, J. S. Carson, M.
S. Manivannan. Piscataway (New Jersey): Inst. of Electric. and Electron. Engrs, 1998. P. 487-490.

190 International Journal "Information Models and Analyses" Volume 4, Number 2, 2015

[Zheng, 2005] Zheng G. Achieving high performance on extremely large parallel machines:
Performance prediction and load balancing: Ph.D. Thesis. Department Comput. Sci., Univ. of lllinois
at Urbana-Champaign, 2005. 165 p. [Electron. resource]. http://charm.cs.uiuc.edu / [[data
obpalienus: 24.10.2015] .

[Mikov & Zamyatina, 2010] Mukos A.W., 3amsatuHa E.B. Mpobnembl noBbleHns 3hdeKTUBHOCTY 1
TMOKOCTW CMCTEM UMMTAUMOHHOrO mopenupoBaHusi. Mpobnembl MHGopmaTuki,Ned(8),
HoBocnbupck, WHCTUTYT BbIMMCAUTENBHOM MaTemMaTuku 1 matematudeckon reogmankn CO PAH,
2010, cTp.49-64

[Kolevatov & Zamyatina, 2012] Kolevatov G.A., Zamyatina E.B. Simulation Analysis Framework
Based on Triad.Net. Proceedings of the 6-th Spring/Summer Young Reseachers’ Colloquium on
Software Engineering. SYRCoSE 2012, Perm, May 30-31, 2012-Perm, Russia,pp.160-163.

[Odersky, 2015] Odersky M. The Scala Programming Language [OnektpoHHblii pecypc]. URL:
http://lwww.scala-lang.org/node/25 [[ata obpalyenus: 24.10.2015]

[Zamyatina & Ermakov, 2011] 3amsatuHa E., Epmakos C. Anroput™m CUHXpOHW3aUuuM OBBEKTOB
pacnpegeneHHon mmutauymonHon mogenu B TRIAD.Net. Applicable Information Models. ITHEA,
Sofia, Bulgaria, 2011, ISBN: 978-954-16-0050-4, ctp.211-220

[Mikov & Zamyatina, 2012] Mukos A.W., 3amatuHa E.b. Wcnonb3osanne GPU ans noBsbleHuMs
NPOU3BOAUTENBHOCTU CUMYNATOPA KOMMbIOTEPHBIX CETEN. BbICOKONPOU3BOANTENBHbBIE BbIYMCIEHMS
Ha rpadmyecknx npueccopax: Tesucbl [OKkn. Hayy.-npakT.KoHg. € MexgyHap. Yyactuem c
aneMeHTamMmu Hayd. WK. Ang monogexu, 21-25 mas 2012 r. lNepm. roc. Hau. uccn. YH-T..-[epmb,
2012, cTp.53-57.

[Zamyatina & Chudinov, 2010] 3amstuHa E.B., YyawHos [.B. Paspabotka u ucnonb3osaHue
NpOrpaMMHbIX CPeACTB 15 NOCTPOEHNS U UCCNEA0BAHUS areHTHbIX MMUTALMOHHbIX Mogenen. / E.B.
3amsatuHa, [.B. YyanHos // BecTHuk nepmckoro yHuBepcuteTa. MaTemaTuka, MexaHuka,
nHdopmatuka, 2010, Ne2(2), C. 80 - 84.

[Dubiel & Thimsoni, 2005] Dubiel B., Tsimhoni O. Integrating agent based modelling into a discrete
event simulation . In the Proceedings of the 2005 Winter Simulation Conference, ed. Kuhl M. E.,
Steiger N. M., Armstrong F. B., and Joines J. A., 2005, pp. 1029 1037. URL: http://www.informs-
cs.org/wsc05papers/123.pdf. [MpoBepeH0:25.04.2014]

[Khaikin, 2006] XaikuH C. HelpoHHble ceTut: MonHbin kype. — Mocksa: Bunbsamc, 2006. — 31-89 c.

[Kruglov, 2002] Kpyrnos B.B. UckyccTBeHHble HempoHHble ceTn. — Mocksa: Tenekom, 2002. — 63-79 c.

International Journal "Information Models and Analyses" Volume 4, Number 2,2015 191

Authors' Information

Elena Zamyatina — Assoc. Prof. PhD, National Research University Higher School of
Economics, Department of Business Informatics; Russia, Perm, 614070,
Studencheskaya st., 38;e-mail: e_zamyatina@mail.ru

Fields of Scientific Research: simulation, artificial intelligence, ontology, domain specific

languages (DSL)
Danil Karimov - Programmer, “PROGNQOZ’, Stakhanovskaya St, 54, Perm, e-mail:

googlicus@gmail.com

Fields of Scientific Research: information systems, neural networks, Web-programming

Mitrakov Artem Andreevich, - Lecturer, Perm National Research University (PGNIU),
Bukireva, 15, e-mail: mitrar(@yandex.ru

Fields of Scientific Research: information systems, agent-based simulation, ontology

	IMFE2.pdf
	Introduction
	Definition of the index matrix with function-type of elements
	Standard operations over IMFEs
	Operations over IMFEs and IMs
	New operations over IMFEs
	Conclusion
	Acknowledgments:
	Authors information

