
International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

192

ON TWO REPRESENTATIONS OF CONCURRENT PROGRAMS

Taras Panchenko, Sunmade Fabunmi

Abstract: In the paper we show that under generic conditions, for each fixed input data, the observable

behavior of a shared memory concurrent program in the Interleaving Parallel Composition Language

(ICPL) extended with the Start and Join operations, which allow creating threads and waiting till thread

completion during runtime, is equivalent to the observable behavior of a certain execution of a parallel

composition of a fixed number of copies of threads from a fixed finite set (power representation), each

of which are representable in the pure ICPL language. This result can be useful for formal verification of

concurrent programs which allow dynamic creation of threads during runtime, since it reduces latter

problem to the problem of verifying correctness of a certain concurrent program with a fixed set of

threads and no dynamic thread creation for each fixed input data.

Keywords: concurrent programming, Interleaving Parallel Composition Language, formal methods,

software verification.

ITHEA Keywords: D.1.3 Concurrent Programming, D.2.4 Software/Program Verification.

ACM Classification Keywords: F.3.1 Theory of Computation - LOGICS AND MEANINGS OF

PROGRAMS - Specifying and Verifying and Reasoning about Programs, D.2.4 Software - SOFTWARE

ENGINEERING - Software/Program Verification.

Introduction

A large number of software systems used today (e.g. operating systems, database management

systems, server software, etc.) are implemented as multithreaded programs with shared memory. Many

of such systems form a part of the critical infrastructure of various private and public organizations. Their

safety, security, and reliability are of paramount importance, which makes it desirable to obtain the

strongest possible guarantees of correctness of their implementation. Such guarantees can be provided

by formal methods of software development and verification. Formal methods have been in

development for over 50 years, starting from the works of Floyd and Hoare on methods of proving

(partial) correctness of sequential programs. Still the task of proving correctness of sequential programs

remains difficult and far from being widely applied in software development. The problem of verification

of concurrent programs is even more difficult. There are many existing approaches to formal verification

of concurrent programs [Ashcroft, 1975; Hoare, 1985; Owicki, 1976; Jones, 1981; Jones, 1983; Xu,

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

193

1997; Harel, 1997; Pnueli, 1977; Lamport, 1993; Chandy, 1988; Lamport, 1994; Manna, 1992], but there

not so many practical results, most notable of which include formal verification of small specialized

microkernels and hypervisors such as seL4 and CertiKOS, which, however, have a far lower complexity

than the widely used concurrent software.

Thus, the problem of finding scalable ways of verification of concurrent software is still important.

One way to deal with it is to reduce the problem of verification of programs which, potentially, have a

very rich set of runtime behaviors which is difficult to analyze, e.g. the programs which can dynamically

create and terminate threads, to a series of problems of verification of programs which have a much

simpler, easier to analyze set of behaviors, e.g. programs with a fixed set of threads which cannot

create or terminate threads during runtime.

In this paper we propose this kind of reduction. More specifically, we focus on programs expressible in

the Interleaving Parallel Composition Language [Panchenko, 2008], which is a convenient formal

language for expressing and verifying concurrent software. It was used for formal modeling of real world

systems such as a distributed presentation software Infosoft e-Detailing [Kartavov, 2015] and proving

their correctness. In this paper we prove that under generic conditions, for each fixed input data, the

observable behavior of a shared memory concurrent program in IPCL extended with the Start and Join

operations (which allow creating threads and waiting till thread completion during runtime), is equivalent

to the observable behavior of a certain execution of a parallel composition of a fixed number of copies of

threads from a fixed finite set (which we call the power representation), which are representable in the

pure IPCL language and have a much simpler and predictable behavior which is easier to check for

correctness.

This allows us, under generic conditions, to reduce the problem of verification of correctness of

programs in IPCL with dynamic thread creation and join – to the problem of verification of pure IPCL

programs, the availability of this kind of reduction allows us to focus on the simpler cases of concurrent

software verification, for which specialized efficient approaches are available, and reduce to them the

problems of verification of real-world, complex, large-scale concurrent software.

Interleaving Parallel Composition Language with Start and Join Operations

The syntax and semantics of the pure Interleaving Parallel Composition Language (IPCL) were

described in [Panchenko, 2008]. Applications of ICPL were given in [Panchenko, 2006; Panchenko,

2004; Kartavov, 2015, Kartavov2, 2015; Polishchuk, 2015]. The syntax and semantics of the

Interleaving Parallel Composition Language with Start and Join operations were proposed and

described in [Panchenko, 2017].

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

194

Here we recall the main definitions.

In general, IPCL is a family of languages with formally defined syntax and semantics which allow

expressing concurrent programs with shared memory, execution of which can be interpreted as

interleaving execution of a set of sequential threads.

Basic syntax is defined by the following BNF: ܲ ∷= ݔ̅ ∶= ݁̅	|	 ଵܲ; ଶܲ	|	ܑ܎	ܾ	ܖ܍ܐܜ	 ଵܲ	܍ܛܔ܍	 ଶܲ	|	܍ܔܑܐܟ	ܾ	ܗ܌	ܲ	|	 ଵܲ|| ଶܲ

where

 ௜ܲ denotes programs,

 ݁̅ denotes an expression(s) which evaluates to a value(s) (e.g. a number, string, complex data
structure, etc.),

 ̅ݔ denotes a variable name(s),

 ∶= denotes the atomic vector assignment operator,

 ; denotes the sequential execution operator,

 if – then – else and while – do are the usual sequential branching and loop operators,

 || is the composition of parallel execution of two threads.

Formal and detailed definition of semantics of the language can be found in [Panchenko, 2008].

If ܲ is an IPCL program, we denote as ܲ௡ (power operator), where n is a natural number, the parallel

composition of n copies of P, i.e. a program which performs interleaving execution of n threads each of

which executes in accordance with P.

Pure IPCL can be enriched with the dynamic thread creation (start) and joining of threads (join)

operations which model common multithreading constructs: ܲ ∷= ݔ̅ ∶= ݁̅	|	 ଵܲ; ଶܲ	|	ܑ܎	ܾ	ܖ܍ܐܜ	 ଵܲ	܍ܛܔ܍	 ଶܲ	|	܍ܔܑܐܟ	ܾ	ܗ܌	ܲ	|	 ଵܲ|| ଶܲ	|	(ܲ)ݐݎܽݐݏ	|	݊݅݋݆(݅݀)
Informally, the ݐݎܽݐݏ(ܲ)	operation takes one argument – a program code P and creates a thread which

executes a body of P. The created thread receives its unique identifier. The ݐݎܽݐݏ(ܲ)	operation can be

invoked from any thread and returns immediately after creation of the new thread. Afterwards, execution

of both the invoking thread and the newly created thread continues in the arbitrary interleaving fashion.

The ݆݊݅݋(݅݀) operation takes as an argument a scalar value – an identifier (id) of a thread previously

created using the ݐݎܽݐݏ(ܲ) operation and suspends execution of the thread which invokes ݆݊݅݋(݅݀)
until the thread with the given id terminates (a thread terminates, if its execution reaches the end of the

thread's program code). Afterwards, ݆݊݅݋(݅݀) resumes execution of the thread which has invoked it.

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

195

Formal definition of semantics of the ݐݎܽݐݏ(ܲ) and ݆݊݅݋(݅݀) operations can be found in [Panchenko,

2017].

The Main Result

The following theorem uses the notation and terminology defined in [Panchenko, 2008] and

[Panchenko, 2017].

Theorem 1. Let P be an IPCL program with start and join operations which takes no input data. Assume

that each execution of P is terminating. Then the set of lengths of executions of P is bounded.

Proof.

Since P takes no input data, all executions of P start at one program execution state which we denote

as q0 and set of executions of P is the set of paths in the labeled transition system, which we denote as

L, which describes the operational semantics of the IPCL program P (with start and join operations)

which starts at q. Since at each point of program execution there can be at most finite amount of

existing processes and all operations performed by individual processes available in the IPCL language

are finitely non-deterministic, the outdegree of any node reachable from q0 in L is finite (i.e. the program

can progress from a state q to a state from at most finite set of possible successor states that depends

on q). Suppose that the set of lengths of executions of P is unbounded. Then the set of states reachable

from q0 is infinite. Then Konig's lemma implies that L has an infinite run starting from q0 which

corresponds to some non-terminating execution of P. This contradicts the assumption that each

execution of P is terminating. Thus, the set of lengths of executions of P is bounded.

Theorem is proved.

Corollary. Let P be an IPCL program with start and join operations which takes no input data. Assume

that each execution of P is terminating.

Then there exist natural number K and IPCL programs without start and join operations ଵܲ, … , ௡ܲ such

that the set of traces of executions of P is a subset of the set of traces of executions of ଵܲ௄|| … || ௡ܲ௄.

Proof (sketch).

By Theorem 1 the set of lengths of executions of P is bounded by some natural number K. Then the set

of numbers of processes created during each execution of P is bounded from above by K. Let ଵܲ, … , ௡ܲ

be all procedures in the program P in which the start operation is replaced by a nondeterministic choice

of a number from the set {1,...,K}. The nondeterministic choice can be modeled by a set of auxiliary

processes:

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

196

ݔ	:௜ܣ ∶= ݊; ݔ ∶= ݔ + 1; ݊ ∶= ;ݔ
where n is a common global variable storing the result and x is a local variable for each auxiliary

process.

Then it is easy to see that the trace of each execution of P corresponds to the trace of some execution

of ଵܲ௄|| … || ௡ܲ௄ – namely the one in which the nondeterministic choice functions returned the same

values as the corresponding start() function invocations in P (which, as we have shown above, are in

range 1,2,...,K). Thus, the set of traces of executions of P is a subset of the set of traces of executions

of ଵܲ௄|| … || ௡ܲ௄.

Corollary is proved.

Conclusion

We have shown that under very general conditions, the observable behavior of a shared memory

concurrent program in the IPCL language extended with the Start and join operations for a fixed input

data is equivalent to the observable behavior of a certain execution of a parallel composition of a fixed

number of copies of threads from a fixed finite set (power representation), each of which are

representable in the pure IPCL language. This obtained result can be useful for solving the problem of

verifying the correctness of concurrent programs which allow dynamic creation of threads. The obtained

result reduces this problem to the problem of verification of correctness of a certain concurrent program

with a fixed set of threads and no dynamic thread creation for each fixed input data.

We plan to apply this reduction to developed concurrent software systems in the future work.

Acknowledgement

We would like to thank scientific advisors and colleagues for the fruitful discussions held and to

appreciate their work. Particularly, Mykola Nikitchenko, Ievgen Ivanov, Dmytro Bui, Volodymyr Redko,

and others.

Bibliography

[Ashcroft, 1975] Ashcroft E.A. Proving assertions about parallel programs // Journal of Computer and

System Sciences. -- 1975. -- No. 10. -- pp. 110--135

[Chandy, 1988] Chandy K.M., Misra J. Parallel Program Design: A Foundation. -- Reading, MA:

Addison-Wesley Publishing Company, 1988. -- 493 p.

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

197

[Harel, 1997] Harel D., Pnueli A. On the development of reactive systems // Apt K.R. (ed.) Logics and

models of concurrent systems, NATO ASI Series, Vol. F13. -- Springer-Verlag, 1985. -- pp. 477--498

[Hoare, 1969] Hoare, C.A.R. An Axiomatic Basis for Computer Programming. Communications of the

ACM. Vol. 12, no. 10, 1969, pp. 576--583

[Hoare, 1985] Hoare C.A.R. Communicating Sequential Processes. -- Prentice Hall International, 1985. -

- 238 p.

[Jones, 1981] Jones C.B. Development Methods for Computer Programs Including a Notion of

Interference: DPhil. Thesis. -- Oxford University Computing Laboratory, 1981. -- 315 p.

[Jones, 1983] Jones C.B. Specification and Design of (Parallel) Programs // Information Processing

Letters: IFIP Information Processing'83 (In IFIP 9th World Congress). -- 1983. -- pp. 321--331

[Kartavov, 2015] Kartavov, M., Panchenko, T. and Polishchuk, N. Properties Proof Method in IPCL

Application To Real-World System Correctness Proof. International Journal "Information Models and

Analyses". Sofia, Bulgaria, ITHEA. Vol. 4, No. 2, 2015, pp. 142--155

[Kartavov2, 2015] Kartavov, M., Panchenko, T. and Polishchuk, N. Infosoft e-Detailing System Total

Correctness Proof in IPCL [in Ukrainian]. Bulletin of Taras Shevchenko National University of Kyiv.

Series: Physical and Mathematical Sciences, No. 3, 2015, pp. 80--83

[Lamport, 1993] Lamport L. Verification and Specification of Concurrent Programs // deBakker J.,

deRoever W., Rozenberg G. (eds.) A Decade of Concurrency, Vol. 803. -- Berlin: Springer-Verlag,

1993. -- pp. 347--374

[Lamport, 1994] Lamport L. The temporal logic of actions // ACM Transactions on Programming

Languages and Systems. -- 1994. -- Vol. 16, No. 3. -- pp. 872 -- 923

[Manna, 1992] Manna Z., Pnueli A. The Temporal Logic of Reactive and Concurrent Systems,

Specification. -- Berlin: Springer-Verlag, 1992. -- 427 p.

[Nipkow, 2003] Nipkow, T., Paulson, L. C., Wenzel, M. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic. Springer, 2003, 226 p.

[Nikitchenko, 1998] M. Nikitchenko, Technical Report IT-TR: 1998-020. A Composition Nominativej

Approach to Program Semantics. Technical University of Denmark, 1998

[Owicki, 1976] Owicki S. and Gries D. An Axiomatic Proof Technique for Parallel Programs // Acta

Informatica. -- 1976. -- Vol. 6, No. 4. -- pp. 319--340

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

198

[Ostapovska, 2016] Ostapovska, Yu., Panchenko, T., Polishchuk, N. and Kartavov, M. Correctness

Property Proof for the Banking System for Money Transfer Payments [in Ukrainian]. Problems of

Programming. No. 2-3. 2016. pp. 119--132

 [Panchenko, 2004] T. Panchenko, The Methodology for Program Properties Proof in Compositional

Languages IPCL [in Ukrainian], in Proceedings of the International Conference “Theoretical and

Applied Aspects of Program Systems Development” (TAAPSD’2004), 2004, pp. 62–67

[Panchenko, 2006] T. Panchenko, Compositional Methods for Software Systems Specification and

Verification [in Ukrainian]. (Panchenko, 2006 Thesis), Taras Shevchenko National University of Kyiv,

2006, 177 p.

[Panchenko, 2007] T. Panchenko, Parallel Addition to Shared Variable Correctness Proof in IPCL [in

Ukrainian], Bulletin of Taras Shevchenko National University of Kyiv. Series: Physical and

Mathematical Sciences, no. 4, 2007, pp. 187–190

[Panchenko2, 2007] T. Panchenko, Simplified State Model for Properties Proof Method in IPCL

Languages and its Usage with Advances [in Ukrainian], in Proceedings of the International Scientific

Conference “Theoretical and Applied Aspects of Program Systems Development” (TAAPSD’2007),

2007, pp. 319–322

[Panchenko, 2008] T. Panchenko, The Method for Program Properties Proof in Compositional

Nominative Languages IPCL [in Ukrainian], Problems of Programming, no. 1, 2008, pp. 3–16

[Panchenko2, 2008] T. Panchenko, Formalization of Parallelism Forms in IPCL [in Ukrainian], Bulletin of

Taras Shevchenko National University of Kyiv. Series: Physical and Mathematical Sciences, no. 3,

2008, pp. 152–157

[Panchenko, 2016] Panchenko, T. Application of the Method for Concurrent Programs Properties Proof

to Real-World Industrial Software Systems. Proceedings of the International Conference on ICT in

Education, Research, and Industrial Applications (ICTERI'2016), pp. 119--128

[Panchenko, 2017] Panchenko, T., Ivanov Ie., Fabunmi S., Trofimenko Ie., Skidonenko A. Extended

Dynamic State and Instances Spawn Model in IPCL. Bulletin of Taras Shevchenko National

University of Kyiv, Series Physics & Mathematics, No. 4, 2017

[Polishchuk, 2015] Polishchuk, N., Kartavov, M. and Panchenko, T. Safety Property Proof using

Correctness Proof Methodology in IPCL. Proceedings of the 5th International Scientific Conference

"Theoretical and Applied Aspects of Cybernetics". Kyiv: Bukrek, 2015, pp. 37--44

International Journal "Information Models and Analyses" Volume 6, Number 2, © 2017

199

[Pnueli, 1977] Pnueli A. The temporal logic of programs // Proc. 18th Annual Symposium on the

Foundations of Computer Science (Providence). -- New York: IEEE Computer Society Press, 1977. -

- pp. 46--57

 [Redko, 1978] V. Redko, Compositions of programs and composition programming [in Russian],

Programming, no. 5, 1978, pp. 3–24

[Wiedjik, 2006] Wiedijk F. The Seventeen Provers of the World. Foreword by Dana S. Scott. F. Wiedijk

(editor), Lecture Notes in Artificial Intelligence, Vol. 3600, Springer-Verlag Berlin Heidelberg, 2006

[Xu, 1997] Xu Q., de Roever W.-P., He J. The Rely-Guarantee Method for Verifying Shared Variable

Concurrent Programs // Formal Aspects of Computing. -- 1997. -- Vol. 9, No. 2. -- pp. 149--174

Authors' Information

Taras Panchenko – Panchenko, 2006, Associate Professor at the Theory and

Technology of Programming Department, Faculty of Computer Science and

Cybernetics, Taras Shevchenko National University of Kyiv, 64/13,

Volodymyrska Street, Kyiv, Ukraine, 01601

e-mail: tp@infosoft.ua

Major Fields of Scientific Research: Theory and Technology of Programming,

Software Engineering, Software Correctness, Formal Methods

Sunmade Fabunmi – intern at the Faculty of Computer Science and

Cybernetics, Taras Shevchenko National University of Kyiv, 64/13,

Volodymyrska Street, Kyiv, Ukraine, 01601

e-mail: sunmadefabunmi@yahoo.com

Major Fields of Scientific Research: Theory and Technology of Programming,

Software Engineering, Software Correctness, Formal Methods

