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ISOPERIMETRIC PROBLEMS IN DISCRETE SPACES 

Levon Aslanyan 

 

Abstract: A substantial survey of results, obtained around the discrete isoperimetry problems, is 

presented in Harper’s book of 2004. But a number of important results remain not reflected. These basic 

results, obtained in period 1980-90, and a number of new results obtained recently are included in this 

text. Results are presented in terms of geometry of multidimensional unit cube. And of course the 

considered in this paper issue concerns the vertex-isoperimetry paradigm vs. to the edge-isoperimetry 

version that is also a research topic in this area. The edge-isoperimetry counterpart of these topics will 

be surveyed in a separate publication. 
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Introduction 

The classical mathematical problem about isoperimetry is very old. The problem itself is linked to the 

name of queen Dido of Cartagena, ~800 BC [2]. Mathematical investigation in the area started in 

ancient time by Archimedes, Zenodot and others. 

In modern terms the main isoperimetry result (on a plane) can be formulated as: 

Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. 

ThenLଶ ≥ 4πA, with equality if and only if C is a circle. Lଶ ≥ 4πA  is the so called the basic isoperimetry inequality for the plane. A similar relation holds for 

the 3 dimensional space. The basic isoperimetry theorem, historically, was proved in 2 stages. Firstly it 

was proven that if a curve satisfies the isoperimetry requirement, then it must be a circle. The proof is 

more or less simple and it can be found in Blyashke’s book “Circle and ball”. The part about the 

existence of a solution is harder and it was elaborated firstly by Karl Weierstrass, as part of the variation 

analysis that was appearing that time. 

Applications of isoperimetry property could be found in different areas. Our goal in this paper is not the 

classical/continuous but the so called discrete isoperimetry problem. 
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Consider a text document and its word count histogram (the so called word vector model). The 

Armenian language, for example, involves approximately 10000 word roots (H. Adjarian, G. Jahukyan). 

Thus, such a document may be codded by a 10000-dimensional numerical vector and a collection of n 

documents corresponds to an n-subset of points of this integer vector space. These ݊ vectors may be 

arranged as columns of a 10000 × ݊  matrix. Given a subset of vertices, to analyze its structural 

properties geometrical and algebraic approaches may be applied. The aim is to understand 

compactness, diversity of types, and other properties. This means, that we are interested to know the 

isoperimetry like properties, and our example is just to show that multidimensionality is a natural 

phenomenon of the discrete isoperimetry studies. Classical isoperimetry is two or three dimensional 

basically. 

Consider one more example. When a new web page is created a natural question is to know the closest 

pages to it, that is the pages that contain a similar set of links, information or keywords. This question 

translates to the geometric question of finding nearest neighbors in a multidimensional multivalued 

space. This best match type query needs to be answered quickly. One of the ways to address this issue 

is to use the so called Random Projection Technique. If each web page is a ݀-dimensional vector, and ݀ is very large, then instead of spending time d to read the vector in its entirety, once the random 

projection to a ݇-dimensional space is done, one needs only read ݇ entries per vector. The use of 

isoperimetry in problem of best match search is demonstrated in [18,19]. 

Consider the ݊ -dimensional unite cube E୬ . A vertex α ∈ A ⊆ E୬  is called interior for subset A  if Sଵ୬(α) ⊆ A, where S୰୬(α) is the sphere of radius r centered at . Denote by I(A) and B(A) = A −I(A) the sets of all interior and boundary vertices of the set . 

Basic Discrete Isoperimetry 

Consider the revers lexicographical order and the standard order over the E୬. In reverse lexicographic 

order 1 < 0. In standard order vertices are arranged layer by layer starting from layer . Inside the 

layers vertices are in reverse lexicographic order. ܮ௠௡  denotes the initial segment of length ݉	  in 

standard order over the E୬. 

Theorem (Harper L.) ܮ௠௡  is the maximum internal vertex set for size ݉ and dimension ݊, 1 ≤ ݉ ≤2௡. 

The simplest proof of this theorem is based on the so called compression technique. We say that set ܣ 

is ݅-compressed if partitions of ܣ ,ܣ଴(݅) and ܣଵ(݅) in direction ݅ are in standard order of the ݊ − 1 
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dimension space. Arbitrary subset ܣ, step by step can be partitioned and compressed by directions and 

after finite number of such steps we arrive to a uncompressible set ܣ௖.  

Theorem (Aslanyan L., Karakhanyan V., Torosyan B.) Compression does not enlarge the boundary set 

of vertices, and ܣ௖ either equals to ܮ௠௡ , or ݉ = 2௡ିଵ and ܣ௖ = ଶ೙షభିଵ௡ܮ ∪  .ଶ೙షభାଵߙ

I. Leader, [3] “Discrete Isoperimetric Inequalities” (1991) refers to D. J. Kleitman [4] concerning the short 

proof of Isoperimetry that is factually based on compression. In fact, D. Kleitman presents just a survey 

in [4]. At that time simple proof was already published in Russian as well as in English [7]. 

Isoperimetry Inequalities 

Isoperimetric inequalities are the key element of proofs in classical isoperimetric analysis.  

To consider the discrete isoperimetry inequalities represent ܽ = in the following canonical form  a |ܣ| = ∑ ቀni ቁ୩୧ୀ଴ + δ, 0 ≤ δ < ቀ nk + 1ቁ. 

The following isoperimetric inequalities are derived by Nigmatullin R. [5,6]: 

I. B(A) ⊇ B(A଴(i)) ∪ B	(Aଵ(i)) for any A ⊆ E୬, and direction i, 
II. |B(A)| ≥ |B(A଴(i))| + |Aଵ(i)| − |A଴(i)| for any A ⊆ E୬ of reduced form and 

direction  (  has reduced form, if |Aଵ(i)| ≥ |A|/2, i = 1,⋯ , n), 

III. If A ⊆ E୬ , |A| = m = ∑ ቀntቁ + δ୩୲ୀ଴ , 0 ≤ k ≤ n and 0 ≤ δ < ቀ nk + 1ቁ then ∃i ∈ 1, nതതതതത 
such that |Aଵ(i)| ≥ ∑ ቀn − 1t ቁ + δ ୩ାଵ୬୩ିଵ୲ୀ଴ . 

Characterization of Solutions 

Theorem (Aslanyan L., Karakhanyan V.) For each isoperimetric subset ܣ ⊆ ߙ ௡ there exists a vertexܧ ∈ such that S୩୬(α) ܣ ⊆ A. 

Subset ܣ is called critical if ∀	ߙ ∈ (ߙ)ଵܵ௡ ܣ ∩ (ܣ)ܫ = ∅. A number ݉ is critical if ܮଵ௡ is a critical set. 

In this case it is easy to check that all ݉-element optimal subsets are critical. 

Theorem (Aslanyan L., Karakhanyan V.) For each isoperimetric subset ܣ ⊆  ௡ of critical cardinalityܧ

there exists a vertex ߙ ∈ such that S୩୬(α) ܣ ⊆ A ⊆ S୩ାଶ୬ (α). ݉ is a critical cardinality in dimension ݊ iff the ݊-th entry of ߙ௅೘೙  equals 1. So the number of critical 

cardinalities equals 2௡ିଵ. 
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Asymptotic Estimations 

This point surveys the asymptotic behavior of discrete compactness when n→ ∞. For this we form 

sequences ܽ௡ of sizes of considered subsets in form ܽ௡ = 2௡ିଵ(1 + ௡). We require −1ߙ ≤ ௡ߙ ≤ 1 

to satisfy the plain conditions 	0 ≤ ܽ௡ ≤ 2௡ . Finally we denote ै௔೙ = {  the set of sequences ܣ௡ ⊆ ,௡ܧ |௡ܣ| = ܽ௡, by ݊ = 1,2, … } and let ै =∪ै௔೙.  

We call set ܣ ⊆ (ܣ)ߛ dense if-ߛ ௡ܧ = |ூ(஺)||஺| = 0 ,ߛ ≤ ߛ ≤ 1. Further denote by ݉(ߛ) (݉௔೙(ߛ௡)) 
the fraction of those subsets ܣ ⊆ ै ௡ܣ)  ⊆ ै௔೙)  which are ߛ௡  dense. In a similar way ෥݉(ߛ) 
( ෥݉௔೙(ߛ௡)) denotes the fraction of those subsets ܣ ⊆ ௡ܣ) ै ⊆ ै௔೙) with (ܣ)ߛ ≥  .ߛ

Theorem (Aslanyan L., Arsenyan I., Sahakyan H.)  

A) lim௡→ஶ (ܣ)ߛ = 0 for almost all subsets ܣ ⊆ ௡.For arbitrary integer ݇  lim௡→ஶ݉ቀܧ ௞ଶ೙షభቁ = ଵଶೖ௞!√௘ and lim௡→ஶ ෥݉(ఎ(௡)ଶ೙ ) = 0 with ߟ(݊) → ∞. 

B) If lim௡→ஶ (݊)ߙ݊ → −∞ with ݊ → ∞, then for almost all subsetsܣ௡ ⊆ ै௔೙  ߛ(ܣ௡) = 0. 
C) If lim௡→ஶ (݊)ߙ݊ → ∞ with ݊ → ∞, then ݉௔ ቀଵାఈ(௡)ଶ ቁ௡ → 1. If 1-	ߙ(݊)~ ௖௡, ܿ > 0, then 

for almost all ܣ௡ ⊆ ै௔೙ ߛ(ܣ௡)~݁ି௖/ଶ. Moreover, ݉௔(1) → 1 if 1-	ߙ(݊) =  .(݊/1)݋
D)  If lim௡→ஶ (݊)ߙ݊ → ∞ then for almost all ܤ௡ ⊆ ै௕೙ , |ܾ௡ − ܽ௡| = ଶ೙௡)݋ ~(ܤ)ߛ ( ቀଵାఈ(௡)ଶ ቁ௡   .(ܣ)ߛ~
E) If ݊ߙ(݊) → ݊ with ߣ → ∞, then ݉௔ ቀ ௞ଶ೙షభቁ → ଵ௞! ቀ௘ഊଶ ቁ ݁ି೐ഊమ , and ෥݉(ఎ(௡)ଶ೙షభ) → 0 when ߟ(݊) → ∞.  

Theorem (Aslanyan L., Danoyan H.)  

A) For arbitrary subset ܣ�the function ஺݂(݇) = หܣ(௞)ห has one or two points of maximum 
over the domain {1,2,…,n} and in case when the maximum appears in two points, then 
they are neighbor points 
 

B) Let we have an isoperimetric set ܵ and any ܣ ⊆ |ܣ|� ௡, such thatܧ ≥ |ܵ|. Then there 
exists an integer ߛ ∈ {0,1, … , ݊ − 1} �such that หܵ(௜)ห ≤ หܣ(௜)ห �when ݅ ≤ ߛ  and หܵ(௜)ห ≥ หܣ(௜)ห when ݅ >  .ߛ

Conclusion 

Studies in the discrete isoperimetry area appeared as issues of chip design and optimization, started in 

70’s, by a paper of L. Harper. Isoperimetry may vary concerning the real data structure considered and 

the set of constraint applied. The basic problem is in boundary minimization for the subsets of binary 

cubes. This paper considered the basic postulation and the aim was to conclude the results about the 



International Journal "Information Models and Analyses" Volume 7, Number 1, © 2018 

 

 

93

characterization of the set of all solutions of the problem. These results include postulations such as the 

existence of a maximal sphere in an arbitrary solution of the problem, the asymptotic description of the 

subset distribution by the volume of internal vertices, et. Participants of these researches are V. 

Karakhanyan, B. Torosyan, I. Arsenyan, H. Sahakyan, H. Danoyan. The extended narration of the topic 

is under preparation for further publication. This text will include theoretical as well as applied area 

descriptions such as chip design, cross connectivity networking and optimization, bioinformatical 

applications and others. 
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