
International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

125

OBTAINING INITIAL INFORMATION FOR BEHAVIORAL SOFTWARE MODELS’

PROCESSING

Olena Chebanyuk, Oleksii Dyshlevy, Valentyna Skalova

Abstract: In software development process, following AGILE approach, operations with software

models take a great role. The paper is devoted to important aspect of software modeling process,

namely to analysis of XMI representation of UML diagram. Preparing quality information for different

software models processing operations is an important step for effective software development

processes performing.

Paper is devoted to improvement of an approach of text to model transformation. The essence of the

proposed approach is to decompose data stream into chains and mark conditional and cycle operations.

Pointing of such operations is a necessary condition for preparing quality initial information for software

models refinement and comparison.

A notation for an analytical representation of behavioral operations, namely conditional and cycle ones

is proposed in this paper.

The example of representing of different types of behavioral software models according to the proposed

notation is shown.

Keywords XMI, UML, behavioral software model, graph representation,

ITHEA classification keywords: D2 software engineering, D 2.0 Tools.

Introduction

According to definition from UML standard, software models are UML diagrams [OMG, 2015]. Analytical

representation of behavioral software models is the ground for the successful performing of different

Model-Driven Architecture operations. The set of these operations are: software models’ comparison,

reusing, refactoring, and merging. These operations are performed in different processes in software

development lifecycle activities.

Obtaining detailed information about data streams, represented in behavioral software models, allows

providing a comparison considering semantic aspects and refinement, based on operations with

algorithms.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

126

Well-designed notation for behavioral software models representation provides a background for

comparing, transformation or refinement of software diagrams considering semantic aspects.

This paper is a continuation of papers [Chebanyuk] and [Chebanyuk, 2018]. In the paper [Chebanyuk,

2018] an approach to restore software model structure from UML diagram stored in modeling

environment is represented. The concept of different types of behavioral software models representation

is proposed in the paper [Chebanyuk, 2015].

Used terminology

Let’s introduce main concepts of used terminology for describe the proposed approach

Table 1 Analytical denotations for restoring software model structure

Concept Explanation and analytical representation of concept

Software model

(SM)

According to the UML 2.5 standard SM is an UML diagram. Denote it as SM and SM of

some type as typeSM where type=use case, type=class, etc.

Software model

representation

The graph representation is chosen.

),(typetypetype LOSM  (1)

where

typeO – a set of SM objects that are used in
typeSM notation.

.
Objects are the elements of

SM notations that can be expressed as graph vertexes.

typeL – a set of software model links that are used in
typeSM notation. Links are elements of

SM notation that can be expressed as graph edges.

Common definitions for behavioral SM representation are presented in the paper

[Chebanyuk, 2015].

Elementary

sub-graph

It is a part of a graph, consisting of two linked vertexes.

Denote an elementary sub-graph as:

),,(21 oloe  (2)

where Ooo 21 , are software model objects linked by link Ll .

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

127

Concept Explanation and analytical representation of concept

Set of elementary

sub-graphs

All elementary sub-graphs of SM. Denote this set as A.

Linked

Elementary Sub-

Graphs (LESG)

Consider two elementary sub-graphs),,(2111 oloe  and),,(3222 oloe 

If two elementary sub-graphs are interconnected through an object Oo 2 these two sub-

graphs are considered linked. Consider a pair of elementary sub-graphs 1e and 2e

Determine 1e as the first linked elementary sub-graph, 2e respectively as the seconds.

Starting border

elementary sub-

graph

Elementary sub-graph that has no first linked elementary sub-graph. Consider

),,(2111 oloe  . Usually Oo 1 is an object from which streams of UML diagram are

started. These objects are actors or objects that have no incoming links.

A set of starting

border

elementary

sub-graphs

A set that contains all starting border elementary sub-graphs of software model.

Denote this set as START.

||},,...,,{ ,2,1, STARTkeeeSTART kstartstartstart  (3)

Switching

elementary

sub-graphs

Consider two linked elementary sub-graphs.),,(2111 oloe  and),,(3212 oloe  . They are

started from the Oo 1 . An elementary graph located on SM before

),,(, 100021 oloeeande  is determined as a switching elementary sub-graph.

A set of switching

border

elementary

sub-graphs

A set that contains all switching elementary sub-graphs of a SM. Denote this set as

SWITCH.

||},,...,,{ ,2,1, SWITCHpeeeSWITCH pswitchswitchswitch  (4)

Finishing border

elementary sub-

graphs

An elementary sub-graph that has no second linked elementary sub-graphs. Consider

),,(2111 oloe  . Usually Oo 2 is an object to which streams of UML diagram are ended.

Other words these objects have no outcoming links.

A set of finishing

border

elementary

sub-graphs

A set that contains all finishing border elementary sub-graphs of a SM.

Denote this set as FINISH.

||},,...,,{ ,2,1, FINISHteeeFINISH tfinishfinishfinish  (5)

A set MIDDLE All elementary sub-graphs that are not included to sets START, SWITCH, and FINISH are

included to the set MIDDLE.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

128

Concept Explanation and analytical representation of concept

Software model

sub-path

A part of software model, consisting from chain of linked elementary sub-graphs. Denote

a sub-path of a SM as chain. Using (2) chain is denoted by the following:

1 1 2 2 2 3 1 1

1 2

((, ,), (, ,),..., (, ,)), | |
(, ,...,)

n n n

n

chain o l o o l o o l o n chain

chain e e e
  


 (6)

where n is a number of elementary sub-graphs in sub-path.

There are several variants of forming chains:

― starting from a border elementary sub-graph and ending on a switching

elementary sub-graph;

― starting from a next elementary sub-graph to switching one (the second

elementary sub-graph in pair of linked elementary sub-graph) and ending on

other switching elementary sub-graph;

― starting from a next elementary sub-graph to switching one (the second

elementary sub-graph in pair of linked elementary sub-graph) and ending on the

finishing border elementary sub-graph;

― starting from a starting border elementary sub-graph and ending on finishing

border elementary sub-graph.

The contribution of this paper: is a modification of the text to model transformation approach for

restoring behavioral software model structure decomposing models into chains considering main

operations of algorithms represented on them.

Such decomposition simplifies the further data stream analysis as well as comparison and refinement

operations. In order to compare software models it is possible to analyze combination of processes

represented in reference software models and ones used in development of concrete projects. From the

other hand obtaining information about operations represented in behavioral software models provides a

background for their processing considering semantic aspects.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

129

Investigation of the existing approaches drawbacks

In order to ground the necessity of the existing approaches improvement, it is necessary to illustrate the

drawbacks of the previous methods. Doing this, consider two examples for different type of software

models, namely UML Use Case and Communication Diagrams.

Let’s remember that the process forming of elementary sub-graphs chains uses graph representation of

software models. Such a representation considers software model as a graph that consists from a set of

objects and links.

In the beginning graph objects are divided into several types [Chebanyuk, 2018].

Figure 1 Different types of UML diagram objects.

Let’s remember the classification of UML diagram objects. It is proposed to divide software model

elements into groups:

― Starting border element. Such element has no incoming links. In the figure 1 it is “user” (marked

by green).

― Switching element. Such element has several outgoing links and at least one incoming link. In

other words several linked objects can start from it. In the figure 1 it is “check spelling”. (This

element is marked by red).

― Finishing border element. Such element has no outgoing links. In the figure 1 they are “receive

notification”, ”save to draft”, and “read e-mail”. (Elements are marked by blue).

Such representation of elements help to compose rules to form chains of software model elements that

are linked directly [Chebanyuk, 2018].

An example of forming the set A for small Use-Case Diagram (Figure 2) is represented in the Table 2.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

130

Figure 2. Illustration decomposition of software model to linked chains

Table 2. Description of forming CHAIN process from UML Use-Case diagram,

shown in the figure 2

Use Case diagram sets Explanation

1 1 2 1 2 3

3 3 4

7 54 4 6 6

5 54

{(, ,), (, ,)}

{(, ,)}

{(, ,), (, ,)}

{(, ,)}

START el l el el l el

SWITCH el l el

FINISH el l el el l el

MIDDLE el l el









1 1 1 2(, ,)chain el l el

There is no elementary sub-graph starting from 2el . That’s

why the forming of the 1chain is finished on the first step.

Elementary sub-graph 1 1 2(, ,)el l el
is deleted from the set

START. In the figure 2 this chain is marked by green.

In the figure 2 this chain is marked by

black

3el is a common element for 1 1 3(, ,)el l el and 3 3 4(, ,)el l el .

According to the proposed approach if

ref SWITCH Forming of 2chain is finished.

2 1 2 3 3 3 4((, ,), (, ,))chain el l el el l el

Elementary sub-graphs 1 1 3(, ,)el l el and 3 3 4(, ,)el l el are

deleted from the sets START and SWITCH.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

131

Use Case diagram sets Explanation

In the figure 2 this chain is marked by

red

According to the proposed approach forming of 2chain in this

case is started from the set MIDDLE because START   and

SWITCH  

5el is a common element for 5 54(, ,)el l el and 5 6 6(, ,)el l el .

5 5 53 4 6 6((, ,), (, ,))chain el l el el l el

Elementary sub-graphs 5 54(, ,)el l el and 5 6 6(, ,)el l el are

deleted from the sets MIDDLE and FINISH.

74 4

,

{(, ,)},

START SWITCH

FINISH el l el MIDDLE

   

  
In the figure 2 this chain is marked by

blue

74 4 4((, ,))chain el l el

Similar steps are used to compose the chains from UML communication diagram that is represented in

the Figure 3.

Figure 3 Communication diagram of performing order in internet shop

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

132

The figure is taken from AgileModeling site http://agilemodeling.com/style/communicationDiagram.htm

An analytical representation according to proposed approach is prepared

1. Form a graph representation of communication diagram

51 2 3 4

76 8

, : , , , ,

, ,

el customer el order checkout el order el checkoutpage el creditcardpayment

el orderitem el item el payment

    

   

50 1 2 3 4

76 8

: 1: , 2 : , 2.1 (2.2), , 3.1 inf ,

1.1 (), 1.1 (3.1), 1.1.1 (3.1.1 inf)

l create l gettotal l debit l reserve commit l display l get o

l ordertotal calculateTotal l GetTotal GetInfo l getprice get o

     

  

(7)

2. Compose different sets of UML communication diagram sub-graphs.

1 0 2 2 1 6

73 3 4 8 8

5 5 5 7 72 2 3 2 4 6 6 6 6 6

{(, ,)} {(, ,)}

{(, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,), (, ,)}

START el l el SWITCH el l el

FINISH el l el el l el

MIDDLE el l el el l el el l el el l el el l el

 





 (8)

3. Let’s form the chains of elementary sub-graphs following the algorithms, described above.

1 1 0 2

7 7 72 2 1 6 6 6 6 6 8 8

3 2 2 3 3 3 4

5 5 54 2 4 6

((, ,))

((, ,), (, ,), (, ,), (, ,))

((, ,), (, ,))

((, ,), (, ,))

chain el l el

chain el l el el l el el l el el l el

chain el l el el l el

chain el l el el l el









(9)

Analyzing communication diagram, chains it is pointed that element 2el is a switch object, but does not

appeared in the SWITCH objects set. It appears in the START set. As START set is formed before

SWITCH element 2el was not recognized as SWITCH element.

Research question 1: Why it is important to consider all SWITCH objects?

SWITCH objects have important meaning in defining the type of operations. For example: in considering

the conditional operation. It becomes a motivation for authors to improve the algorithm of decomposing

software model elements into the chains. The essence of the proposed algorithm is to provide a

preparation of initial information for the further analysis after decomposing behavioral software models

into chains.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

133

Task: to propose an approach for decomposition of UML diagram chains into operations.

Challenges to prepare initial information for semantic comparison and merging of UML diagrams in

convenient form for the further analysis

In order to perform this task the next Research Problems (RPs) should be solved:

― RP1: To define key features of conditional and cycle operations in UML diagrams.

― RP2:To provide changes to algorithm restoring software model structure to define conditional

and cycle operations.

― RP3: To propose an analytical form of conditional and cycle operation recording.

Application of the proposed approach is to provide a background for software model comparison,

refinement, and transformation considering semantic aspect.

Grounding of the necessity of designing algorithm for decomposing elementary sub-graphs into

the chains marking operations

The notation of behavioral software models analytical representation is given in the paper [Chebanyuk,

2015]. In this paper the concept of all operations performed in behavioral software models processing is

introduced. We consider two types of operations, namely conditional and cycle ones. These types of

operations are defined directly only in sequence diagrams from all behavioral software models. But

other types of UML diagrams have more common notations and no notation tool on UML diagrams,

except comments, to define operations performed in algorithm in precise form (figure 4).

Description of the proposed approach

Solutions of the research problems given above:

RP1: define key properties to cycle and conditional operations.

In order to define key features of behavioral software models consider communication diagrams as

diagrams that are designed to show data streams.

Table 2 illustrates examples of communication diagrams fragments that match to different operations

with their elements.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

134

Figure 4 An example of operations description in behavioral software models

https://www.uml-diagrams.org/communication-diagrams.html

Table 2 Examples of behavioral software models fragments

Communication diagram fragment Analytical representation

Explanation: simple action that is

executed under all elements of some

collection

The first example of cycle construction

* *(, ,)chain Object action Object

Where *Object - is a collection of objects

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

135

Communication diagram fragment Analytical representation

Explanation while cond1 is true actions

3m and 2m are executed under

objects 2ob and 3ob respectively.

The second example of cycle construction

1 3 2 2 2 3 3 1 1((, ,), (, ,), (, ,))chain ob m ob ob m ob ob m ob

Also such communication diagram fragment can match to

conditional statement

Pay attention to collision the same communication diagram

fragment may point both to conditional and cycle statement.

Explanation when cond1 is true

conditional operation is performed with

2ob otherwise this operation is

executed with 4ob

Another example of conditional construction

1 1 2 4

2 1 3 2

{ , , }

{ , , }

chain ob m ob

chain ob m ob





Where: 1ob is a switching object.

Firstly we can assume that switching object points to conditional operation. In order to detect cycle

operation let’s pay attention to several variants of cycle operation organization.

1. Consider a loop, recorded in one chain. The cycle condition is formulated as follows: chain must

starts and ends with the same object (see the first example in the table 2).

2. Consider a loop, represented in two chains, namely 2chain and 2chain The cycle condition is

formulated as follows: 1chain starts from the object 1ob . This object should be the last one in the

2chain . The second condition is the next: 1chain ends with the object 1ob 2chain must starts from

the same object.

1 1 2 4 4 3 6

2 1 3 2 1 3 2

((, ,), (, ,))

((, ,), (, ,))

chain ob m ob ob m ob

chain ob m ob ob m ob





3. We can extend this condition for representing loop recorded in several chains,

1 2(, ...,)nCHAIN chain chain chain . 1ob is the first object in 2chain and the last one in the

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

136

2chain . In general iob is the first object in the 1ichain  and the last one in the. The object 0ob is the

last in the nchain and the first one in the 1chain .

It is necessary to point that even when it is possible to combine a cycle from chains it is not always cycle

operation. Consider the situation shown in the figure 3. Combination of arrows directions illustrates that

only one cycle is represented in the figure 3. (It is started and finished in object 6el) Also we can notice

that the object 2el is a switch one but according to algorithm proposed in paper [Chebanyuk, 2018]

elementary sub-graph 1 0 2(, ,)el l el participates in forming START set. Repeating actions that are

based on proposed algorithm we can skip switch objects from the START set. But definition of them is a

very important thing because switching objects point to conditional and probably cycle operations.

RP2: Provide changes to algorithm restoring software model structure to define conditional and

cycle operations

It is proposed to take three changes into algorithm of decomposing UML diagram into the chains.

First: additional point is added after elementary sub-graphs are divided into sets START, FINISH,

MIDDLE, and SWITCH.

All switching elementary sub-graphs are marked as conditional ones. Conditional elementary sub-

graphs are the first sub-graphs in the chain representing conditional operations. The form to consider

conditional operations will be introduced later.

Second: in order to avoid situations when elementary sub-graph is not considered as a conditional one

(9). It is proposed to perform review of chains after their forming. This review should calculate the

number of chains that are started from some object obj. If there is more than one chain starting from the

“obj” then “obj” is considered as switching object.(in considering communication diagram in the figure 3

we can define one more switch object. It is object el2).

“Switch record” is formed.

Third: the analysis of chains is performed in order to define linked chains. Linked chains are those that

have common element. This element should be the last in the first chain and the first in the second one.

In order to organize cycle the first chain should start and the last chain should finish from the same

element.

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

137

RP3: Propose an analytical representation of recording conditional and cycle operations.

Analytical representation of “Switching record” to represent conditional operation

2 3 3

52 4

1 1 2

2

, ,

, ,

., ,

.

.

, ,n k

el l el

el l el

el l el

el l el

 
 
 
 
 

   
 
 
 
 



(10)

Where:  - denotation of the conditional operation

Analytical representation of cycle operation

1 1 2 1 1((, ,),..., (, ,), (, ,),...(, ,), (, ,))n m p r w w stk kel l el el l el el l el el l el el l el  (11)

where: O is a denotation of cycle operation.

Case study and evaluation of the proposed approach

Let’s analyze the communication diagram represented in the figure 3. From the first view it seems to

have two cycles. One of them is started from the object order:checkout another one from the object

:order But the analysis of data stream shows that after object order:checkout two separate stream are

started. That why this diagram is interesting to investigate and to prove formulated conditions. Modified

algorithm of analysis of linked chains allows defining one mode switching object.

Review of related papers

Nowadays there are many investigations directed to analysis of information getting from the UML

diagrams, designed in modeling environments. They are divided into two large directions, namely

analysis of software development artifacts to get initial information for software model designing

(requirement based engineering area). The second area of investigation is aimed to is to extract

information from software model XMI for the further analysis.

Let us consider papers taking information about software model from requirement specification.

Paper [Sneed, 2018] introduces tool to extract logical test cases or test conditions from requirement

specification as they are referred to in the ISO Standard-29119. To archive this goal authors introduce

the next terminology base: test condition, action, state, and rule.

A test condition defines a particular feature of the system. This can be an action, a state or a rule. An

action would be “to place an order”. A state is “the ordered article is available”. A rule would be “the

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

138

customer can only place an order if the ordered article is available”. A rule is as shown here actually a

combination of a state with an action.

Information about logical test cases and centrally sequence of them, gathered into logical test cases,

serves to expose some domain process in compact view. This information is initial for the analysis of

problem domain algorithms and operations. It is possible for example to verify obtained logical test

cases with reference ones and to define whether conditional operation was skipped or extra one is

added.

Then consider papers proposing approaches that are based on extracting information from software

models.

There are investigations related to processing the information about UML diagrams stored in modeling

environment. Many researches are concentrated on using ready tools for software analysis. One of

them is project SMartyParser. It is aimed to parse UML diagrams stored in XMI formats. Authors of this

project [L. A. Lanceloti at el., 2013] use SD Metrics tool for the analysis of XMI. This tool allows

performing the next operations:

― Comprehensive design measurement

SDMetrics ships with a rich set of object-oriented (OO) design measures covering structural

properties of design elements from all UML1.x/2.x diagram types. Investigator may measure all

the import design attributes - size, coupling, complexity and more - at all levels of detail, from

the model, subsystem, package level down to classes and operations [SDMetrix, 2014].

― Design rule checking

Design rules and heuristics automatically check UML design for completeness, consistency,

correctness, design style issues such as dependency cycles, and more [SDMetrix, 2014].

― Early quality feedback

SDMetrics finds arthitectural problems at the design stage, before they are committed to source

code [SDMetrix, 2014].

― Extensible set of design measures and design rules

SDMetrics has a flexible and powerful mechanism to define and calculate new design rules and

measures of your own, tailored to your development practices [SDMetrix, 2014].

― Compare designs

Calculate size metrics deltas to quantify the growth in size between two versions of a design,

identify parts of the system design that have undergone much change, or evaluate alternative

solutions to a design problem [SDMetrix, 2014].

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

139

The aim of investigation represented in paper [L. A. Lanceloti at el., 2013] is to define differences UML

diagrams in software Product Line approach. In order to parse them class XMIReader is used. Then

SDMetrics allows representing statistic values about software model. Analyzing these values it is

possible to make a conclusion how much UML diagrams are differ.

There are authors [Chebanyuk and Mironov, 2017] taking efforts to design own tools for extracting

information about software models elements. The proposed approach implies working with a machine-

readable representation of a software model used by modeling environments. XMI is considered as a

fitting option due to rich set of features allowing to effortlessly recognizing entities and relations between

them. Moreover, XMI is used by notorious modeling environments like IBM Rational Software Architect

(RSA) and Eclipse Papyrus and suggests various ways to process and analyze models.

Introduced idea and approach has been expressed as a simplistic framework that works with different

types of UML diagrams. It is implemented as a core library and a set of frontends to it. .NET Core is

used as a basis for realization because of a powerful XML-parsing features (XDocument, LINQ) and

availability on multiple platforms.

The library itself is able to recognize diagrams in XMI format and provide additional data for Class and

Use-Case diagrams. It is open to extension and may easily accept new functionality like custom

business logic, new frontends, and new kinds of diagram to parse and new metrics to calculate for

already implemented ones.

Proposed tool become a start point to design application for analyzing a class diagram in accordance to

SOLID design principles [Chebanyuk and Povalyaev, 2017]. The first point of such an analysis is to

extract class diagram elements by means of special LINQ requests. Then LINQ requests matching to

expression of predicate logic proposed in paper [Chebanyuk and Markov, 2016] were composed.

Summarizing the review

The next conclusion is performed: there is a series of Investigations to analyze xmi representation of

UML diagram but extracting information about UML diagram entities does not provide possibility to

perform other operation with software model such as transformation, comparing, merging because it is

necessary to involve additional information to include semantic aspects in some operation performing.

Such semantic aspect is decomposing software model chains into operations.

Conclusion

The proposed approach for software models representation allows decomposing data streams in

behavioral software models into chains. Modification of the proposed algorithm lets to consider

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

140

conditional and cycle operations that are used in algorithm. Such operations are “skeletons” for

analyzing data streams and providing further software models comparison and refinement operations.

Bibliography

[Chebanyuk, 2014] Chebanyuk, Elena.2014. Method of behavioural software models synchronization.

International journal Informational models and analysis. – 2014, №2 P 147-163

http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf

[Chebanyuk, 2015] Chebanyuk Еlena An Approach to Behavioral Software Models Analytical

Representation. International Journal “Information Models & Analyses”, Volume 4, Number 1, 2015,

p 51-79

[Chebanyuk, 2018] Chebanyuk, Olena An Approach of Text to Model Transformation of Software

Models. In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2018), pages 432-439 ISBN: 978-989-758-300-1

[Chebanyuk and Mironov, 2017] Chebanyuk Olena and Mironov Yuriy, International Journal "Information

content and Processing" Volume 4, Number 2, © 2017,

[Chebanyuk and Markov, 2016] Chebanyuk E. and Markov K. (2016). An Approach to Class Diagrams

Verification According to SOLID Design Principles.In Proceedings of the 4th International

Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,

ISBN 978-989-758-168-7, pages 435-441. DOI: 10.5220/0005830104350441

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HASwCJGMcXc=&t=1

[Chebanyuk and Povaliaiev, 2017] Chebanyuk Olena and Povaliaiev Dmytro International Journal

"Information Technologies & Knowledge" Volume 11, Number 2, © 2017 p.114-143.

[Lanceloti at el., 2013] L. A. Lanceloti, J. C. Maldonado, I. M. S. Gimenes, and E. OliveiraJr.

SMartyParser: a XMI Parser for UML-based Software Product Line Variability Models. In Proc.

Variability Modelling of Software-intensive Systems, pages 10:1–10:5. ACM, 2013.

https://www.slideshare.net/edson_ao_junior/edson-va-mos2013

[SDMetrix, 2014], The Software Design Metrics tool for the UML

https://www.sdmetrics.com/FeatOvw.html

Sneed, Harry M. "Requirement-Based Testing-Extracting Logical Test Cases from Requirement

Documents." International Conference on Software Quality. Springer, Cham, 2018.

[UML, 2012] Unified Modeling Language 2.5, 2012 Access mode

http://www.omg.org/spec/UML/2.5/Beta1/

[XMI, 2015] XML Metadata Interchange access mode http://www.omg.org/spec/XMI/

International Journal "Information Models and Analyses" Volume 7, Number 2, © 2018

141

Authors' Information

Olena Chebanyuk – assoc. professor of Software Engineering Department, National

Aviation University, Kyiv, Ukraine,

Major Fields of Scientific Research: Model-Driven Architecture, Model-Driven

Development, Software architecture, Mobile development, Software development,

e-mail: chebanyuk.elena@ithea.org

 Oleksii Dyshlevy – senior lecturer of Software Engineering Department, National

Aviation University, Kyiv, Ukraine,

Major Fields of Scientific Research: Software Development, Web Applications, Web

Services, Microservices, Software Design, Software Architecture, Software Metrics,

Code Quality

e-mail: oleksiy.dyshlevyy@gmail.com

Valentyna Skalova – Software Engineering Department, National Aviation University,

Kyiv, Ukraine,

Major Fields of Scientific Research: Software architecture, Software development,

e-mail: valentine.skalova@livenau.net

