
International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

185

REVIEW OF DRAWBACKS OF EXISTING TOOLS

TRANSFORMING PLATFORM SPECIFIC MODELS TO CODE

Anton Shyrokykh

Abstract: AGILE as way of developing software have great support in

development community. Using of software models as abstractions could

increase software accuracy and documentation quality, but does not apply with

AGILE principles, due to high effort. Model to code transformation via model

driven development has a potential to resolve high effort problem and make

modeling align better with AGILE principles.

As reliability and flexibility of code generation tools is very important

characteristics, paper is devoted to investigation of code generation approach

that can be supported by most widespread used tools that allow to obtain code

skeletons from UML class diagrams.

Keywords: Code generation, Model driven development, Class diagram,

Object-Oriented Programming.

Introduction

According to AGILE manifesto and principles, teams should at regular intervals

reflects on how to become more effective, pay continuous attention to technical

excellence and good design, deliver working software frequently and welcome

changing requirements (Manifesto for Agile Software Development). Developing

models as additional abstractions of software help teams communicate better,

detect high level errors early and increase quality of software under

development. But models as additional artifacts require additional efforts to

produce, support and to keep them up to date. This makes this powerful tool

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

186

almost not applicable in conditions of AGILE software development process

with often requirements changing. Also it is not compatible with principle

"Working software over comprehensive documentation".

Model to code automatic or semi-automatic transformation process using model

driven development approach helps to solve most of the defined problems.

Model to code transformation helps to reduce development effort on coding, as

most of the code is generated from the model, and also helps to support

connection of models to code, making it simple to keep up to date. Model driven

development makes model to code transformation compatible with AGILE

manifesto and principles.

There exists several approaches to implement code generation in model driven

development. Some of the approaches are: modeling with support of

transformation language, direct model manipulation, intermediate

representation approach. Different approaches allows to choose and balance

some key attributes, as flexibility of code generation, effort to perform

transformation, transformation accuracy etc. Each of approaches has

representative technology, but the most widespread used tools use visual

notation of the model and use direct model manipulation approach to perform

transformation. In most cases transformation implementation is either hidden, or

not extensible. As a result, produced code needs some effort comparing with

manual coding or more accurate but more expensive transformation

approaches, as using of transformation language.

Code generation is a key activity in Model-Driven Development approach. The

aim of UML diagrams models not to be just models, but to become a code that

corresponds to processes or software structure. Nowadays there are some

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

187

foundation in papers divided to investigation of analytical Model transformation

aspects.

Review of Papers

Model-to model generative approaches work with graph representation of

models. In order to obtain resulting models For example, in the paper (Eickhoff

C at. el.,2019) it is proposed to use reachability graph computation for Eclipse

Model frameworks (EMF). Such models are based on model transformations

provided as simple Java lambdas. Thus, it is possible to test and check model

and controller synthesis on EMF model using model transformations. Proposed

tool enables sharing of common sub-models between multiple states thus

providing a memory efficient encoding of large reachability graphs. Model

attributes can be modified. It is model to model transformation tool based on

graphs. Using java.lang.reflect authors could achieve this reflective access for

general Java objects can be archived.

Other direction of software development artifacts producing are related to web

development sphere.

Paper (Laaz, N. at. el, 2019) presents an approach based on MDA for the user

interfaces development of SWAs. A Meta Model for Html5 is defined. Then the

transformation engine that allows the automatic generation of the output models

is developed. These models represent an input to a Model to Text generator

that give an almost complete web pages ready to be deployed, focusing on the

graphical aspect of the application on one hand, and the annotations and the

user event handling on the other. The main contribution in the proposed

approach is the generation of ontologies, as well as annotated web pages from

one IFML diagram, besides the abstraction of technical details. By using this

models driven method, the user interfaces of semantic web applications can be

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

188

easily generated without having to know all the technical specification of the

execution platform.

Fundamentals of Model transformation approaches used in AGILE approach

are investigated in paper (Chebanyuk & Markov, 2016). Authors consider

Model-Driven Engineering promises and analyze research state of art of

different Model transformation activities.

Tasks, needed to be automated, for increasing effectiveness of different

software development operations are summarized in paper (Shane Sendall and

Wojtek Kozaczynski). Authors formulate requirements from software model

transformation language, which supports model-driven software development

are formulated. This paper makes strong contribution to systematic review of

model transformation requirements and also to classification of architectural

approaches to transformations.

In order to answer to automatic code producing challenge many commercial

and noncommercial tools support such function as codegeneration. From the

other hand, one can prove, that namely such Model-Driven Development

foundations are popular and used often, which can be implemented by many

developers to fell concepts of Code Generation.

Investigation of Codegeration Features of tools

Most widespread used tools use visual notation of the model and use direct

model manipulation approach to perform transformation. Visual notation in most

cases corresponds to UML Class diagram, which is considered to be a standard

notation.

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

189

The general drawback of that approach, that transformation implementation is

either hidden, or not extensible. As a result, produced code needs some effort

comparing with manual coding or more accurate but more expensive

transformation approaches, as using of transformation language. In addition

each particular tool can have own drawbacks and limitations.

Several widespread used codegeneration tools from software models were

chosen to investigate their codegeneration drawbacks.

Visual Studio Class Designer

Class Designer is a part of Microsoft Visual Studio IDE. Source code of IDE

Class Designer is not public and does not support extensions.

Class Designer has the next features:

1 Design: Edit your project's code by editing the class diagram. Add new

elements and delete unwanted ones. Your changes are reflected in

code.

2 Visualize: Understand your project's structure by viewing the classes in

your project on a diagram. Customize your diagram so that you can

focus on the project details that you care about the most. Save your

diagram to use later for demonstration or documentation.

3 Refactor: Override methods, rename identifiers, refactor parameters, and

implement interfaces and abstract classes (Microsoft, 2019).

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

190

Table 1. Visual studio drawbacks

Bug

code

Drawing or explanation Textual description

VS-B1

There are two classes on class

diagram and inside of one class

declare a property named as other

class is declared. You obtain an

error message from Visual Studio

environment that this data type

already is used. But, according to

design rule it is expected the

generation of composition

relationship between two classes.

You cannot do it, because Visual

Studio Environment do not contain

composition relation.

VS-B2

You have an interface and a class.

You design inheritance relationship

between interface and class inside

of the code generated class it is

expected to see interface methods

with public modifier ready for

overloading.

Really such a situation is not

happened. Only inheritance is

appeared.

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

191

Bug

code

Drawing or explanation Textual description

VS-B3

Then it is advisable when several

interfaces have method with the

same signature and when they are

inherited by the same class to point

explicit inheritance starting from

the name of the interface.

VS-B4 Designer can add to class

diagram as many components

(classes and interfaces) as he

considers that it is needed.

There is no mechanism of

verification class diagram to

correspondence of cognitive design

principles

Eclipse codegeneration tool

The EMF project is a modeling framework and code generation facility for

building tools and other applications based on a structured data model. From a

model specification described in XMI, EMF provides tools and runtime support

to produce a set of Java classes for the model, along with a set of adapter

classes that enable viewing and command-based editing of the model, and a

basic editor (Eclipse, 2018).

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

192

The core EMF framework includes a meta model (Ecore) for describing models

and runtime support for the models including change notification, persistence

support with default XMI serialization, and a very efficient reflective API for

manipulating EMF objects generically.

Three levels of code generation are supported:

Model - provides Java interfaces and implementation classes for all the classes

in the model, plus a factory and package (meta data) implementation class.

Adapters - generates implementation classes (called ItemProviders) that adapt

the model classes for editing and display.

Editor - produces a properly structured editor that conforms to the

recommended style for Eclipse EMF model editors and serves as a starting

point from which to start customizing.

All generators support regeneration of code while preserving user modifications.

The generators can be invoked either through the GUI or headless from a

command line.

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

193

Table 2. Eclipse drawbacks

Bug

code

Drawing or explanation Textual description

E-B1 Repeats VS-B2 behavior

E-B2 Repeats VS-B3 behavior

E-B3 Repeats VS-B4 behavior

E-B4

Generated code shows that interface

(namely abstract class) inherits

NewClass2

NClass

NClass is a free open source tool to create UML class diagrams with C# and

Java language support. The user interface is designed to be simple and user-

friendly for easy and fast development. Initially the project was developed by

Balasz Tihanyi on sourceforge.

Existing features:

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

194

4 C# and Java support with many language specific elements;

5 Simple and easy to use user interface;

6 Inline class editors with syntactic parsers for easy and fast editing;

7 Source code generation;

8 Reverse engineering from .NET assemblies;

9 Printing / saving to image;

Table 3. NClass drawbacks

Bug

code

Drawing or explanation Textual description

NC-B1 Repeats VS-B1 behavior

NC-B2 Feature is absent Design limitation – to establish a

generalization relation between

interface and a class

NC-B3 Repeats E-B4 behavior

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

195

Codegeneration efforts overview

Despite all reviewed drawbacks of chosen approach, codegeneration saves

much effort in programming. But auto generated code is not ready for use and

needs to be completed manually. Significant effort could be taken to perform

correspondence of code structures with complex relations between classes, for

example to design patterns.

Consider class diagram of design pattern “Proxy” and estimate efforts needed

to be taken while completing codegeneration results.

Figure 1. Class diagram of design pattern “Proxy”

Figure is taken from https://dotnettutorials.net/lesson/proxy-design-pattern/

Two variants of code, namely code generated by Visual Studio automatically

and code designed by software developer are given in the table 4.

https://dotnettutorials.net/lesson/proxy-design-pattern/

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

196

Table 4. Differences between generated code and such a one that is

designed by developer

Code skeleton created by developer

Code is taken from

https://dotnettutorials.net/lesson/proxy-

design-pattern/

Code skeleton, created by visual

studio codegeneration tool

 public class Employee

 { }

 public interface ISharedFolder

 {

 void PerformRWOperations();

 }

public class SharedFolder :
ISharedFolder

 {

 public void PerformRWOperations()

 {

 ……..

 }

 }

class SharedFolderProxy :
ISharedFolder

 public interface Subject

 {

 void PerformOperation();

 }

 public class Proxy : Subject

 {

 public RealSubject RealSubject

 {

 get =>
default(RealSubject);

 set

 {

 }

 }

 }

 public class RealSubject : Subject

 {

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

197

 {

 private ISharedFolder folder;

 private Employee employee;

 public void PerformRWOperations()

 {

 …

 folder = new SharedFolder();
folder.PerformRWOperations();

 …

 }

 }

}

 }

As result of automatic code generation, interface and classes were created.

Work items to complete manually includes:

1. create private RealSubject field in Proxy class and complete

implementation of getter and setter

2. define PerformOperation method from Subject interface in RealSubject

class and complete implementation

3. define PerformOperation method from Subject interface in Proxy class

and complete implementation with private RealSubject instance call

4. complete PerformOperation method in Proxy class with additional Proxy

logic

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

198

Conclusion

Paper proposes investigation of codegeneration tools. Ideas of investigation is

the next: in AGILE approach codegeneration – is operation that must reduce of

developer effort. Different software development tools are better to use in

different stack of technologies. Number of efforts, spent to refine obtained

skeleton of code, influences to general codegeneration time. Practically, all

codegeneration tools require additional efforts after codegeneration. These

efforts are spent to perform a correspondence of code structure with compex

relations between classes, for example to design patterns.

Further research

Such an investigation becomes a start point to perform further investigations,

that consists from the next steps:

Grounding of analytical approach or fundamentals to describe transformation

rules (model to code transformation) removing limitation of existing

codegeneration techniques

Representation of architectural schemas of transformation tool

Analyzing bug tables (table 1-3) representing a set of transformation rules in

terms of chosen analytical approach

Designing an architectural solution of newly designed transformation tool

Bibliography

Chebanyuk E. & Markov Kr. (2016) Model of problem domain “Model-driven

architecture formal methods and approaches”. International Journal

“Information Content and Processing”, Vol. 22, Number 4, 2016, 202-222

International Journal "Information Models and Analyses" Volume 9, Number 2, © 2020

199

(GitHub, 2015) https://github.com/gbaychev/NClass

(Eickhoff, C. at el., 2019) Eickhoff, C., Lange, M., Raesch, S. and Zündorf, A.

EMFeR: Model Checking for Object Oriented (EMF) Models. DOI:

10.5220/0007681605110518 In Proceedings of the 7th International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD 2019), pages 511-518 ISBN: 978-989-758-358-2

(Shane Sendall and Wojtek Kozaczynski) Model Transformation – the Heart

and Soul of Model-Driven Software Development

(Manifesto for Agile Software Development)

https://agilemanifesto.org/iso/en/manifesto.html

(Eclipse, 2018) https://www.eclipse.org/modeling/emf/

(Laaz N., 2019) Laaz, N. and Mbarki, S. OntoIFML: Automatic Generation of

Annotated Web Pages from IFML and Ontologies using the MDA Approach:

A Case Study of an EMR Management Application. DOI:

10.5220/0007402203530361 In Proceedings of the 7th International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD 2019), pages 353-361 ISBN: 978-989-758-358-2

(Microsoft, 2019) https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/designing-

and-viewing-classes-and-types?view=vs-2019

Authors' Information

 Anton Shyrokykh – National Aviation University, Faculty of

Cybersecurity, computer and software engineering, graduate

student. Kiev, Ukraine; e-mail: anton.black777@gmail.com

Major Fields of Scientific Research: Model-Driven Development,

Distributed long-living transactions

https://www.eclipse.org/modeling/emf/
https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/designing-and-viewing-classes-and-types?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/designing-and-viewing-classes-and-types?view=vs-2019
mailto:anton.black777@gmail.com

