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Abstract: In the last few years new approaches have been developed that outperform standard Monte Carlo in
terms of numerical efficiency. It has been found that there can be efficiency gains in using deterministic sequences
rather than the random sequences which are a feature of standard Monte Carlo. These deterministic sequences are
carefully selected so that they are well dispersed throughout the region of integration. Sequences with this property
are known as low discrepancy sequences. These sequences are often more efficient than standard Monte Carlo in
evaluating high dimensional integrals if the integrand is sufficiently regular and for many finance applications this is
the case. In the present paper we evaluate European style options with an exponential payoff function with a lattice
rule based on Fibonacci generalized vectors of the corresponding dimensionality.
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Introduction

The pricing of options is a very important problem encountered in financial markets today. The famous Black-
Scholes model provides explicit closed form solutions for the values of European style call and put options. Options
have been widely traded since the creation of an organized exchange in 1973 Boyle [1977]. Much of the focus
to-date has been on high-dimensional problems since these are more challenging from a computational viewpoint.

Nowadays Monte Carlo method has become a popular computational device for problems in finance Dimov [2010].
The finance discipline has become more sophisticated and more quantitative in the last two decades. New approaches
have been developed that outperform standard Monte Carlo in terms of numerical efficiency. It has been found that
there can be efficiency gains in using deterministic sequences rather than the random sequences which are a feature
of standard Monte Carlo. These deterministic sequences are carefully selected so that they are well dispersed
throughout the region of integration. Sequences with this property are known as low discrepancy sequences.
These sequences are often more efficient than standard Monte Carlo in evaluating high dimensional integrals if
the integrand is sufficiently regular and for many finance applications this is the case. The Monte Carlo method
has proven to a very useful tool for numerical analysis, particularly when the number of dimensions ranging from
medium to large Wilmott et al. [1995].

Much of the focus to-date has been on high-dimensional problems since these are more challenging from a computational
viewpoint. However, it is also of interest to examine low to medium dimension problems. Low to medium sized
problems are of practical interest since there are popular contracts whose value depends on a small to medium
number of variables. Here are a few examples Boyle et al. [2001]:
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Options whose payoff depends on the relative performance of two underlying assets. A particular version of this
option known as a spread option popular in the energy industry.

Basket options where the payoff depends on the ending values of a number of assets such as different common
stocks or stock market indices. The payoff could be based on the average, the maximum or the minimum of the
asset prices.

Path dependent options where the payoff is a function of the asset price at a number of discrete monitoring points
along the path. In the case of Asian options the payoff is based on the average of these points. In the case of
lookback options the payoff is based on the largest (or smallest) value recorded at one of these monitoring points.
The dimensions of the problem are directly related to the number of discrete points in the path.

Monte Carlo and/or quasi-Monte Carlo methods can be directly applied to finance problems involving multidimensional
integrals Dimov [2003]. For example, Paskov uses a quasi-Monte Carlo sequence the Sobol sequence - to find the
present value of securities which involve up to 360 dimensional integrals; see Paskov [1994].

The basic definitions are taken form Lai and Spanier [1998].

A European call option is a contract such that the owner may (without obligation) buy some prescribed asset (called
the underlying) S at a prescribed time (expiry date) T at a prescribed price (exercise or strike price) E.

A European put option is the same as a call option, except that "buy" is replaced by "sell" .

A look-back option is an option whose payoff depends not only on the asset price at expiry, but also on the maximum
or minimum of the asset price over some time prior to expiry. Risk neutrality is the characteristic ascribed to an
investor who is indifferent with respect to risk. A rigorous definition may be given (see Broadie and Glasserman
[1997] or Duffie [1988]) based on an order relationship on a space of random variables on an appropriately defined
probability space. However, the most important use of this notion for us is in its application to the risk-neutral
evaluation formula.

The risk-free interest rate r is an idealized interest rate, usually taken to be that of an appropriate Treasury Bond.

The Wiener process (also called Brownian motion) dX is a special type of Markov stochastic process with the
following properties: dX ∼ N(0,

√
(dt)), where N(µ, σ) is the normal distribution with mean µ and variance

σ2.

Multidimensional integrals related to evaluation of European style options

One of the basic problems in option pricing is: given the current price of an asset S, the strike price E, the time to
expiry T , the risk-free interest rate r, and the equation that is assumed to control the behavior of S as a function of
time t:

dS = µSdt+ σSdX, (1)

where dX is a Wiener process , µ (a measure of the average rate of growth of the asset price) is the drift rate and
σ is the volatility of the asset (characterizing fluctuations in the price S), how may one determine a "fair" current
value V (S, t) of the option? The well-known Black-Scholes model for a European call option can be described (?
or Wilmott et al. [1995]) by the following (diffusion-type) partial differential equation for this value:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2)
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with final condition
V (S, T ) = max(S − E, 0),

and boundary conditions
V (0, t) = 0, V (S, t) ∼ S, S →∞.

The European put option satisfies the same equation as (2), but with final condition

V (S, T ) = max(E − S, 0),

and boundary conditions
V (0, t) = Ee−r(T−t), V (S, t) ∼ 0, S →∞.

In both cases, there are explicit closed form solutions. For the call option, the solution is

V (S, t) = C(S, t) = SN(d1)− Ee−r(T−t)N(d2),

with

d1 =
ln( SE ) + (r + σ2

2 )(T − t)
σ
√

(T − t)
and

d2 =
ln( SE ) + (r − σ2

2 )(T − t)
σ
√

(T − t)
and N(z) is the cumulative distribution function of the standard normal distribution. For the put option,

V (S, t) = P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1),

with the same d1, d2, and N(z).

Monte Carlo methods can be very useful in such cases if the solution (i.e., the value, V ) can be expressed as the
expectation of some random variable(s). This is made possible by the risk-neutral valuation formula for the European
option Broadie and Glasserman [1997]:

V (S, t) = E(er(Tt)h(S(T )) | S(t) = S, µ = r) (3)

whereE(.) is the expectation, h(S) is the payoff function, h(S) = max(S−E, 0) for a call option and h(S) =
max(E − S, 0) for a put option.

We follow the idea of Lai and Spanier in Lai and Spanier [1998]. Consider a European option whose payoff depends
on k > 1 assets with prices Si, i = 1, ..., k. Each asset follows the random walk

dSi = µiSidt+ σiSidXi

where σi is the annualized standard deviation for the i-th asset and dXi is Brownian motion. Suppose at expiry
time T that the payoff is given by h(S

′
1, . . . , S

′
k) (where S

′
denotes the value of the i-th asset at expiry). Then the

current value, V , of the option (assuming risk neutrality) will be

V = e−r(T−t)(2π(T − t))−k/2(detΣ)−1/2(σ1, . . . , σk)
−1 (4)∫ ∞

0
. . .

∫ ∞
0

h(S
′
1, . . . , S

′
k)

S
′
1, . . . , S

′
k

exp(−0.5αTΣ−1α)dS
′
1, . . . , dS

′
k, (5)

where

αi = (σi(T − t)1/2)−1(log
S

′
i

Si
− (r − σ2

2
)(T − t)),
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r is the risk-free interest rate and Σ is the covariance matrix,where the (i, j) entry is the covariance of dXi and
dXj for the k assets. The infinite domain of integration can be mapped into the k-dimensional unit hypercube in a
variety of ways. For example, 2

π arctan(x) maps (0,∞) to (0, 1). Such a mapping transforms the problem to one
in which an integral

∫ 1
0 . . .

∫ 1
0 g(x1, . . . , xk)dx1 . . . dxk over the hypercube is sought. When g is the exponent

function, with appropriate choices of the constants involved in the equation for the value of the option (4) according
to Lai and Spanier [1998] we obtain k dimensional integral

∫
[0,1]k

exp(x1, . . . , xk)dx1 . . . dxk. We compare four

very effective and highly accurate techniques for numerical integration for solving the last integral.

Monte Carlo algorithms for numerical integration

Lattice rules are based on the use of deterministic sequences rather than random sequences. They are a special
type of so-called low discrepancy sequences. It is known that as long as the integral is sufficiently regular, lattice
rules generally outperform not only basic Monte Carlo, but also other types of low discrepancy sequences. It is
well known that Sobol algorithm has some advantageous over the other low discrepancy sequences such as Halton
as it is shown its superiority for high dimensional integrals up to 360 dimensions by Paskov Paskov [1994]. The
monograph of Sloan and Joe [1994] provide comprehensive expositions of the theory of integration lattices. We
implemented a specific lattice rule and compared its performance with an implementation of Sobol, Crude and the
Adaptive method over integrals of smooth functions.

First we will demonstrate the power of the plain Monte Carlo over the deterministic methods Dimov [2003]. Suppose
f(x) is a continuous function and let a quadrature formula of Newton or Gauss type be used for calculating the
integrals. Consider an example with d = 20. We generate a grid in the 20-dimensional domain and take the sum
of the function values at the grid points. Let a grid be chosen with 20 nodes on the each of the coordinate axes in
the 20-dimensional cube G = [0, 1]20. In this case we have to compute about 1020 values of the function f(x).
Suppose a time of 10−7s is necessary for calculating one value of the function. Therefore, a time of order 1013s will
be necessary for evaluating the integral (remember that 1 year = 31536× 103s, and that there has been less than
9 × 1010s since the birth of Pythagoras). If the formula of rectangles is applied then the error in the approximate
integral calculation is

ε ≤ cMh3,

where h = 0.1 is the mesh size, c is constant independent of h and M is the maximal value of the second
derivative.

Consider a plain Monte Carlo algorithm for this problem with a probable error of the same order. The algorithm itself
consists of generating N pseudo random values (points) (PRV) in G; in calculating the values of f(x) at these
points; and averaging the computed values of the function. For each uniformly distributed random point we have to
generate 20 random numbers uniformly distributed in [0, 1]. The probable error is:

ε ≤ 0.6745σ(θ)
1√
N
, (6)

where σ(θ) is the standard deviation of random variable θ for which Eθ =
∫
G f(x)p(x)dx and N is the number

of realizations of the random variable. The probable error is estimated:

ε ≤ 0.6745||f ||L2

1√
N
. (7)

From above equations we conclude that

N ≈ (
0.6745||f ||L2

cM
)2 × h−6. (8)
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Suppose that the expression in front of h−6 is of order 1. Since h = 0.1, we have N ≈ 106; hence, it will be
necessary to generate 20× 106 = 2× 107 PRV. Usually, two operations are sufficient to generate a single PRV.
Suppose that the time required to generate one PRV is the same as that for calculating the value of the function at
one point in the domain. Therefore, in order to solve the problem with the same accuracy, a time of

2× 107 × 2× 10−7 ≈ 4s

will be necessary. The advantage of the Monte Carlo algorithms to solve such problems is obvious, in the case of
20 dimensional integral it is 2.5× 1012 times faster than the deterministic one.

The Crude Monte Carlo method has rate of convergence O(N−1/2) which is independent of the dimension of the
integral, and that is why Monte Carlo integration is the only practical method for many high-dimensional problems.
Much of the efforts to improve Monte Carlo are in construction of variance reduction methods which speed up the
computation or to use quasi-random sequences. A quasi-random or low discrepancy sequence, such as the Faure,
Halton, Hammersley, Niederreiter or Sobol sequences, is "less random" than a pseudo-random number sequence,
but more useful for such tasks as approximation of integrals in higher dimensions, and in global optimization. This
is because low discrepancy sequences tend to sample space "more uniformly" than random numbers. We use a
specific implementation of Sobol sequence that is an adaptation of the INSOBL and GOSOBL routines Bratley and
Fox [1988] in ACM TOMS Algorithm 647 and ACM TOMS Algorithm 659. The routine adapts the ideas of Antonov
and Saleev Antonov and Saleev [1980]. The original code can only compute the "next" element of the sequence.
The revised code allows the user to specify the index of the desired element. The algorithm has a maximum spatial
dimension of 40 since MATLAB doesn’t support 64 bit integers. A remark by Joe and Kuo shows how to extend
the algorithm from the original maximum spatial dimension of 40 up to a maximum spatial dimension of 1111. The
FORTRAN90 and C++ versions of the code has been updated in this way, but updating the MATLAB code has not
been simple, since MATLAB doesn’t support 64 bit integers. We generate a new quasi-random Sobol vector with
each call. The parameters of the algorithm are an integer DIMNUM , the number of spatial dimensions. The
algorithm starts with integer SEED, the "seed" for the sequence. This is essentially the index in the sequence of
the quasi-random value to be generated. On output, SEED has been set to the appropriate next value, usually
simply SEED + 1. Output is the real QUASI(DIMNUM ), the next quasi-random vector.

The Adaptive Monte Carlo algorithm that we developed is based on the ideas and results of the importance
separation Georgieva [2010], a method that combines the idea of separation of the domain into uniformly small
subdomains with the importance sampling approach. The Adaptive method does not use any a priori information
about the smoothness of the integrand, but it uses a posteriori information about the variance. The idea of the
method consists of the following (see for instance Dimov [2003]; Georgieva [2010]): the domain of integration G is
separated into subdomains with identical volume. The interval [0,1] on every dimension coordinate is partitioned
into M subintervals, i.e.

G =
∑
j

Gj , j = 1,Md.

Denote by pj and IGj the following expressions:

pj =

∫
Gj

p(x)dx, IGj =

∫
Gj

f(x)p(x)dx.

Consider now a random point ξ(j)
i ∈ Gj with a density function p(x)/pj and in this case

IGj = E

[
pj
N

N∑
i=1

f(ξ
(j)
i ))

]
= EθN .

We start with a relatively small number M which is given as input data. For every subdomain the integral IGj and
the variance are evaluated. After that the variance is compared with a preliminary given value ε. If the calculated
variance in any region is greater than some constant ε, then this region is divided to new Md subregions, again by
partitioning the segment of the region on every coordinate to M subintervals. The algorithm is described below.
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Algorithm

1. Input data: number of points N , constant ε (estimation for the variance), constant δ (stop criterion; estimation
for the length of subintervals on every coordinate).

2. For j = 1, Md:

2.1. Calculate the approximation of IΩj and the variance DΩj in subdomain Ωj based on N independent
realizations of random variable θN ;

2.2. If (DΩj ≥ ε) then

2.2.1. Choose the axis direction on which the partition will perform,
2.2.2. Divide the current domain into two (Gj1 , Gj2) along the chosen direction,
2.2.3. If the length of obtained subinterval is less than δ then go to step 2.2.1

else j = j1 (Gj1 is the current domain) and go to step 2.1;

2.3. Else if (DΩj < ε) but an approximation of IGj2
has not been calculated yet,

then j = j2 (Gj2 is the current domain along the corresponding direction) and go to
step 2.1;

2.4. Else if (DΩj < ε) but there are subdomains along the other axis directions, then go to step 2.1;

2.5. Else Accumulation in the approximation IN of I .

More detailed information about Lattice sets can be found in the work of Wang and Hickernell Wang and Hickernel
[2002]. Let Gs denote the unit cube in s-dimensional space, i.e.,

Gs = [0, 1)s = {x = (x1, . . . , xs)} | 0 ≤ xj < 1, j = 1, . . . , s}. (9)

Let n1 < n2 < . . . be a sequence of positive integers, and let Pnl
be any set of nl points in Gs. (Here a set may

have multiple copies of the same point.) For any r = (r1, . . . , rs) ∈ Gs note that r1, . . . , rs is the volume of the
box [0, r). Let Nnl

(r) denote the number of points in Pnl
lying inside the box [0, r). The discrepancy of the set

Pnl
is defined as the largest difference between the proportion of points in the box and the volume of the box:

D(nl) := sup
r∈Gs

|Nnl
(r)

nl
− r1 . . . rs| (10)

This notion was introduced by Weyl (1916). If D(nl) = o(1) as nl → ∞, then the sequence of sets Pnl
,

n1 < n2 < . . . is said to be uniformly distributed on Gs with discrepancy D(nl). The subscript l is often omitted
for simplicity. Not only is the discrepancy a geometric method for measuring uniformity of a set, the discrepancy
of a set measures its quality for use in numerical quadrature. The error of this approximation is bounded by the
Koksma-Hlawka inequality:

|
∫
Gs

f(x)dx− 1

n

n∑
k=1

f(xk)| ≤ D(n).V (f), (11)

where D(n) is the discrepancy of the set P (n) = {x1, . . . , xn}, and V (f) is the bounded variation of f in
the sense of Hardy and Krause. If the integrand is smoother and also periodic, then better error bounds may be
obtained, in particular for quadrature rules using lattice point sets.
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The lattice S is an infinite set of points in Rs with the following three properties:

1. If x and x′ belong to S, then x+ x′ and x− x′ also belongs to S.

2. S contains s linearly independent points.

3. There exists a sphere centered at 0 that contains only 0 itself.

A multiple-integration lattice is a lattice that contains Zs as a sub-lattice. By a "lattice rule" then, we shall mean a
rule of the form

IN (f) =
1

N

N−1∑
j=0

f(xj),

in which x0, . . . , xN−1 are all the points of a multiple-integration lattice that lie in [0, 1]s. The cubic lattice is{(
j1
n
, . . . ,

js
n

: ji ∈ Z, 1 5 i 5 s

)}
,

where n is a positive integer. The corresponding lattice rule is the "rectangle rule"

IN (f) =
1

N

n−1∑
j1=0

. . .

n−1∑
js=0

f

(
j1
n
, . . . ,

js
n

)
,

whereN = ns. BecauseN rises very rapidly with s, the rectangle rule suffers in a very obvious way from the "curse
of dimensionality." Note that this rule is equivalent, because of the assumed periodicity, to a product-trapezoidal rule.

Let n be an integer, n ≥ 2 and a = (a1, a2, . . . as) be an integer vector modulo n. A set of the form

Pn =

{{
ak

n

}
=

({
a1k

n

}
, . . . ,

{
ask

n

})
| k = 1, . . . , n

}
is called a lattice point set, where {x} denotes the fractional part of x. The vector a is called called a lattice point
or generator of the set. As one can see, the formula for the lattice point set is simple to program. The difficulty lies
in finding a good value of a, such that the points in the set are evenly spread over the unit cube. The choice of
good generating vector, which leads to small errors, is not trivial. Complicated methods from theory of numbers are
widely used, for example Zaremba’s index or error of the worst function. Korabov consider the following vectors:

a = (1, a, a2, . . . , as−1)mod N, 1 ≤ a ≤ N − 1, gcd(a,N) = 1.

The method can be applied only for for number of points nl = F
(s)
l , i.e. only for generalized Fibonacci number of

points. This set used the generating vector

a = (1, F
(s)
l+1, ..., F

(s)
l+s−1)), nl = F

(s)
l ,

where F (s) is the corresponding generalized Fibonacci number of dimensionality s:

F
(s)
l+s = F

(s)
l + F

(s)
l+1 + ...+ F

(s)
l+s−1, l = 0, 1, . . .

with initial conditions:
F

(s)
0 = F

(s)
1 = . . . = F

(s)
s−2 = 0, F

(s)
s−1 = 1,

for l = 0, 1, . . ..
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The discrepancy of the set obtained by using the vector described above is asymptotically estimated in Wang and
Hickernel [2002]. We have the following estimation:

D(nl) = O(n
− 1

2
− 1

2s+1. log 2
− 1

22s+3

l ).

The advantage of the Lattice method is the linear computational complexity and reduced time for calculating the
multidimensional integrals. The number of calculation required to obtain the generating vector is asymptotically less
than O(Nl). The generation of a new point requires constant number of operations thus to obtain a lattice set of
the described kind consisting of Nl points,O(Nl) number of operations are necessary.

Numerical examples and results

Our experimental results include the evaluation of the following 3 and 20 dimensional integrals:

∫
[0,1]3

exp(x1x2x3) ≈ 1.14649907. (12)

∫
[0,1]20

exp(
20∏
i=1

xi) ≈ 1.00000949634. (13)

The results are given in the tables below. Each table contains information about the MC approach (Crude for the
plain Monte Carlo, Adaptive for the Adaptive approach, Sobol for the Sobolalgorithm and Lattice for the Lattice
method developed in this study), the obtained relative error, the needed CP-time and the number of points. Note
that when the lattice method is tested, all of these numbers are Generalized Fibonacci numbers of the corresponding
dimensionality. We have used CPU Intel Core i5-2410M @ 2.30GHz and MATLAB. The advantage of the Lattice
method for low dimensions is superior. For higher dimensions Sobol sequence has advantages for fixed number of
points and it is slightly worse than Lattice for a fixed computational time. The Adaptive Monte Carlo is better than
Crude Monte Carlo after some seconds, and it strength is when the integrand have some pecularities.

Table 1: The relative error for 3 dimensional integral

N Crude time Adaptive time Lattice time Sobol time
19513 8.93e-4 0.01 3.21e-4 2.21 4.69e-4 0.02 4.98e-5 0.56
35890 2.18e-3 0.04 6.55e-5 6.41 5.46e-6 0.06 1.56e-5 1.45
66012 5.65e-4 0.07 5.12e-5 9.86 5.34e-6 0.11 8.11e-6 2.31
121415 6.46e-4 0.12 5.11e-5 15.4 5.34e-6 0.12 3.08e-6 3.80
223317 4.15e-4 0.20 9.34e-5 24.2 1.73e-6 0.22 2.05e-6 6.13

The advantage of the lattice method for the (12) integral is superior, it gives 1.32e−6 for 0.1s and 3.22e−7 for 1s
in Table 1, while Sobol needs 20s to achieve the same accuracy. While for more computational time Sobol improves
a lot - see Table 2, Adaptive and Crude algorithms performs in similar way and the results are worse and as can be
seen Adaptive Monte Carlo is better than Crude Monte Carlo after 5s. It can be concluded that the best approach
for lowest dimensions is the Lattice method, which completely outperforms the other methods - see Figure 1.

We expect that for 20 dimension Sobol is the best but again Lattice method has minor advantage over the Sobol for
a fixed time for the (13) integral. In Table 4, for 1s it produces error 1.48e − 5, which is the same result as Sobol
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Table 2: Times for 3 dimensional integral

time,s Crude Adaptive Lattice Sobol
0.1 6.56e-4 8.67e-4 1.32e-6 3.21e-4
1 1.37e-4 2.96e-5 3.22e-7 8.21e-5
2 5.29e-5 5.45e-4 2.06e-7 2.96e-5
5 1.84e-4 1.14e-4 1.47e-7 5.00e-6
10 7.79e-5 6.56e-5 3.89e-7 2.71e-6
20 4.57e-5 2.04e-5 1.53e-8 1.88e-6

Figure 1: Relative error and computational time for 3 dimensional integral with Monte Carlo and quasi Monte Carlo
methods.

Table 3: The relative error for 20 dimensional integral

N Crude time Adaptive time Lattice time Sobol time
2048 2.84e-2 0.02 1.14e-2 8.6 8.22e-5 0.03 8.44e-4 0.13
16384 8.23e-4 0.12 4.96e-4 60.3 3.12e-5 0.13 6.82e-5 1.68
65536 8.61e-3 0.91 9.75e-4 474.2 1.36e-5 1.17 8.34e-6 8.69
131072 4.13e-4 2.13 1.25e-5 888.3 8.85e-6 2.34 3.77e-6 14.36
524288 1.22e-4 8.13 1.96e-6 2356 2.15e-6 8.34 1.91e-7 57

Table 4: Times for the 20 dimensional integral

time,s Crude Adaptive Lattice Sobol
1 9.14e-3 1.58e-3 1.48e-5 3.25e-5
2 3.68e-3 1.028e-3 9.17e-6 3.97e-5
5 2.67e-3 8.58e-4 5.19e-6 1.45e-5
10 3.34e-4 4.02e-4 1.73e-6 2.71e-6
20 1.53e-4 1.13e-4 1.38e-7 1.76e-6
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for 5s. However, for the same number of points Sobol gives better accuracy - see Table 3. For the 20 dimensional
integral Adaptive algorithm performs better than Crude algorithm and has better accuracy for the same number of
points closer to Lattice method. The Lattice algorithm is the fastest method and it is definitely the choice when one
needs to have a very good accuracy for less than a minute on a laptop - see Figure 2.

Figure 2: Relative error and computational time for 20 dimensional integral with Monte Carlo and quasi Monte Carlo
methods.

Conclusion

This paper shows that a particular type of low discrepancy sequence known as lattice rules have strong advantages
in the case of low to medium dimension problems as long as the integrands are sufficiently regular. The quasi-
random Sobol sequence is slower but gives closer accuracy, being better for a fixed number of points for higher
dimensions of the integral. The Adaptive algorithm requires more computational time to achieve better accuracy,
gives good results regardless of the dimensions and it is the best method when the integrand functions are not
smooth. The plain(Crude) Monte Carlo algorithm gives worst, but fast results closer to this obtained by the lattice
rule. The four approaches are completely different thus it is a question of interest to know which one of them
outperforms the other. The main advantage of the presented Lattice algorithm is its linear computational complexity
for very high dimensions, where the deterministic methods suffer from the so-called curse of dimensionality and
become impractical. The experimental results from Tables show that the Lattice algorithm has the best performance
with respect to relative error and computational time. The progress on the problem of option pricing and the
computational finance area is closely related to the development of reliable algorithms for multidimensional numerical
integration.
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