
International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

246

ANALYTICAL FOUNDATION OF MODEL TO CODE

TRANSFORMATION ACTIVITIES

Anton Shyrokykh

Abstract: The Codegeneration problem is not new in AGILE approach. Many wide

spread used tools and formal approaches and papers are devoted to this problem.

From the other hand codegenetation tools, that are used in development practices,

have some drawbacks that not allow to transform structure of class diagram to code

without mistakes (Shyrokykh, 2020).

It is explained by peculiarities of human cognitive comprehension. When a developer

“reads” structure of software represented in graphical notation of UML class diagrams

some details are convenient for visual representation, for example interrelations

between classes. Proposed transformation rules of model to code transformation

languages must consider structure of class diagrams elements in more detailed way.

Paper is devoted to designing of a new codegeneration approach based on idea of

preliminary refinement of class diagrams before model to code transformation and

further transformation using newly proposed transformation rules. Formal foundation

of approach is grounded on model to model transformation language. Aim of this

approach is to design intermedia analytical representation of class diagram using

algebra describing static software models (Chebanyuk. 2013).

 Keywords: Codeneration, Class Diagram, Transformation Rules, Model to Model

Transformation.

Introduction

Model to code transformation operation is one of the activities reducing development

efforts. Software models, represented as UML diagrams, easily comprehend by

specialists in comparison with skeletons of code, represented as texts.

Challenges to use modeling notations in real software development companies are

the next:

― it must be flexible to represent future software system from different points of

view with different levels of details.

― it must be supported by variety of application life cycle management tools

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

247

― it must be grounded on professional standard to be easily implement of

different specialists

There is no modeling notation that fully answers to the challenges listed above. From

the other point of view UML is more close standard to formulated challenges.

Implementing chain of operations supported sequence of transformations from high-

level behavioral software models, (represented as UML Use Case or Communication

diagrams) to the code allow reduce development efforts to design a chain of software

development artifacts that correspond to requirement specification (architectural

solutions, code modules, test cases, etc.).

Architectural solutions, represented as UML Components or Class Diagrams, are

initial sources of codegeneration procedures. Today in the market different

codegeneration tools are represented as separate software tools and as plug-ins to

IDE (Shyrokykh A, 2020).

Many codegeneration tools have drawbacks that are sources of loosing some parts

of UML class diagrams’ or incorrect transformation of structure when model to code

transformation is performed (Shyrokykh A, 2020). Different tools needs different

efforts after generating skeleton of code. That why correctness of final code structure

depends upon qualification of designer (developer) and his efforts to avoid refine

mistakes.

Review of papers

Problems of codegenaration approach in different types of software development

considered in different papers.

One of the fundamental papers in codegeneration approach in domain specific

modeling area (Midingoyi, C et. al, 2020) explaines difficulties of implementing

codegeneration focuses by several reasons: pure coding concepts are, in most

cases, too far from the requirements and from the actual problem domain. Models

are used to raise the level of abstraction and hide the implementation details. In a

traditional development process, models are, however, kept totally separate from the

code as there is no automated transformation available from those models to code

(Midingoyi, C et. al, 2020).

In paper (Midingoyi, C et. al, 2020) several approaches of collaborating models and

code are considered. Approaches are represented on figure 1.

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

248

Figure 1 Code and software models collaboration (Midingoyi, C et. al, 2020).

Approach, proposed this in paper is focused on forward engineering activities,

namely on round-trip engineering and domain-specific engineering. Also such

approaches can be used in other forward engineering software development

process.

In order to perform codegeneration operations successfully authors (Midingoyi, C et.

al, 2020) propose two languages, namely Crop2ML and CyML.

Language Crop2ML provides a model component specification based on XML meta-

language. It consists of unified concepts. A Crop2ML model is an abstract model

that may be either a unit model with fine granularity or a composite model

represented as a graph of unit models connected by their inputs and outputs to

manage model complexity. A model specification contains formal descriptions of the

model, the inputs, outputs, state variable initializations, auxiliary functions and a set

of parameters and unit tests. Thus, it allows for checking that a model reproduces the

expected output values with a given precision. In order to be adopted to model to

code transformation tasks CROP needs additional plug-ins and clearly

documentation. Abstract model can’t consider some platform specific details. For

example, there is no multiple inheritance of classes, in C++ vise versa and so on.

Authors performed a great step into development of serious analytical foundation and

proposed codegeneration framework, but task to read abstract model is more

complex in comparison with UML duagrams. Due to this fact wide using of such

languages is limited.

Formal foundation of designing model to model transformation language is proposed

in paper (Chebanyuk, 2018). As our codegeneration approach generates object-

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

249

oriented code that is a type of model, consider application of the proposed

formalization to this approach.

Paper also represents in clear structured way challenges to the abstract syntax of

model to model transformation language, to the metamodel of language, to the

concrete syntax, and to the transformational rules.

Then author describes elements of mode to model transformation language and

proposes a metamodel of Model to Model Transformation language (M2MTL).It is

represented in the figure 2.

M2MTL

Initial SM

-Конец1

1

-Конец2*

-Конец11

-Конец2*

objects links

-Конец11

-Конец2*

Selecting rules

-Конец11

-Конец2*

Transformation rules

-Конец11

-Конец2*

-Конец11

-Конец2*

One to
one

One to
many

-Конец11

-Конец2*

Many to
one

-Конец11

-Конец2*

Many to
many

-Конец11

-Конец2*

Resulting SM
-Конец11

-Конец2*

objects links

-Конец11

-Конец2*

Initial
subgraphs

-Конец11

-Конец2*

-Конец1

1

-Конец2*

Figure 2 Metamodel of model to model transformation languages

 (Chebanyuk O., 2018)

Task and research questions

Task: propose analytical foundations of model to code transformation approach. As

initial model class diagram is used. As resulting model object model of c# language is

used.

Research questions (RQ)

RQ1: Consider architecture of Model to Code Transformation Approach in connection

with specific frameworks and tools.

RQ2: Choose flexible analytical apparatus allowing represent structure both of static

software model and skeleton of code.

RQ3: Perform an experiment proving correctness of proposed analytical foundation

of software model to code transformation framework.

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

250

Frameworks and Tools and for proposed Model to code Transformation

approach

Distribution of proposed frameworks and tools is represented according to classical

schema of Model to Model transformation approach (Figure 3).

Algebra
C# object

model

Analytical representation
of class diagram

Model to Model transformation Language

Transformation
rules of M2MTL

C# source
software module

Figure 3 Model to code transformation approach (Cabot J., 2015)

In the Table 1 detailed explanation about used tools for codegeneration approach is

represented.

Table 1. Description of Model-to-code transformation approaches architecture

Part of codegeneration

architecture

Explanation

Metametalevel

Metamodel of model to model

transformation language

(Chebanyuk, 2018).

This metamodel is flexible and contains all

necessary elements to describe transformation

process with necessary level of details.

Source and target Metamodels

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

251

Source Metamodel Algebra,

describing static software models

(Chebanyuk, 2013)

Algebra that allows describing structure of class

diagram considering all variants of class diagram

elements composition.

Target Metamodel C# object model (Microsoft, 2017). Also can be

XMI standard (XMI, 2015)

Model level Source and target models

Source model Analytical representation of class diagram in

terms of algebra describing software static

models

Target models

Modules of C# source code.

XMI representation of class diagrams

(Chebanyuk E. & Povalyaev D., 2017). Many

Modeling environments store UML diagrams in

this format

Transformation rules

Rules to represent how to transform initial

analytical representation of class diagram to its

intermedia analytical representation.

Rules how to transform intermedia analytical

representation to C# or to XMI representation.

Execution engine Visual Studio compiler

Analytical representation of transformation rules

Transformation rules must allow to influence on changing structural characteristics of

class diagram elements. In order to represent transformation results corresponding

analytical approach must be involved. After review of different analytical approaches

aimed to reflect information about static diagrams algebra, describing software static

model is chosen (Chebanyuk, 2013). Let’s describe transformation rules allowing to

precise class diagram structure before codegeneration operation.

The first transformation rule aimed to improve structure of class diagram before

codegeneration. It is formulated as follows:

If in the class diagram there is class with composition relationship with other

classes (denote is as C) these classes must be included to the list of properties of C.

According to (Chebanyuk, 2018) the first step of realization of this rule is to

find on class diagram all classes that are connected with other ones with composition

relationship.

General selection riles are denoted as follows:

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

252

()type subselect S from SMI SMI (1)

Forming subSMI , allowing to form a set of classes that have composition links

with other classes, (namely COMP) according to this rule is performed by the

following:

()compselect F C fromClassDiagram COMP (2)

 Transformation rule is consisted from two steps. The first step is to refine class

structure, namely for every class from ()compF C COMP add attributes that matches

with types of the connected classes. This transformation rule is aimed to refine class

diagram structure and it is denoted by the following:

1

() ((())), 1,...,

()

n
comp comp

i

i

comp

F class F A class name X B i n

F class COMP

 (3)

The second step is to fill class attributes according to the specific template of some

programming language. According to C# language template is looking by the

following:

1 1

{

1 1{ ; ;}

......

((){ ; ;}

......

((){ ; ;}

}

n n

class www

public type attribute get set

public class class name get set

public class class name get set

 (4)

Second transformation step is represented by the following:

1

1 1

((())) {

1 1{ ; ;}

......

((){ ; ;}

......

((){ ; ;}

}

n
comp

i

i

n n

F A class name X B class www

public type attribute get set

public class class name get set

public class class name get set

 (5)

Let’s describe other transformation rule, namely adding a list of methods to

skeleton of class when class inherits an interface. The rule selecting all classes that

inherit interfaces (set INTERF) is represented by the following:

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

253

()inh publicselect F C fromClassDiagram INTERF (6)

Transformation rule allowing to complete classes from the set INTERF by a set of

methods from interfaces is written by the following:

1

() (), 1,...,

()

m
inh public inh j

i

inh public

F C F A B X B j m

F C INTERF

 (7)

The second step is to fill class attributes according to the specific template of some

programming language. According to C# language template is looking by the

following

1

1,1

1,2

1,

2,1

,

{

;

;

...........

;

;

.......

;

}

m

n k

class www

public

public

public

public

public

 (8)

Where 1,1 - is a signature of the first method of the first interface, and generally ,i j

public signature of method i of interface j.

Second transformation step is represented by the following:

1

1

1,1

1,2

1,

,

() {

;

;

...........

;

........

;

}

m
inh j

i

m

n k

F A B X B class www

public

public

public

public

(9)

Proposed approach

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

254

1. Parse input XMI of class diagram to obtain analytical representation of class

diagram according to algebra describing software static models. Parse rules

are represented in paper (Chebanyuk E. & Povalyaev D., 2017).

2. On analytical representation of class diagram search fragments that satisfy

patterns of transformation rules using (2) and (6).

3. Obtain skeletons of source codes according to transformation rules

represented in (5) and (9).

4. Using visual studio codegeneration environment obtain *.cs files with source

codes in C# language.

5. Merge textual representation of class diagram fragments, obtained after

performing of previous point and skeleton of source code obtained in point 3.

6. Optional point for testing – compile obtained source module by visual studio

compiler.

Case study

Let’s consider proposed codegeneration approach investigating Visual Studio class

designer plug-in (Microsoft, 2018). As it was mentioned in (Shyrokikh, 2020) Visual

Studio does not contain composition relationship only association one (figure 4).

Figure 4. Visual Studio Class designer components

Codegeneration rules of Visual Studio plug-in add datatypes of classes to the central

(composition) class. From the other hand it is important to mention that when

designer establish association relationship between two classes property pointing

that one class becomes a field of other is added automatically. Then developer must

think about semantic of generated code and spend additional time for software

module analysis and editing.

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

255

For example – class diagram that is represented on the figure 5 contains three

classes. Screen is a part of SmartPhone, and classes Screen and Smartphone are

connected by composition relationship. Classes User and Smartphone must be

connected through association relationship.

Figure 5. Example of class diagram

Codegeneration plug-in assumes that these two association links are the same.

Result of codegenaration plug-in is represented below.

 public class user

 {

Extra fragment needed to be deleted

 public SmartPhone SmartPhone

 {

 get => default;

 set

 {

 }

 }

 }

public class SmartPhone : SmartInterface

 {

 public Screen Screen

 {

 get => default;

 set

 {

 }

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

256

 }

Absent fragment – needed to be added

 void call();

 void Record_video();

 }

 public class Screen

 {

 }

public interface SmartInterface

 {

 void call();

 void Record_video();

 }

Representation of transformation rules is given in the Table 2.

Table 2. Representation of transformation rules on metalevel and model level

Analytical representation of class

diagram initial fragment

Analytical representation of class

diagram resulting fragment

Metalevel

()

()comp

P Classes

class Classes

where F class

 1

comp

n

i

i

class A X B

A A name

Model level

()

() ()

compF SmartPhone

F SmartPhone F Screen

SmartPhone A X B

*

()

() ()

compF SmartPhone

F SmartPhone F Screen

SmartPhone A X B

A A Screen

Metalevel

1

(,)

{ ,..., },

()

i k

n
inh

i

i

P Classes Ic

class Classes I i i i Ic

where F class I

*

,

1 1

inh

n m

i j

i j

class A X B

B B

Model level

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

257

() ()

()

inhF SmartPhone F SmartPhone

F SmartInterface

SmartPhone A X B

*

() ()

()

()

inhF SmartPhone F SmartPhone

F SmartInterface

SmartPhone A X B

B B B SmartInterface

Conclusion

In this paper Codegeneration approach is proposed. Advantages of the proposed

approach are the next:

― It uses flexible analytical apparatus for representation of class diagram with

given level of details;

― such a representation allows to set transformation rules to improve drawbacks

of codegeneration of different designing environments;

― remain for codegenetation environment possibility to design class diagram

convenient for human cognitive perception (for example represent relationship

between classes graphically).

― transforming analytical representation to XMI and vise versa (Chebanyuk E. &

Povalyaev D., 2017) proposed codpgeneration approach can be used to

improve round trip engineering activities.

Bibliography

(Cabot J., 2015) https://www.slideshare.net/jcabot/modeldriven-software-

engineering-in-practice-chapter-8-modeltomodel-transformations?qid=551330ce-

3800-43a8-96b1-0823d778e798&v=&b=&from_search=6

(Chebanyuk O., 2018) Chebanyuk O. Designing of Software Model to Model

Transformation Language. International Journal of Computers, Number 3, 2018, 120-

129.

(Chebanyuk E., 2013) Chebanyuk O. Algebra, describing software static models.

International journal “Information Technologies and Knowledge”, Vol. 7, №1, 2013,

83-93

(Chebanyuk E. & Povalyaev D., 2017) Chebanyuk E. & Povalyaev D. An approach

for architectural solutions estimation International journal “Informational Technologies

and Knowledge”, Vol 11, number 2, 2017, 114-143

International Journal "Information Models and Analyses" Volume 9, Number 3, © 2020

258

(Microsoft, 2018) How to: Add class diagrams to projects. Access mode:

https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/how-to-add-class-

diagrams-to-projects?view=vs-2019

(Microsoft, 2017) System.Collections.ObjectModel Namespace Access mode:

https://docs.microsoft.com/en-

us/dotnet/api/system.collections.objectmodel?view=net-5.0

(Midingoyi, C et. al, 2020) Midingoyi, C. A., Pradal, C., Athanasiadis, I. N., Donatelli,

M., Enders, A., Fumagalli, D., ... & Martre, P. (2020). Reuse of process-based

models: automatic transformation into many programming languages and simulation

platforms. in silico Plants, 2(1), diaa007.

(Shyrokykh, A., 2020) Shyrokykh, A. Review of drawbacks of existing tools

transforming platform specific models to code. International Journal "Information

Models and Analyses" Volume 9, Number 2, 2020, 185-199

(XMI, 2016) XML Metadata Interchange (XMI) Specification. Version 2.5.1 Access

Mode: https://www.omg.org/spec/XMI/2.5.1/PDF

Authors' Information

 Anton Shyrokykh – National Aviation University, Faculty of Cybersecurity,

computer and software engineering, graduate student. Kiev, Ukraine; e-mail:

anton.black777@gmail.com

Major Fields of Scientific Research: Model-Driven Development, Distributed long-

living transactions

https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/how-to-add-class-diagrams-to-projects?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/class-designer/how-to-add-class-diagrams-to-projects?view=vs-2019

	IJIMA09-03-old.pdf
	IJIMA08-03.pdf
	An overview of.pdf
	Service Systems Theory
	On the concept of a generalized net
	GN representations of the basic elements of Service Systems Theory
	Generator
	Terminator
	Transportation
	Delay
	Server
	Information gathering
	Unifying Transition
	Distributive Transition
	Queue

	Classical conceptual model of a queuing system
	Detailed conceptual model of a queuing system
	Causal structure of a qeueuing system
	Causal structure of a device with limited capacity
	Conceptual model of the causal structure of a queuing system

	Generalized net models of queuing systems
	First generalized net model of a queuing system
	Second generalized net model of a queuing system

	Generalized net model of the causal structure of a queuing system
	First generalized net model of the causal structure of a queuing system
	Second generalized net model of the causal structure of a queuing system

	IJIMA09-03-old.pdf
	IJIMA08-03.pdf
	An overview of.pdf
	Service Systems Theory
	On the concept of a generalized net
	GN representations of the basic elements of Service Systems Theory
	Generator
	Terminator
	Transportation
	Delay
	Server
	Information gathering
	Unifying Transition
	Distributive Transition
	Queue

	Classical conceptual model of a queuing system
	Detailed conceptual model of a queuing system
	Causal structure of a qeueuing system
	Causal structure of a device with limited capacity
	Conceptual model of the causal structure of a queuing system

	Generalized net models of queuing systems
	First generalized net model of a queuing system
	Second generalized net model of a queuing system

	Generalized net model of the causal structure of a queuing system
	First generalized net model of the causal structure of a queuing system
	Second generalized net model of the causal structure of a queuing system

