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Abstract: The paper represents shortly one analytical model of a queuing system as a part of
overall telecommunication network. The analytical expressions for the parameters of the queuing
system are derived in the papers [Andonov et al, 2019c; Poryazov et al, 2020b] as a part of an
analytical model of overall telecommunication system.
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Introduction

The paper summarizes our recent results in the analytical modelling of queuing systems in telecommunication
networks published in the papers [Andonov et al, 2019; Andonov et al, 2019c; Poryazov et al, 2020b].
The problem for conceptual and analytical modeling of queuing systems consisting of buffer and
server as a part of overall telecommu-nication system arose when we focused on extending the
conceptual model of overall telecommunication system (see [Poryazov & Saranova, 2012]) by inclusion
of a queuing system in the switching stage. The two approaches to the conceptual modelling of
queuing systems which we use are Service Systems Theory and the Generalized Nets (GNs, see
[Atanassov, 2007]). First, in the papers [Andonov et al, 2019; Andonov et al, 2020] the means for
constructing of GNs conceptual models of service systems are described. In the series of papers
[Tomov et al, 2018; Tomov et al, 2019; Andonov et al, 2018; Poryazov et al, 2018a; Andonov et al, 2019b],
different conceptual models of queuing systems are proposed and compared. The most suitable
of these conceptual models for the purpose of the analytical modelling are chosen and included
in the conceptual models of overall telecommunication system with queuing [Andonov et al, 2019;
Andonov et al, 2019b]. Based on these conceptual models, an analytical model of overall telecommunication
system with queuing is derived in [Andonov et al, 2019b]. Analytical expressions for the important
parameters of the queuing systems such as mean service time in the buffer, mean service time in
the server, etc., are also obtained.

In Section 2, the basic concepts from Service Systems Theory which are used in the conceptual
modelling are presented. In Section 3, a conceptual model of overall telecommunication system
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Figure 1: Graphical representation of a base virtual device x (see [Andonov et al, 2019c]).

including a queuing system in the switching stage is shortly described. A conceptual model of a
queuing system which is used in the construction of the analytical model is described in Section 4.
In Section 5, an analytical model of a queuing system as part of overall telecommunication system
is presented.

Base virtual devices and their parameters

For the purpose of the analytical modelling, after a comparison of the different conceptual models of
queuing systems, proposed in [Tomov et al, 2018; Tomov et al, 2019; Andonov et al, 2018; Poryazov et al, 2018a;
Andonov et al, 2019b] the Service Systems Theory approach is chosen. Here, we present the basic
concepts used in the conceptual models and the conceptual models of queuing systems which are
used in the analytical modelling.

The basic building blocks of the conceptual models are the base virtual devices. They do not
contain any other virtual devices. A general graphical representation of a base virtual device is
shown in Fig. 1.

Every such base virtual device x has the following parameters (see [ITU-T E.600 ,1993] for terms
definition):

• Fx - intensity or incoming rate (frequency) of the flow of requests (i.e. the number of
requests per time unit) to device x;

• Px - probability of directing the requests towards device x;

• Tx - service time (duration of servicing of a request) in device x;

• Yx - traffic intensity [Erlang];

• Vx - traffic volume [Erlang - time unit];

• Nx - number of lines (service resources, positions, capacity) of device x.
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Figure 2: Types of base virtual devices and their graphical representation (see
[Poryazov & Saranova, 2012]).

For the better understanding of the models and for a more convenient description of the intensity
of the flow, a special notation including qualifiers (see [ITU-T E.600 ,1993]) is used. For example
dem.F for demand flow; inc.Y stands for incoming traffic; ofr.Y for offered traffic; rep.Y for
repeated traffic, etc.

Different types of base virtual devices are used in the conceptual models. Some of them together
with their graphical representations are shown in Fig. 2. Each type of base virtual device has a
specific function (see [Poryazov & Saranova, 2012]):

• Generator – generates call attempts (requests, transactions);

• Terminator – eliminates each request which enters it;

• Server – models traffic and time characteristics of the model, the delay (service time, holding
time) of the requests;

• Transition – selects one of its possible exits for every request which has entered it;

• Queue – buffer device of the queuing system;

• Director – points to the next device to which the request is transferred without delay.

Conceptual model of an overall telecommunication system including a queuing system in
the switching stage

In the conceptual model each virtual device has a unique name. The names of the devices
are constructed according to their position in the model. The model is partitioned into service
stages (dialing, switching, ringing and communication). Every service stage has branches (enter,
abandoned, blocked, interrupted, not available, carried), corresponding to the modeled possible
cases of ends of the calls’ service in the branch considered. Every branch has two exits (repeated,
terminated) which show what happens with the calls after they leave the telecommunication system.
Users may make a new bid (repeated call), or stop the attempts (terminated call). In the names of
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Figure 3: Conceptual model of an overall telecommunication system including a queueing system
in the switching stage (see [Andonov et al, 2019]).
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the virtual devices the corresponding bold first letters of the names of stages, branches end exits
are used in the following way:

Virtual Device Name = <BRANCH EXIT><BRANCH><STAGE>

The names of the parameters of a virtual device are concatenations of the letter denoting the
parameter and the name of the virtual device. For example, “Yid” means “traffic intensity in interrupted
dialing case”; “Fid” – “flow (calls) intensity in interrupted dialing case”; “Pid” – “probability for
interrupted dialing”; Tid – “mean duration of the interrupted dialing”; “Frid” – “intensity of repeated
flow calls, caused by (after) interrupted dialing”.

Apart from base virtual devices, the following comprise virtual devices denoted by b (shown in dash
line box in Fig. 3) and a, ab, s (not shown in Fig. 3) are also included in the model.

• a comprises all calling terminals (A-terminals) in the system. It is not shown in Fig. 3;

• b comprises all called terminals (B-terminals) in the system (dashed line box in Fig. 3);

• ab comprises all the terminals (calling and called) in the system. It is not shown in Fig. 3;

• s virtual device corresponding to the switching system. It is not shown in Fig. 3.

The flow of calls (B-calls), with intensity Fb, occupying the B-terminals, is coming from the Copy
device. This corresponds to the fact that at the beginning of the ringing a second (B) terminal in
the system becomes busy. The second reason for this conceptual modelling trick is that the paths
of the A and B-calls are different in the telecommunication system’s environment, after releasing
the terminals. There are two virtual devices of type Enter Switch (see Fig. 3) – before Blocked
Waiting for Switch (bws) and Blocked Ringing (br) devices. These devices deflect calls if the buffer
(bw) has reached its capacity or the intent B-terminal is busy, respectively. The corresponding
transition probabilities depend on the macrostate of the system (Yab). The macrostate of a (virtual)
device (including the overall network, considered as a device) is defined as the mean number of
simultaneously served calls in this device, in the observed time interval (similar to “mean traffic
intensity” in (see [ITU-T E.600 ,1993]).

An important remark regarding the analytical modeling of the system should be made. The mean
service time of the call attempts in the s device depends, among other parameters, on the mean
service time of the carried requests by the switching system. The mean service time of the carried
requests by the switching system depends on Pbr ,Tbr ,Tb and on the mean service time of
the requests in the cs device. Therefore, to avoid confusion in the analytical modeling of the
system, we denote by T ∗cs the mean service time of the requests in the cs device and by Tcs
the mean service time of the carried requests by the switching system. This notation allows to avoid
the inclusion of a comprise virtual device representing the service of the carried requests by the
switching system.

Detailed description of the conceptual model can be found in the papers [Andonov et al, 2019;
Andonov et al, 2019c].
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Figure 4: Conceptual model of a queuing system in the switching stage of an overall
telecommunication system.

Conceptual model of a queuing system

For the derivation of analytical model of the queuing system as part of the overall telecommunication
system, a detailed conceptual model of the queuing system should be used. Its graphical representation
is shown in Fig. 4.

This detailed representation allows for the two different ways of service of the request in the queuing
system to be distinguished: service with waiting and service without waiting. When the switching
system (s) has not reached its capacity (Ns ), the requests enter the zero queuing (zq) device from
where they are sent to the switching system without delay. If the switching system has reached its
capacity but there are free places in the buffer, the requests enter the buffer device q where they
wait to be serviced, depending on the discipline of service in consideration. In the present paper,
we consider FIFO discipline of service of the requests. The mean service time of the requests in
the buffer (Tws ), for both the waiting and the non-waiting requests, is given by:

Tws = PqTq + (1− Pq)Tzq , (1)

where Pq is the probability that the request is serviced with waiting and Tq is mean service time in
the buffer for the waiting requests. We shall consider that the mean service time of the non-waiting
requests is 0, i.e., Tzq = 0 . In this way the mean service time in the buffer of both the waiting and
the non-waiting requests becomes:

Tws = PqTq . (2)

From Tzq = 0 if follows Yzq = 0. Therefore, the capacity of the buffer (Nws ) is equal to the
capacity of the q device Nq . The intensity of the offered flow of requests to the switching system is
denoted by ofr .Fws (see Fig. 4). The qualifier “parasitic” (prs) is defined in [Poryazov et al, 2018b].
In Fig. 4 the outgoing flow intensity of the switching system (out .Fs ) is given by:

out .Fs = crr .Fs + prs .Fs . (3)

For crr .Fs and prs .Fs we have:
crr .Fs = Fcc . (4)
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The parasitic flow (prs .Fs ) represented in Fig. 4 according to its definition and the conceptual
model shown in Fig. 3 can be expressed through the equation:

prs.Fs = Fis+ Fns+ Fbr + Far + Fac . (5)

Problem statement. The problem that we are solving can be stated as deriving equations for the

• output parameters: Pbws,Yws ,Tws , related to the ws device

given the

• input parameters: Ns ,Nws , ofr .Fws ,Ts which can be measured.

In order to compactly describe single queuing stations in an unambiguous way, the so called Kendall
notation is often used (see [Haverkort, 1998]). A queuing system is described by 6 identifiers
separated by vertical bars in the following way:

Arrivals | Services | Servers | Buffersize | Population | Scheduling

where “Arrivals” characterizes the arrival process (arrival distribution), “Services” characterizes the
service process (service distribution), “Servers” – the number of servers, “Buffersize” – the total
capacity, which includes the customers possibly in the server (infinite if not specified), “Population” –
the size of the customer population (infinite if not specified), and finally, “Scheduling” – the employed
service discipline.

In our model, the queuing system in the Switching stage of the telecommunication network in
Kendall notation is represented as M |M |Ns|Ns + Nws|Nab|FIFO, where M stands for
exponential distribution, Ns is the capacity of the Switching system (number of equivalent internal
switching lines) and Nab is the total number of active terminals which can be calling and called.
This is related to the derivation of the analytical model of the system.

Analytical model of the queuing system

The queueing system in the switching stage differs from other queuing systems such as the ones
studied in [Schneps, 1979; Vishnevskiy, 2003] in that it has more exits. The exits are represented
in the conceptual model in Fig. 3 with the branches is, ns, br, ac, cc. In [Andonov et al, 2019],
we have derived analytical expressions for the parameters of the queuing system, starting with
the simplest queuing system M |M |1|FIFO and gradually advancing to the most complicated
system with finite buffer and finite capacity of the server. Here we shall use the results from
[Andonov et al, 2019] but adapted to the more detailed conceptual model presented here.

The density functions of the arrival and service times are respectively:
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a(t) = λe−λt , (6)

b(t) = µe−µt , (7)

where 1/λ is the mean value of time between two arrivals (interrarival time) and 1/µ is the mean
time of service. For our queuing system, they are given by:

λ = ofr .Fws , (8)

µ =
1

Ts
. (9)

They are assumed to be statistically independent which results in a birth-death process. Let us
denote with pn the probability that the queuing system is in state n that is:

pn = Pr{there are n requests in the queuing system}.

There are different ways to solve the birth-death equations. The solution is well-known and can be
found for example in [Schneps, 1979]. First, we notice that the arrival rate λn is equal to 0 when
n ≥ Ns + Nws . The probability for the system to be in state n is now given by:

pn =


λn

n!µn
p0 for 1 ≤ n < Ns .

λn

Nsn−NsNs!µn
p0 for Ns ≤ n ≤ Ns + Nws .

(10)

Again, the condition that the sum of the probabilities pn should be equal to 1, gives us the following
expression for p0:

p0 =

(
Ns−1∑
n=0

λn

n!µn
+

Ns+Nws∑
n=Ns

λn

Nsn−NsNs !µn

)−1

. (11)

In order to simplify the expression we set r = λ/µ and ρ = r/Ns . After elementary operations,
the above expression for p0 becomes

p−1
0 =


∑Ns−1

n=0
rn

n!
+ rNs

Ns!
1−ρNws+1

1−ρ for ρ 6= 1 .∑Ns−1
n=0

rn

n!
+ rNs

Ns!
(Nws + 1) for ρ = 1 .

(12)

Using (10), we can confirm the validity of the following theorem.

Theorem 1. The probability of blocked waiting for switch (Pbws ) is equal to the probability that the
system is in state Ns + Nws , i.e.,

Pbws =
λNs+Nws

NsNwsNs !µN s+Nws
p0 . (13)
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Theorem 2. The expected length of the queue is given by the following expression:

Yws =
Ns+Nws∑
n=Ns+1

(n−Ns)pn =
p0r

Nsρ

Ns!(1− ρ)2
[(ρ−1)ρNws(Nws+1)+1−ρNws+1] . (14)

The proof of the above theorem is given in [Andonov et al, 2019].

Theorem 3. The mean service time of the requests in the ws device for both, the waiting and
non-waiting requests, is given by:

Tws =
p20(Nsρr)

Nsρ(1− ρNws)
(Ns!)2(1− ρ)3

˙
[(ρ− 1)ρNws(Nws + 1) + 1− ρNws+1]

λ(1− Pbws)
. (15)

Proof: The mean service time of the requests in ws device for both the waiting and non-waiting
requests, given the condition Tzq = 0 , is

Tws = PqTq + (1− Pq)Tzq = PqTq . (16)

The mean service time of the waiting requests in the q device (Tq) is given by:

Tq =
p0r

Nsρ

Ns!(1− ρ)2
[(ρ− 1)ρNq(Nq + 1) + 1− ρNq+1]

λ(1− Pbws)
. (17)

The probability Pq is the probability that the system is in any of the states Ns,Ns+ 1, ..., Ns+
Nws− 1, i.e.,

Pq =
Ns+Nws−1∑

k=Ns

pk =
Ns+Nws−1∑

k=Ns

λk

Nsk−NsNs!µk
p0 . (18)

After simpification we obtain:

Pq =
p0Ns

NsρNs(1− ρNws)
Ns!(1− ρ)

. (19)

After substitution of (19) and (17) in (16), the theorem is proved.
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