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DEFINING INTERESTINGNESS FOR ASSOCIATION RULES 
T. Brijs, K. Vanhoof, G. Wets 

 
Abstract: Interestingness in Association Rules has been a major topic of research in the past decade.  The 
reason is that the strength of association rules, i.e. its ability to discover ALL patterns given some thresholds 
on support and confidence, is also its weakness. Indeed, a typical association rules analysis on real data often 
results in hundreds or thousands of patterns creating a data mining problem of the second order.  In other 
words, it is not straightforward to determine which of those rules are interesting for the end-user.  This paper 
provides an overview of some existing measures of interestingness and we will comment on their properties.  
In general, interestingness measures can be divided into objective and subjective measures.  Objective 
measures tend to express interestingness by means of statistical or mathematical criteria, whereas subjective 
measures of interestingness aim at capturing more practical criteria that should be taken into account, such as 
unexpectedness or actionability of rules.  This paper only focusses on objective measures of interestingness. 
Keywords: IJ ITA, formatting rules. 

Introduction 

The problem of finding association rules X ⇒ Y was first introduced in 1993 by Agrawal, Imielinski and Swami 
[1993] as the data mining task of finding frequently co-occurring items in a large Boolean transactional 
database D.  Typical applications include retail market basket analysis [Brijs et al., 1999; Brijs et al. 2000], 
item recommendation systems, cross-selling, loss-leader analysis, etc. In the classical framework, an 
association rule is considered to be interesting if its support (s) and confidence (c) exceed some user-defined 
minimum thresholds. Support is defined as the percentage of transactions in the data that contain all items in 
both the antecedent and the consequent of the rule, i.e. P(X∩Y) = {X∩Y}/{D}.  Confidence on the other hand 
is an estimate of the conditional probability of Y given X, i.e. P(X∩Y)/P(X).  
Several authors [Aggarwal & Yu, 1998], however, criticized the use of support and confidence for defining 
interesting associations. There are several reasons for this.  First of all, it is not trivial to set good values for 
the minimum support and confidence thresholds. Optimally, given unlimited computing resources, these 
values should be dependent on the size of the data, the sparseness of the data and the particular problem 
under study.  With respect to the size of the data, both the number of rows and columns in the data have an 
impact on the computing time and the number of association rules being generated.  Indeed, for most 
association rule algorithms, computing time is known to be linear with the number of records in the database 
[Agrawal & Srikant, 1994].  Furthermore, given a particular percentage threshold for support, the absolute 
support for a rule will be totally different for a small or a large database.  This also has an important impact on 
the statistical robustness of an association rule and is better known as sampling variability [DuMouchel & 
Pregibon, 2001; DuMouchel, 1999].  The idea is that association rules with low absolute support should be 
handled with care since small changes in the absolute support of an association rule with low support have a 
much greater impact than for an association rule with high absolute support.  For example, for a rule with 
absolute support 2, an absolute support increase of 2 implies the rule to become twice as important as the 
original rule.  In contrast, for a rule with absolute support of 2000, an absolute increase of 2 implies almost no 
change in the importance of the rule.  With respect to the number of columns/items in the data, it is known that 
this may have a dramatic impact on the computing time, especially if the data is not sparse since the number 
of potential frequent candidates (and thus also computing time) will increase dramatically with the number of 
columns in the data. However, as long as the data are sparse, an increase in the number of columns in the 
database will not significantly increase the computing time due to the clever downward closure principle of 
frequent itemset mining [Agrawal & Srikant, 1994]. 
Furthermore, there is a fundamental critique in so far that the same support threshold is being used for rules 
containing a different number of items. Indeed, intuitively it is not clear why the same support threshold should 
apply for itemsets of size 2 or of size 7.  Clearly, we expect the latter to occur much less frequently so, in 
some sense, it seems intuitive to specify different (i.e. lower) thresholds for itemsets of increasing size. 
Finally, the nature of the problem under study may dictate the support and/or confidence thresholds that 
should be used. For instance, setting the support threshold too low may lead to rules for which the target 
group of customers of a particular marketing campaign based on those rules is too small. On the other hand, 
setting the threshold too high may lead to rules that are trivial for the retailer.  Unfortunately, setting the right 
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values for minimum support and confidence today remains to be an unsolved problem in association rule 
mining. 
Another limitation with regard to the support-confidence framework is that high confidence should not be 
confused with high correlation, neither with causality between the antecedent and the consequent of the rule.  
The former can be illustrated by the following example. 
 

X 1 1 1 1 0 0 0 0 
Y 1 1 0 0 0 0 0 0 
Z 0 1 1 1 1 1 1 1 

 

Clearly, from this table it can be observed that X and Y are positively correlated and that X and Z are 
negatively correlated.  Yet, if we calculate the support and confidence of the rules X ⇒ Y (25%, 50%) and X 
⇒ Z (37.5%, 75%) it turns out that the second rule dominates the first both in terms of support and 
confidence.  This example demonstrates that one should be very careful in defining the interestingness of 
rules in terms of support and/or confidence. 
A second example illustrates why confidence can be misleading to define interesting rules.  Suppose the 
following situation.  Among 5000 customers: 

• 3000 buy cola  
• 3750 buy cheese  
• 2000 both purchase cola and cheese 

Then, the rule buy cola ⇒ buy cheese (40%, 66%) could indicate a promising rule.  However, although the 
rule has promising confidence, it is totally misleading since the baseline frequency of customers buying 
cheese is 75%.  In other words, among all customers buying cola, the proportion of customers buying cheese 
is even lower than in the total group of customers. This example illustrates that one should always take into 
account the baseline frequency of the consequent of the rule when evaluating the interestingness of 
association rules. 

Interestingness Measures 
In the next paragraphs, we will provide an overview of most of the well-known objective interestingness 
measures, together with their advantages or disadvantages.  Furthermore, all measures are symmetric 
measures, so the direction of the rule (X ⇒ Y or Y ⇒ X) is not taken into account.  The reason why we do not 
discuss a-symmetric measures is that, to our opinion, in retail market basket analysis it does not make sense 
to account for the direction of a rule since the concept of direction in association rules is meaningless in the 
context of causality.  The interested reader is referred to Tan et al. [2001] for an overview of interestingness 
measures (both symmetric and a-symmetric) and their properties. 

Lift / Interest 

A few years after the introduction of association rules, researchers [Aggarwal & Yu, 1998; Brin et al., 1998] 
started to realize the disadvantages of the confidence measure by not taking into account the baseline 
frequency of the consequent.  Therefore, the lift (also called interest) measure was introduced: 
 

( )
( ) ( )

P X YI
P X P Y

∩
=  

 

Since P(Y) appears in the denominator of the interest measure, the interest can be seen as the confidence 
divided by the baseline frequency of Y.  The interest measure is defined over [0, ∞[ and its interpretation is as 
follows: 

• If I < 1, then X and Y appear less frequently together in the data than expected under the assumption 
of conditional independence.  X and Y are said to be negatively interdependent.  

• If I = 1, then X and Y appear as frequently together as expected under the assumption of conditional 
independence.  X and Y are said to be independent of each other.  

• If I > 1, then X and Y appear more frequently together in the data than expected under the 
assumption of conditional independence.  X and Y are said to be positively interdependent. 
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For instance, the interest value for the cola/cheese example equals I = 0.4/(0.6*0.75)=0.888 which is clearly 
below 1 and indicates that buying cola and buying cheese is negatively interdependent, as we expected. 
There are, however, two important limitations to the interest measure [DuMouchel & Pregibon, 2001; 
DuMouchel, 1999].  The first one is related to the problem of sampling variability (see section Empirical Bayes 
Estimate).  This means that for low absolute support values, the value of the interest measure may fluctuate 
heavily for small changes in the value of the absolute support of a rule.  This problem is solved by introducing 
an Empirical Bayes estimate of the interest measure.  The second problem is that the interest measure should 
not be used to compare the interestingness of itemsets of different size. Indeed, the interest tends to be 
higher for large itemsets than for small itemsets. The reason is that due to the conditional independence 
assumption in the denominator of the interest measure, the value in the denominator decreases much more 
rapidly than the value of the nominator when the number of items in the itemset increase. Therefore, the value 
of the interest will usually overestimate the interestingness of large itemsets. 

Chi-square Test for Independency 
A natural way to express the dependence between the antecedent and the consequent of an association rule      
X ⇒ Y is the correlation measure based on the Chi-square test for independence [Brin et al., 1998].  Using 
the cola/cheese example again, the following contingency table can be derived from it: 
 

 Buy cheese Do not buy cheese Total 
Buy cola 2000 1000 3000 
Do not buy cola 1750 150 2000 
Total 3750 1150 5000 

 

The chi-square test for independence is calculated as follows, with Oxy the observed frequency in the 
contingency table and Exy the expected frequency (by multiplying the row and column total divided by the 
grand total): 

( )2

2 xyxy

x y xy

O E
E

χ
−

= =∑∑  

2 2 2 23000*3750 3000*1150 2000*3750 2000*11502000 1000 1750 150
5000 5000 5000 5000

3000*3750 3000*1150 2000*3750 2000*1150
5000 5000 5000 5000

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + + =

 
417.63 >> 3.84 

 

For the p-value of 0.05 with one degree of freedom, the cutoff value equals 3.84.  Consequently, buying cola 
and buying cheese can be considered as highly interdependent at the 95% confidence level. The correlation 
measure therefore seems an attractive alternative to the interest measure.  However, the correlation measure 
has some important limitations with respect to using large data sets [Silverstein et al., 1998]. 
First of all, the Chi-square test rests on the normal approximation to the Binomial distribution.  This 
approximation 
breaks down when the expected values (Exy) are small.  More specifically, the Chi-square test should only be 
used when all cells in the contingency table have expected values greater than 1 and at least 80% of the cells 
have expected values greater than 5.  In market basket data, however, these requirements are easily violated.  
Secondly, the values in the cell of the contingency table will typically be very unbalanced in the case of 
association rules.  The reason is that the combination of non-existence of the items in the antecedent and 
consequent is usually much larger than the co-occurrence of its items.  In other words, in real applications the 
upper left cell will be several orders of magnitude smaller than the lower right cell of the contingency table.  
This situation will usually invalidate the use of the Chi-square test for independence.  Finally, the Chi-square 
test will produce larger values when the data set grows to infinity.  Therefore, more items will tend to become 
significantly interdependent if the size of the dataset increases.  The reason is that the Chi-square value 
depends on the total number of transactions, whereas the critical cutoff value only depends on the degrees of 
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freedom (which is equal to 1 for binary variables) and the desired significance level. Therefore, whilst 
comparison of Chi-squared values within the same data set may be meaningful, it is certainly not advisable to 
compare Chi-squared values across different data sets.  In any of these cases, an exact test (like Fisher's 
exact test) to measure the significance of the interdependency is preferred over the Chi-square 
approximation. 
The advantage of the chi-square measure, on the other hand, is that it takes into account all the available 
information in the data about the occurrence or non-occurrence of combinations of items, whereas the 
lift/interest measure only measures the co-occurrence of two itemsets, corresponding to the upper left cell in 
the contingency table. 

Correlation Coefficient  

The correlation coefficient (also known as the Φ-coefficient) measures the degree of linear interdependency 
between a pair of random variables.  It is defined by the covariance between the two variables divided by their 
standard deviations: 
 

( ) ( ) ( )
( )(1 ( )) ( )(1 ( ))XY

P X Y P X P Y
P X P X P Y P Y

ρ ∩ −
=

− −
 

 

where ρXY = 0 when X and Y are independent and ranges from [-1, +1]. 

Log-linear Analysis 
A natural extension of the Chi-square test of independence between two-way contingency tables is the log-
linear analysis [Agresti, 1996]. Log-linear analysis is suited to measure the interdependency between multi-
way contigency tables.  This kind of test is suited when we are not interested in finding the interdependency 
between the antecedent and the consequent of an association rule, but we are interested in the 
interdependency of individual items within an itemset.  The log-linear model is one of the specialized cases of 
generalized linear models for Poisson-distributed data. Log-linear models are commonly used to evaluate 
multi-way contingency tables that involve three or more variables. 
The basic strategy in log-linear modelling involves fitting models to the observed frequencies in the cross-
tabulation of categorical variables.  The models can then be represented by a set of expected frequencies.  
Models will vary in terms of the marginals they fit, and can be described in terms of the constraints they 
impose on the associations or interactions that are present in the data.  Once expected frequencies are 
obtained, different models can be compared that are hierarchical to one another.  The purpose is then to 
choose a preferred model, which is the most parsimonious model that fits the data.  The choice of a preferred 
model is typically based on a formal comparison of goodness-of-fit statistics (likelihood ratio test) associated 
with models that are related hierarchically (i.e. models containing higher order terms also implicitly include all 
lower order terms).  For instance, the fully-saturated log-linear model for two variables X and Y is: 
 

ln( ) X Y XY
ij i j ijF μ λ λ λ= + + +  

 

where ln(Fij) is the log of the expected cell frequency of the cases for cell ij in the contingency table, μ is the 
overall mean of the natural log of the expected frequencies, λ represents 'effects' which the variables have on 
the cell frequencies, X and Y are the variables, and finally i and j refer to the categories within the variables.  
The above model is the fully-saturated model since it includes all possible one-way and two-way effects.  In 
order to find a more parsimonious model that will isolate the effects best demonstrating the data patterns, a 
non-saturated model must be discovered.  This can best be achieved by setting some of the effect parameters 
equal to zero. For instance, if the effects parameter λijXY is set to zero (i.e. we assume that X has no effect on 
Y and vice versa), the following unsaturated model is obtained: 
 

ln( ) X Y
ij i jF μ λ λ= + +  

 

Moreover, the unsaturated and the saturated model are hierarchically related, i.e. they are said to be nested. 
This is a very attractive feature since it validates the use of the likelihood ratio test (LRT).  In fact, if Fij 
represents the observed frequency, and fij the fitted frequency, then the likelihood ratio test is defined as: 
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The LRT test is distributed Chi-square with degrees of freedom equal to the number of cells minus the number 
of non-redundant parameters in the model.  In other words, the degrees of freedom equal the number of λ 
parameters set equal to zero.  In fact, the LRT tests the residual frequency not accounted for by the effects in 
the model.  Thus, larger values for LRT indicate that the model does not fit the data well, and thus the model 
should be rejected.  At this point, the LRT can be used to compare the saturated model with any other nested 
model: 
 

LRTdifference = LRTnested - LRTsaturated 
 

with the degrees of freedom equal to the degrees of freedom of the nested model minus the degrees of 
freedom of the saturated model. If the LRTdifference is not significant, it means that the more parsimonious 
nested model is not significantly worse than the saturated model.  So, then one should choose the nested 
model since it is simpler (contains less effects). 
In some sense, however, the problems associated with Chi-square analysis (see earlier) are also true for the 
log-linear model.  One should therefore be very careful in the interpretation of the results.  Again, comparison 
on the basis of log-linear analysis of the results between different data sets should be avoided. 

Empirical Bayes Correction 

DuMouchel and Pregibon [2001] and DuMouchel [1999] suggested the use of an Empirical Bayes estimate for 
the interest value in order to account for the sampling variability in the case of small numbers, which is 
typically the case when the minimum support threshold specified by the user is small.  In that case, slight 
changes in the absolute value of the support have a large impact on the interest value and this should be 
corrected for by means of a shrinkage estimate.  The procedure goes as follows: 

• we have a collection of pairs (n,e), where n is the absolute support of the itemset (above the 
minimum threshold), and where e is the expected absolute support value under the assumption of 
conditional independence 

• for each itemset, n is assumed to be drawn from a Poisson distribution with mean μ=λ*e.   
• however, instead of assuming all λ's to be equal, it is assumed that the λ’s are distributed according 

to a family of prior distributions ( | )π λ θ , such as a Gamma distribution or a mixture of Gamma's to 
have more parameters and thus be more flexible.   

• the unconditional distribution for each n can now be calculated as 
( ) ( | ) ( | )f n Poi n e dλ π λ θ λ= ∫  where Poi is the Poisson distribution. 

• from the product of this unconditional distribution over all the itemsets, the maximum likelihood 
estimate θ  can be calculated. 

• Using this maximum likelihood estimate θ , we can now calculate the posterior density of λ  for 
each pair (n, e) as ( | ) ( | ) / ( )Poi n e f nλ π λ θ  

• the mean of this posterior distribution for each parameter λ will now provide us with an Empirical 
Bayes shrinkage estimate of the true interest value for each itemset. 

The procedure can be easily programmed within the software WinBugs 1.4 and has already been successfully 
applied on several datasets. On some data sets, however, significant autocorrelations of high-order lags are 
identified implying the need for rather long chains of iterations which may slow down the calculations 
significantly. 
Nevertheless, empirical results illustrate that the method is indeed able to downsize the interest values for 
itemsets with low counts.  For itemsets with large counts, the Empirical Bayes estimate of the interest does 
almost not differ from the interest calculated on the raw data.  This method is thus clearly preferred over the 
classical interest measure, especially when the support threshold is being small. 
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Conclusions 
The following suggestions can be formulated based on the analysis of the different interestingness measures 
discussed in the previous paragraphs: 

• Confidence is never the preferred method to compare association rules since it does not account for 
the baseline frequency of the consequent. 

• The lift/interest value corrects for this baseline frequency but when the support threshold is very low, 
it may be instable due to sampling variability.  However, when the data set is very large, even a low 
percentage support threshold will yield rather large absolute support values.  In that case, we do not 
need to worry too much about sampling variability.  A drawback of the interest measure is that it 
cannot be used to compare itemsets or rules of different size since it tends to overestimate the 
interestingness for large itemsets. 

• Sampling variability can be corrected for by the Empirical Bayes estimate of the interest value.  It 
downsizes the interest when the absolute support of the rule is very low.  It generates comparable 
results to the traditional interest measure when the absolute support is large. 

• When association rules need to be compared between data sets of different sizes, the Chi-square 
test for independence and log-linear analysis are not preferred since they are highly dependent on 
the dataset size.  Both measures tend to overestimate the interestingness of itemsets in large 
datasets. 
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