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DIFFERENTIAL BALANCED TREES AND (0,1) MATRICES1 
H. Sahakyan, L. Aslanyan 

 
Abstract: Links and similarities between the combinatorial optimization problems and the hierarchical search 
algorithms are discussed. One is the combinatorial greedy algorithm of step-by-step construction of the 
column-constraint (0,1) matrices with the different rows. The second is the base search construction of 
databases, - the class of the well known weight-balanced binary trees. Noted, that in some approximation 
each of the above problems might be interpreted in terms of the second problem. The constraints in matrices 
imply the novel concept of a differential balance in hierarchical trees. The obtained results extend the 
knowledge for balanced trees and prove that the known greedy algorithm for matrices is applicable in the 
world of balanced trees providing optimization on trees in layers. 
Keywords: search, balanced trees, (0,1)-matrices, greedy algorithm. 

1. Introduction 
In this paper a new class of weight-balanced trees [K, 1973] is introduced and investigated. In some sense 
these are extensions of the concept of the bounded balanced trees. Bounded balanced trees were analysed 
in various publications, e.g. [R, 1977], being the main data structure of search in dynamic databases. In 
Section 2 below the height estimate for bounded-balanced trees is considered and an estimate for the weight-
balanced trees with the newly introduced differential balances and constraints is obtained. 
The theory of weight-balanced trees is very rich. Practically this is also the base model of hierarchical search 
and decision support. In search, several restrictions in terms of balances are applied in a dynamic 
environment with insertion of new and deletion of obsolete search elements. The balances in nodes are under 
the change during this process. In a dis-balanced node rotations are used to correct the situation. Several 
queries, related to these models are traditional. Which is the tree height in a given balance and in a given set 
of search elements? Which is the average path length in a search tree? A particular new postulation is the 
following. Is it possible to construct a tree or to construct all the trees that may appear in a search model with 
the given constraints? This is a particular interest of the current paper. 
The stated problem will be studied in several extensions, which are also a typical element of search models. 
E.g. - some specific classes of balanced trees, called trees of bounded heights, introduced in [A, 1989], [A, 
1999].  
The concept of bounded-balance is extended in Section 3, defining layer-constraint balanced trees. The idea 
of layer-constraints is then developed in Section 4, considering a practical extension of the concept of weight-
balanced trees - defining summary balances for tree layers. This structure is related to mentioned 
combinatorial problem – constructing the constraint based (0,1)-matrices with different rows. In [S, 1986], [S, 
1995] a greedy algorithm is constructed for solving the mentioned combinatorial problem and it is proven 
optimal in local steps. The algorithm for solving this problem is reducible to the constructing of weight-
balanced trees by the given summary differential balances in layers. Similarly, in the world of balanced trees 
this proves a heuristic optimization on trees in layers. 

2. Bounded-balanced Trees 

Let mT  be a non-empty extended binary tree [R, 1977] with m  leaves, and lT  and rT  are the left and right 
root-subtrees of mT . We denote by l  and r  the numbers of leaves of lT  and rT  (called weights) and 
assume that 0>l  and 0>r . Then rlm += .  
Definition [R, 1977]. The fraction ml /  is called the balance (left, fractional) of mT  in root vertex, being 
denoted by )( mTβ . )( mTβ  expresses the ratio weight of the left root-subtree and it obeys the condition 

1)(0 << mTβ . 
 
                                                           
1 The research was supported by INTAS 00-397 and 00-626 Projects. 
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Definition [R, 1977]. For a given α , 2/10 ≤≤ α , mT  is called an α -balanced tree (or a tree from 
][αWB ) if 
1) αβα −≤≤ 1)( mT , 
2) left and right subtrees of mT  belong to ][αWB . 

We assume by definition that the empty binary tree belongs to ][αWB . 
 

]0[WB  is the set of all binary trees and ]2/1[WB  is the set of all  perfectly balanced (with the equal left 
and right subtrees weights in each node) binary trees, and this is possible, when the number of leaves has the 
form k2 )1( ≥k . 
 
The maximum possible height )(mhα  of trees from ][αWB  is estimated in [R, 1977] – by the 
consideration of the most asymmetric trees of ][αWB :  

     
))1/(1log(

log)(
αα −

≤
mmh             

(1) 
  
It is also important to treat the question: given the binary trees with m  leaves and with heights, restricted by 
a given number n , then - how “unbalanced” may be the trees, - which is the allowable minimum value for 
α ? The answer (in a form of a sufficiency condition) is given by the lemma below, using the monotony of (1). 

Lemma 1. If n m
11−≥α , then nmh ≤)(α . 

The n m
11−≥α  implies n

mlog

2
1

1
≥

−α
, and then 

n
mlog))1/(1log( ≥−α , and 

nm
≤

− ))1/(1log(
log

α
. For those α , nmmh ≤

−
≤

))1/(1log(
log)(

αα  by (1). 

 
Now let us turn to the concept of balances in terms of differences of weights between subtrees. 
Definition. The difference lr −  is called the differential balance (right) of mT  in the root vertex, denoted by 

)( mTδ . It obeys the following condition: 1)(1 −<<− mTm mδ . 
 
Definition. For a given d , 10 −<≤ md , mT  is called differential-balanced tree with balance d  (or a 
tree from ][dWDB ) if 

1) dTd m ≤≤− )(δ , 
2) left and right subtrees of mT  belong to ][dWDB . 

 
The two balance schemes are tightly related. Let us formulate the base relations between the fractional and 
differential balances. 
Let mT  be an extended binary tree with m  leaves, and iv  is a vertex (not leaf) of mT . We denote by im  
the weight of subtree rooted at iv , and by il  and ir  - the weights of its left and right subtrees, 
correspondingly. Starting at this point we will assume also, that  il -s are not greater than ir -s. 
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If mT  is an α -balanced tree then for each vertex iv  we have α≥
i

i

m
l

 by the definition. Let’s estimate the 

weight differences between right and left subtrees for each iv : 

 )21(2
i

i
iiiii m

lmlmlr −=−=− )21( α−≤ im . Hence 

)21()21(max αα −=−≤− mmlr iiii . 

Conclusion is that an α -balanced tree mT  is a differential balanced tree with )21( α−= md . 
  
Now let mT  is a differential balanced tree with balance d . For each vertex iv , dlr ii ≤−  by the 

definition. Let’s estimate the fraction 
i

i

m
l

; 

)1(
2
1)1(

2
1)1(

2
1

2
)(

m
d

m
d

m
lr

m
lrm

m
l

ii

ii

i

iii

i
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−

−=
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= .  

Thus, a differential balanced tree mT  with balance d , is an α -balanced tree, with )1(
2
1

m
d

−=α . A 

more correct estimate is: 

)}2,min{max1(
2
1

i

i
i m

md −
−=α . 

 
Next we consider the estimate of height of trees from ][dWDB , constructing the most asymmetric trees in 
this class. On each layer the subtrees with greatest weights have been partitioned into the subtrees with 
maximization of weights differences. Then the height estimate is the length of these “maximum weighted” 
branches.  

On the first layer we get subtrees of weights 
2
dm +

 and 
2
dm −

. We will follow only the branch of weight 

2
dm +

. On the next layer we will get a subtree of weight 
4

3
2

2 dmddm
+

=
+

+

. In continuation, let k  

is the minimal index, where the maximal subtree weight becomes less than d . At that point the maximum 

weight doesn’t exceed k

k dm
2

)12( −+
.  

ddmdm
kk

k

+
−

=
−+

22
)12(

, therefore 1
2

<
−
k
dm

, and )log( dmk −> . 

Resuming, we receive, that after at most 1)log( +− dm  steps the weight of maximal subtree is less than 
d . If 1≤d , then the tree construction is complete, and we get a tree with the height estimate 

1)log( +− dm . Otherwise we continue the process, with the arbitrary partition of subtrees. At most 1−d  
steps will be required. We receive the following final estimation – the heights of trees from ][dWDB  are 
restricted by ddm +− )log( . 
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Now we treat the question about the constraints on balances when given that the heights are restricted. Let us 
consider the binary trees with m  leaves, and heights, restricted by the given number n . The counterpart of 
Lemma 1 is the following proposition: 
 
Lemma 2. If the differential balance d  obeys: nddm ≤+− )log( , then the height of tree with m  
leaves is restricted by n . 
 
A practical note. The concept of differential balancing is reasonable to apply on trees as far as the weights of 
subtrees are greater than d , therefore  - on layers of at most 1)log( +− dm  far from the root. 
 

3. Layer-constrained Weight-balanced Trees 

At this point the concept of differential balances is introduced and the general comparison with the base 
scheme – the weight-balanced trees is outlined. The particular properties of differential balances are that 
these are flexible on tree layers. The balance constraints may vary from layer to layer and/or the constraints 
might be given in terms of summary balances. In some cases it is important to apply these structures in the 
traditional case of the weight-balanced trees. These issues are considered below.  
 
Definition. For a given iα , 2/10 ≤≤ iα , we say that mT  is iα -balanced on layer i , if for each subtree 

ji
T  - rooted at layer i , iii j

T αβα −≤≤ 1)( . 

 
Definition. Given numbers kαα ,,0 " , where 2/10 ≤≤ iα , ki ,,0 "= . We say that mT  is a tree 
from class ],,[ 0 kWB αα " , if  mT  is iα -balanced on layer i . 
 
The leaves may be composite in ],,[ 0 kWB αα "  (when k -sequences are not enough to differentiate the 
nodes, the composite nodes may remain consisting of sets of virtual leaves). On the other hand, part of the 
balance values (a last portion) may be redundant. Consideration of the most asymmetric trees and paths in 

],,[ 0 kWB αα "  gives the following estimation: the weights of subtrees (virtual at this point) of k -th layer 
are restricted in size by mk )1()1)(1( 10 ααα −−− " . If there exists h , kh ≤ , such that 

2)1()1)(1( 10 ≤−−− mhααα " , then the height of the tree is restricted by h . 
 
Now we consider layer constrained weight-balanced trees in sense of differential balances. 
 
Definition. For a given id , 10 −<≤ mdi , we say that mT  has id  differential balance on layer i , if for 
each subtree 

ji
T  - rooted at layer i ,  iii dTd

j
≤≤− )(δ . 

 
Definition. Given numbers kdd ,,0 " , where 10 −<≤ mdi , ki ,,0 "= . We say that mT  is a tree 
from class ],,[ 0 kddWDB " , if  mT  has differential balances id  on layers i . 
 
Similarly with the class ],,[ 0 kWB αα " , the leaves may be composite, or some last balance values may 
be redundant for trees of ],,[ 0 kddWDB " . Consider the most asymmetric trees of the class 

],,[ 0 kddWDB " . Using reasoning, similar to the used above, we get that the weights of subtrees on the 

k -th layer of trees are restricted by 1
10

2
22

+

++++
k

k
k dddm "

. 
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If there exists h , kh ≤ , such that 1
2

22
1

10 ≤
++++

+h
h

h dddm "
, then the overall height of tree is 

restricted by h . It is easy to see that kdd ,,0 "  must obey in this case very specific restrictions, which 
limits the selection and the meaning of differential balances. 
 

4. Summary Differential Balanced Tress and (0,1)-matrices 

Definition. Given numbers nDD ,,0 "  where nimDi ,,0,10 "=−<≤ . We say that mT  has iD  
summary differential balance on i -th layer, if iii DLR ≤− , where iR  is the sum of weights of the all right 
subtrees rooted at the layer i  and iL  is the same sum for the left subtrees. 
  
Definition. mT  is called },,{ 0 nDD "  summary differential balanced tree if the summary balance on i -th 
layer equals to iD , ni ,,0 "= .  
 
Let 

pii TT ,,
1
"  are subtrees rooted at i -th layer having the weights 

pii mm ,,
1
"  correspondingly, and let 

ji
l  and 

ji
r  are the weights of left and right subtrees of 

ji
T . Then ∑

=
=

p

j
ii j
rR

1
 and  ∑

=
=

p

j
ii j
lL

1
. 

mT

1iT piT ijiT" "

#

1il pil2il 2ir1ir pir

 
 
Usually the balance criterion restricts the weights of subtrees, making it possible to optimize the height of the 
tree. The summary balance allows any weights for subtrees, requiring only satisfying the given summary 
constraints on layers. This is a week form constraints for constructing an optimized decision tree. The most 
asymmetric trees are very diverse in this case. In next point the combinatorial origin of these differential 
schemes will be described. In classes of summary balanced trees the problem is in existence of a binary tree 
with the given characteristics nDD ,,0 " , and in case of existence – the algorithmic construction of such 
trees. In special cases the issue of construction of trees might be the interest, when an additional functional 
for optimization is given. In particular, optimality might be required as for subtree weights on layers, for 
number of subtrees on layers, a special functional optimization, etc.     
 
Here is the combinatorial counterpart of the scheme of the summary differential balances. Given an integer 
vector ),,( 1 nssS "= , where msi ≤≤0 , ni ,,1"= . The interest is in (0,1) -matrices of size nm×   
(m  is the number of rows) with is  1’s  in i -th column and with different rows. This is the existence problem. 
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The corresponding optimization problem is in minimization of the number of the possible repeated rows. The 
problem might be solved, in particular, by algorithms, constructing the matrices in a column-by-column 
fashion, by partitioning the sets of similar (equal) rows received in a previous step. The first column has been 
constructed substituting 1s  1’s and 1sm −  0’s. Without loss of generality we assume that the 1’s are 
substituted on the first 1s  rows. The second column has been constructed by partitioning the intervals (sets of 
similar rows) of the first column (of lengths 1s  and 1sm − ) - substituting 1’s and 0’s on these intervals such 
that the summary length of  one-intervals (where all 1’s are substituted), is equal to 2s , and the summary 
length of zero-intervals (where 0’s are substituted), is equal to 2sm − . The partitioning of intervals for 
current k -th column is arbitrary, providing only that the summary length of all one-intervals is equal to ks . 
Such construction provides the following property: for each pair of  rows, ),( ji , where rows i  and  j  
belong to different intervals, we have that the i -th and j -th rows are different. Within each interval we have 
sets of equal rows. The intervals with 1 length in each column don’t participate in further partitioning, but they 
are used (substituting 1 or 0) to provide the summary values ks  and ksm −  on the current k -th column. 
When in some column there are all 1 length intervals, then all rows are different, and the required matrix is 
constructed. The remainder columns might be constructed arbitrarily. The graphical scheme is the following: 
 

1

0

1
1s

1sm−

0
1
0

1 2 n
1
0
1
0
1
0
1

" i "

" " is}
 

 
This is the existence problem as was mentioned. In the similar optimization problem the row repetitions is to 
be minimized. Let, in a current state of construction we have intervals of lenghts 

pnn mm ,,
1
"  (greater than 

1) on the n -th column. Each of the 
pnn mm ,,

1
"  intervals consists of the same rows repetitions. The 

number of pairs of rows - ),( ji , where rows i  and  j  are the same, equals 

∑∑
==

−=
p

j
nn

p

j
m jjjn

mmC
11

2 )1(
2
1

, so this is the subject for optimization. 

 
The construction of (0,1)-matrices might be represented by binary trees. We construct a tree mT  with m  
leaves. The matrix with m  rows corresponds to the root vertex. The submatrix with the first 1s  rows from the 
first step corresponds to the right subtree, and the submatrix with 1sm −  rows corresponds to the left 
subtree, etc. When the current submatrix consists of a single row, we get a leaf. When for any k ,  nk ≤ ,  
the k -th layer contains leaves only, then the construction is completed. Otherwise as a result of construction 
on n -th layer we receive a set of subtrees of weights 

pnn mm ,,
1
" . The constructed trees belong to the 

class of summary differential balanced trees with summary balances nDD ,,1 " , for the given balances 
nismsD iii ,,1),( "=−−= . 
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[S, 1986], [S, 1995] provide an approximation greedy algorithm, which constructs the target (0,1)-matrices in 
the above described column-by-column fashion of partitioning. The algorithm provides the optimal 
construction of each column – i.e. the construction, which provides the maximal number of new ),( ji  pairs 
of different rows in each step. It is proven that the optimal construction of each column is provided by 
partitioning, which distributes the difference )( kk sms −−  “homogeneously” on all current non atomic 
intervals. Returning to the trees terminology, the matrix constructed by the greedy algorithm implies subtrees 
on each layer of tree, partitioned such that the difference iii DLR =−  is distributed “equally” on all current 
subtrees.  
 
So this describes the construction of trees in class of summary differential balanced trees providing the local 
optimum for the functional from the related combinatorial problem of (0,1)-matrices. 
 
A last note. Let the subtrees of i -th layer with weights 

pii mm ,,
1
"  are partitioned into the subtrees with 

weights 
pp iiii rlrl ,,,,

11
"  correspondingly. We denote 

ppp iiiiii lrdlrd −=−= ,,
111
" . Then the 

differential balance on i -th layer is equal to 
jipj

d
≤≤1

max . Since iD  is distributed “equally” by the greedy 

partition, 
jipj

d
≤≤1

max  will have the minimum value among all possible partitions. This is the following property: 

an algorithm, which is locally optimal by means of (0,1)-matrices, is locally optimal also by means of 
construction of trees of minimal height in class of summary differential balanced trees. 

Conclusion 
Resuming, - in problem of constructing the summary balanced binary trees with given differential balances of 
layers, and with height minimization, it is possible to apply the given above combinatorial greedy algorithm, 
and then the resulting tree has a property that the maximal value of the differential balances on tree layers are 
optimal - minimal. In terms of search trees this is an extension of perfect balanced trees on layers, when 
additional constraints are applied. 
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DEFINING INTERESTINGNESS FOR ASSOCIATION RULES 
T. Brijs, K. Vanhoof, G. Wets 

 
Abstract: Interestingness in Association Rules has been a major topic of research in the past decade.  The 
reason is that the strength of association rules, i.e. its ability to discover ALL patterns given some thresholds 
on support and confidence, is also its weakness. Indeed, a typical association rules analysis on real data often 
results in hundreds or thousands of patterns creating a data mining problem of the second order.  In other 
words, it is not straightforward to determine which of those rules are interesting for the end-user.  This paper 
provides an overview of some existing measures of interestingness and we will comment on their properties.  
In general, interestingness measures can be divided into objective and subjective measures.  Objective 
measures tend to express interestingness by means of statistical or mathematical criteria, whereas subjective 
measures of interestingness aim at capturing more practical criteria that should be taken into account, such as 
unexpectedness or actionability of rules.  This paper only focusses on objective measures of interestingness. 
Keywords: IJ ITA, formatting rules. 

Introduction 

The problem of finding association rules X ⇒ Y was first introduced in 1993 by Agrawal, Imielinski and Swami 
[1993] as the data mining task of finding frequently co-occurring items in a large Boolean transactional 
database D.  Typical applications include retail market basket analysis [Brijs et al., 1999; Brijs et al. 2000], 
item recommendation systems, cross-selling, loss-leader analysis, etc. In the classical framework, an 
association rule is considered to be interesting if its support (s) and confidence (c) exceed some user-defined 
minimum thresholds. Support is defined as the percentage of transactions in the data that contain all items in 
both the antecedent and the consequent of the rule, i.e. P(X∩Y) = {X∩Y}/{D}.  Confidence on the other hand 
is an estimate of the conditional probability of Y given X, i.e. P(X∩Y)/P(X).  
Several authors [Aggarwal & Yu, 1998], however, criticized the use of support and confidence for defining 
interesting associations. There are several reasons for this.  First of all, it is not trivial to set good values for 
the minimum support and confidence thresholds. Optimally, given unlimited computing resources, these 
values should be dependent on the size of the data, the sparseness of the data and the particular problem 
under study.  With respect to the size of the data, both the number of rows and columns in the data have an 
impact on the computing time and the number of association rules being generated.  Indeed, for most 
association rule algorithms, computing time is known to be linear with the number of records in the database 
[Agrawal & Srikant, 1994].  Furthermore, given a particular percentage threshold for support, the absolute 
support for a rule will be totally different for a small or a large database.  This also has an important impact on 
the statistical robustness of an association rule and is better known as sampling variability [DuMouchel & 
Pregibon, 2001; DuMouchel, 1999].  The idea is that association rules with low absolute support should be 
handled with care since small changes in the absolute support of an association rule with low support have a 
much greater impact than for an association rule with high absolute support.  For example, for a rule with 
absolute support 2, an absolute support increase of 2 implies the rule to become twice as important as the 
original rule.  In contrast, for a rule with absolute support of 2000, an absolute increase of 2 implies almost no 
change in the importance of the rule.  With respect to the number of columns/items in the data, it is known that 
this may have a dramatic impact on the computing time, especially if the data is not sparse since the number 
of potential frequent candidates (and thus also computing time) will increase dramatically with the number of 
columns in the data. However, as long as the data are sparse, an increase in the number of columns in the 
database will not significantly increase the computing time due to the clever downward closure principle of 
frequent itemset mining [Agrawal & Srikant, 1994]. 
Furthermore, there is a fundamental critique in so far that the same support threshold is being used for rules 
containing a different number of items. Indeed, intuitively it is not clear why the same support threshold should 
apply for itemsets of size 2 or of size 7.  Clearly, we expect the latter to occur much less frequently so, in 
some sense, it seems intuitive to specify different (i.e. lower) thresholds for itemsets of increasing size. 
Finally, the nature of the problem under study may dictate the support and/or confidence thresholds that 
should be used. For instance, setting the support threshold too low may lead to rules for which the target 
group of customers of a particular marketing campaign based on those rules is too small. On the other hand, 
setting the threshold too high may lead to rules that are trivial for the retailer.  Unfortunately, setting the right 
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values for minimum support and confidence today remains to be an unsolved problem in association rule 
mining. 
Another limitation with regard to the support-confidence framework is that high confidence should not be 
confused with high correlation, neither with causality between the antecedent and the consequent of the rule.  
The former can be illustrated by the following example. 
 

X 1 1 1 1 0 0 0 0 
Y 1 1 0 0 0 0 0 0 
Z 0 1 1 1 1 1 1 1 

 

Clearly, from this table it can be observed that X and Y are positively correlated and that X and Z are 
negatively correlated.  Yet, if we calculate the support and confidence of the rules X ⇒ Y (25%, 50%) and X 
⇒ Z (37.5%, 75%) it turns out that the second rule dominates the first both in terms of support and 
confidence.  This example demonstrates that one should be very careful in defining the interestingness of 
rules in terms of support and/or confidence. 
A second example illustrates why confidence can be misleading to define interesting rules.  Suppose the 
following situation.  Among 5000 customers: 

• 3000 buy cola  
• 3750 buy cheese  
• 2000 both purchase cola and cheese 

Then, the rule buy cola ⇒ buy cheese (40%, 66%) could indicate a promising rule.  However, although the 
rule has promising confidence, it is totally misleading since the baseline frequency of customers buying 
cheese is 75%.  In other words, among all customers buying cola, the proportion of customers buying cheese 
is even lower than in the total group of customers. This example illustrates that one should always take into 
account the baseline frequency of the consequent of the rule when evaluating the interestingness of 
association rules. 

Interestingness Measures 
In the next paragraphs, we will provide an overview of most of the well-known objective interestingness 
measures, together with their advantages or disadvantages.  Furthermore, all measures are symmetric 
measures, so the direction of the rule (X ⇒ Y or Y ⇒ X) is not taken into account.  The reason why we do not 
discuss a-symmetric measures is that, to our opinion, in retail market basket analysis it does not make sense 
to account for the direction of a rule since the concept of direction in association rules is meaningless in the 
context of causality.  The interested reader is referred to Tan et al. [2001] for an overview of interestingness 
measures (both symmetric and a-symmetric) and their properties. 

Lift / Interest 

A few years after the introduction of association rules, researchers [Aggarwal & Yu, 1998; Brin et al., 1998] 
started to realize the disadvantages of the confidence measure by not taking into account the baseline 
frequency of the consequent.  Therefore, the lift (also called interest) measure was introduced: 
 

( )
( ) ( )
P X YI
P X P Y

∩
=  

 

Since P(Y) appears in the denominator of the interest measure, the interest can be seen as the confidence 
divided by the baseline frequency of Y.  The interest measure is defined over [0, ∞[ and its interpretation is as 
follows: 

• If I < 1, then X and Y appear less frequently together in the data than expected under the assumption 
of conditional independence.  X and Y are said to be negatively interdependent.  

• If I = 1, then X and Y appear as frequently together as expected under the assumption of conditional 
independence.  X and Y are said to be independent of each other.  

• If I > 1, then X and Y appear more frequently together in the data than expected under the 
assumption of conditional independence.  X and Y are said to be positively interdependent. 
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For instance, the interest value for the cola/cheese example equals I = 0.4/(0.6*0.75)=0.888 which is clearly 
below 1 and indicates that buying cola and buying cheese is negatively interdependent, as we expected. 
There are, however, two important limitations to the interest measure [DuMouchel & Pregibon, 2001; 
DuMouchel, 1999].  The first one is related to the problem of sampling variability (see section Empirical Bayes 
Estimate).  This means that for low absolute support values, the value of the interest measure may fluctuate 
heavily for small changes in the value of the absolute support of a rule.  This problem is solved by introducing 
an Empirical Bayes estimate of the interest measure.  The second problem is that the interest measure should 
not be used to compare the interestingness of itemsets of different size. Indeed, the interest tends to be 
higher for large itemsets than for small itemsets. The reason is that due to the conditional independence 
assumption in the denominator of the interest measure, the value in the denominator decreases much more 
rapidly than the value of the nominator when the number of items in the itemset increase. Therefore, the value 
of the interest will usually overestimate the interestingness of large itemsets. 

Chi-square Test for Independency 
A natural way to express the dependence between the antecedent and the consequent of an association rule      
X ⇒ Y is the correlation measure based on the Chi-square test for independence [Brin et al., 1998].  Using 
the cola/cheese example again, the following contingency table can be derived from it: 
 

 Buy cheese Do not buy cheese Total 
Buy cola 2000 1000 3000 
Do not buy cola 1750 150 2000 
Total 3750 1150 5000 

 

The chi-square test for independence is calculated as follows, with Oxy the observed frequency in the 
contingency table and Exy the expected frequency (by multiplying the row and column total divided by the 
grand total): 

( )2

2 xyxy

x y xy

O E
E

χ
−

= =∑∑  

2 2 2 23000*3750 3000*1150 2000*3750 2000*11502000 1000 1750 150
5000 5000 5000 5000

3000*3750 3000*1150 2000*3750 2000*1150
5000 5000 5000 5000

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + + =

 
417.63 >> 3.84 

 

For the p-value of 0.05 with one degree of freedom, the cutoff value equals 3.84.  Consequently, buying cola 
and buying cheese can be considered as highly interdependent at the 95% confidence level. The correlation 
measure therefore seems an attractive alternative to the interest measure.  However, the correlation measure 
has some important limitations with respect to using large data sets [Silverstein et al., 1998]. 
First of all, the Chi-square test rests on the normal approximation to the Binomial distribution.  This 
approximation 
breaks down when the expected values (Exy) are small.  More specifically, the Chi-square test should only be 
used when all cells in the contingency table have expected values greater than 1 and at least 80% of the cells 
have expected values greater than 5.  In market basket data, however, these requirements are easily violated.  
Secondly, the values in the cell of the contingency table will typically be very unbalanced in the case of 
association rules.  The reason is that the combination of non-existence of the items in the antecedent and 
consequent is usually much larger than the co-occurrence of its items.  In other words, in real applications the 
upper left cell will be several orders of magnitude smaller than the lower right cell of the contingency table.  
This situation will usually invalidate the use of the Chi-square test for independence.  Finally, the Chi-square 
test will produce larger values when the data set grows to infinity.  Therefore, more items will tend to become 
significantly interdependent if the size of the dataset increases.  The reason is that the Chi-square value 
depends on the total number of transactions, whereas the critical cutoff value only depends on the degrees of 
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freedom (which is equal to 1 for binary variables) and the desired significance level. Therefore, whilst 
comparison of Chi-squared values within the same data set may be meaningful, it is certainly not advisable to 
compare Chi-squared values across different data sets.  In any of these cases, an exact test (like Fisher's 
exact test) to measure the significance of the interdependency is preferred over the Chi-square 
approximation. 
The advantage of the chi-square measure, on the other hand, is that it takes into account all the available 
information in the data about the occurrence or non-occurrence of combinations of items, whereas the 
lift/interest measure only measures the co-occurrence of two itemsets, corresponding to the upper left cell in 
the contingency table. 

Correlation Coefficient  

The correlation coefficient (also known as the Φ-coefficient) measures the degree of linear interdependency 
between a pair of random variables.  It is defined by the covariance between the two variables divided by their 
standard deviations: 
 

( ) ( ) ( )
( )(1 ( )) ( )(1 ( ))XY
P X Y P X P Y

P X P X P Y P Y
ρ ∩ −

=
− −

 

 

where ρXY = 0 when X and Y are independent and ranges from [-1, +1]. 

Log-linear Analysis 
A natural extension of the Chi-square test of independence between two-way contingency tables is the log-
linear analysis [Agresti, 1996]. Log-linear analysis is suited to measure the interdependency between multi-
way contigency tables.  This kind of test is suited when we are not interested in finding the interdependency 
between the antecedent and the consequent of an association rule, but we are interested in the 
interdependency of individual items within an itemset.  The log-linear model is one of the specialized cases of 
generalized linear models for Poisson-distributed data. Log-linear models are commonly used to evaluate 
multi-way contingency tables that involve three or more variables. 
The basic strategy in log-linear modelling involves fitting models to the observed frequencies in the cross-
tabulation of categorical variables.  The models can then be represented by a set of expected frequencies.  
Models will vary in terms of the marginals they fit, and can be described in terms of the constraints they 
impose on the associations or interactions that are present in the data.  Once expected frequencies are 
obtained, different models can be compared that are hierarchical to one another.  The purpose is then to 
choose a preferred model, which is the most parsimonious model that fits the data.  The choice of a preferred 
model is typically based on a formal comparison of goodness-of-fit statistics (likelihood ratio test) associated 
with models that are related hierarchically (i.e. models containing higher order terms also implicitly include all 
lower order terms).  For instance, the fully-saturated log-linear model for two variables X and Y is: 
 

ln( ) X Y XY
ij i j ijF μ λ λ λ= + + +  

 

where ln(Fij) is the log of the expected cell frequency of the cases for cell ij in the contingency table, μ is the 
overall mean of the natural log of the expected frequencies, λ represents 'effects' which the variables have on 
the cell frequencies, X and Y are the variables, and finally i and j refer to the categories within the variables.  
The above model is the fully-saturated model since it includes all possible one-way and two-way effects.  In 
order to find a more parsimonious model that will isolate the effects best demonstrating the data patterns, a 
non-saturated model must be discovered.  This can best be achieved by setting some of the effect parameters 
equal to zero. For instance, if the effects parameter λijXY is set to zero (i.e. we assume that X has no effect on 
Y and vice versa), the following unsaturated model is obtained: 
 

ln( ) X Y
ij i jF μ λ λ= + +  

 

Moreover, the unsaturated and the saturated model are hierarchically related, i.e. they are said to be nested. 
This is a very attractive feature since it validates the use of the likelihood ratio test (LRT).  In fact, if Fij 
represents the observed frequency, and fij the fitted frequency, then the likelihood ratio test is defined as: 
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2 log ij
ij

i j ij

F
LRT F

f
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑  

 

The LRT test is distributed Chi-square with degrees of freedom equal to the number of cells minus the number 
of non-redundant parameters in the model.  In other words, the degrees of freedom equal the number of λ 
parameters set equal to zero.  In fact, the LRT tests the residual frequency not accounted for by the effects in 
the model.  Thus, larger values for LRT indicate that the model does not fit the data well, and thus the model 
should be rejected.  At this point, the LRT can be used to compare the saturated model with any other nested 
model: 
 

LRTdifference = LRTnested - LRTsaturated 
 

with the degrees of freedom equal to the degrees of freedom of the nested model minus the degrees of 
freedom of the saturated model. If the LRTdifference is not significant, it means that the more parsimonious 
nested model is not significantly worse than the saturated model.  So, then one should choose the nested 
model since it is simpler (contains less effects). 
In some sense, however, the problems associated with Chi-square analysis (see earlier) are also true for the 
log-linear model.  One should therefore be very careful in the interpretation of the results.  Again, comparison 
on the basis of log-linear analysis of the results between different data sets should be avoided. 

Empirical Bayes Correction 

DuMouchel and Pregibon [2001] and DuMouchel [1999] suggested the use of an Empirical Bayes estimate for 
the interest value in order to account for the sampling variability in the case of small numbers, which is 
typically the case when the minimum support threshold specified by the user is small.  In that case, slight 
changes in the absolute value of the support have a large impact on the interest value and this should be 
corrected for by means of a shrinkage estimate.  The procedure goes as follows: 

• we have a collection of pairs (n,e), where n is the absolute support of the itemset (above the 
minimum threshold), and where e is the expected absolute support value under the assumption of 
conditional independence 

• for each itemset, n is assumed to be drawn from a Poisson distribution with mean μ=λ*e.   
• however, instead of assuming all λ's to be equal, it is assumed that the λ’s are distributed according 

to a family of prior distributions ( | )π λ θ , such as a Gamma distribution or a mixture of Gamma's to 
have more parameters and thus be more flexible.   

• the unconditional distribution for each n can now be calculated as 
( ) ( | ) ( | )f n Poi n e dλ π λ θ λ= ∫  where Poi is the Poisson distribution. 

• from the product of this unconditional distribution over all the itemsets, the maximum likelihood 
estimate rθ  can be calculated. 

• Using this maximum likelihood estimate rθ , we can now calculate the posterior density of λ  for 
each pair (n, e) as r( | ) ( | ) / ( )Poi n e f nλ π λ θ  

• the mean of this posterior distribution for each parameter λ will now provide us with an Empirical 
Bayes shrinkage estimate of the true interest value for each itemset. 

The procedure can be easily programmed within the software WinBugs 1.4 and has already been successfully 
applied on several datasets. On some data sets, however, significant autocorrelations of high-order lags are 
identified implying the need for rather long chains of iterations which may slow down the calculations 
significantly. 
Nevertheless, empirical results illustrate that the method is indeed able to downsize the interest values for 
itemsets with low counts.  For itemsets with large counts, the Empirical Bayes estimate of the interest does 
almost not differ from the interest calculated on the raw data.  This method is thus clearly preferred over the 
classical interest measure, especially when the support threshold is being small. 
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Conclusions 
The following suggestions can be formulated based on the analysis of the different interestingness measures 
discussed in the previous paragraphs: 

• Confidence is never the preferred method to compare association rules since it does not account for 
the baseline frequency of the consequent. 

• The lift/interest value corrects for this baseline frequency but when the support threshold is very low, 
it may be instable due to sampling variability.  However, when the data set is very large, even a low 
percentage support threshold will yield rather large absolute support values.  In that case, we do not 
need to worry too much about sampling variability.  A drawback of the interest measure is that it 
cannot be used to compare itemsets or rules of different size since it tends to overestimate the 
interestingness for large itemsets. 

• Sampling variability can be corrected for by the Empirical Bayes estimate of the interest value.  It 
downsizes the interest when the absolute support of the rule is very low.  It generates comparable 
results to the traditional interest measure when the absolute support is large. 

• When association rules need to be compared between data sets of different sizes, the Chi-square 
test for independence and log-linear analysis are not preferred since they are highly dependent on 
the dataset size.  Both measures tend to overestimate the interestingness of itemsets in large 
datasets. 
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THE HOUGH TRANSFORM AND UNCERTAINTY 
V.S.Donchenko 

 
Abstract: The paper deals with the generalisations of the Hough Transform making it the mean for analysing 
uncertainty. Some results related Hough Transform for Euclidean spaces are represented. These latter use 
the powerful means of the Generalised Inverse for description the Transform by itself as well as its 
Accumulator Function.  
Keywords: Uncertainty, Hough Transform, Accumulator Function, Generalised Inverse. 

Introduction 
This report is the attempt to represent Hough Transform (HT) [Hough 1962] as a tool for analysis of the 
uncertainty  
Some results, besides, are represented for the vector observations in the scheme of the Hough Transform as 
well as for complex observations in this case. 
The Hough Transform (HT) for well over forty years has been and continues to be an important tool in 
analysis of shape and pattern recognition. But potentially the Transform seems to be much more than 
engineering tool only. The idea of the Transform may be used for analyzing uncertainty in much more general 
cases than in its classical variant. In the paper [Donchenko 1994] the general concept of the Hough Transform 
within the Hough-pair of the spaces was proposed. Later, in [Donchenko, Kirichenko, 2001] [Donchenko, 
Kirichenko 2002] the powerful Generalized Inverse apparatus [Nashed, Votruba 1976]], [Albert 1977], 
[Kirichenko 1997], [Kirichenko, Lepeha 2001] applied to describe HT and Accumulator Function (AF). In the 
work the results from [[Donchenko, Kirichenko, 2001] and [Donchenko 1999] are extended on the vector case.  

General concept of the Hough Transform – Hough-pare of spaces  
General concept of the HT[Donchenko 1994] as a tool for analysis of the uncertainty may be built on the base 
of so called Hough-pare of spaces, which are virtually a pare of sets So, Sp enhanced by its subsets Gθ Ls: 
Gθ⊆So, Ls⊆Sp, θ ∈ Sp , s ∈ Sо , mutually indexed. One set (space) So is interpreted as a space of 
observations, another Sp – as a space of parameters. This space of parameters is interpreted as a variety of 
the variants for uncertainty which corresponds to observation s.  
These subsets are agreed in the next sense: for any pare (s,θ) θ∈Ls ⇒ s∈Gθ and conversely: s∈Gθ ⇒ 
θ∈Ls. Some additional conditions may be added to these: about type of interception for example.  
The HT within the Hough-pare is determined as a transition from the observation s – or its sequence s1, 
s2,...,sN ∈ Sо – to subset LS , correspondingly –sequence of subsets 

1s
L = L1, 2sL = L2,..., NsL = LN – of 

another space, indexed by the observations. 
Such determination permits the description of straight and inversed HT, Hough-estimator, Fast HT as a 
sequential HT and Fast HT as the HT of the complex observations.  
Each of the observations is supposed to be taken by the choice of the parameter θ1,..., θN and the 
consecutive choice of the elements s1, s2,...,sN∈Sо from correspondent subsets of Gθ -type. Besides, the 
observations may be disturbed in that or this way. In this case one says that the elements are observed with 
an error. 
The parameters θ1,..., θN –some of them may be equal - is said to be represented in s1, s2,...,sN ∈ Sо.  
The set of parameters represented in the sample is supposed to be “comparatively small” and the main target 
of the HT-based analysis is ascertainment – estimation - of that set. Properly, this is the task of the estimation 
in the theory of the HT. 
HT may be applied to the sequence s1, s2,...,sN ∈ Sо taken without previous choice of , θ1,..., θN. In that case 
HT-analysis is targeted to describe “comparatively small” set of the parameters, “concentrated” the 
observations. This task may be called the task of the clustering in HT. 
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As to complex observations S, then we say it to be the subset S =
k1 i,...,iS = {

1i
s , 

2i
s ,...,

ki
s }, {i1, i2,..., 

ik}⊆{1,…,N} of the initial observations. And by HT of the complex observation S= 
k1 i,...,iS  we will call the set 

LS=
k1 i,...,iL , determined by the relation: 

 LS=
k1 i,...,iL =∩k

1j i j
L= . 

Sometimes HT of the complex observations is called Fast HT. Fast HT can cut essentially the set of the 
parameters, pretended to be represented in the sample. 
This variant of the Fast HT one ought to differ from another using, when the Accumulator Function (AF) of the 
HT consecutively calculated for some set C - rough approximation - and its consecutive – detailed - partitions.  
AF is determined by the HT of the sample – original or complex observations – as a function of set C in the 
space of parameter in one of the next two senses: absolute A(C) or relative NA(C) –by the relations: 
A(C) = Σi=1N δ(C∩Li), , C⊆Sp ,   (1) 
NA(C)= A(C)/N =N-1 Σi=1N δ(C∩Li),.C⊆ Sp ,   (2) 
where δ(C), C ⊆ Sp , equal 1, if C is not empty and 0, if С – empty set. 
The summing in (1), (2) for the complex observations is by the set of the complex observations under 
consideration. 
Argument C in the AF depends on the concrete types of spaces. For the Euclidean spaces for parameters and 
observations set C may be: ball as in (10), (11) below; hyper-cube; compact and so on. 
AF is the mean to estimate the set of parameter, which are represented in the sample or the ”smallest” set of 
the parameters in the clustering task. Properly, such set (or sets) is the set of maximum for AF. 

Hough Transform in the Euclidean spaces 
In its original variant HT was determined for the case, when 
• So, Sp are appropriate rectangles in R2; 
• parametric sets Gθ, θ=(ρ,ϕ)∈ R2 is the set of the graphics of the straight lines in the normal 

representation: Gθ= G(ρ,ϕ) ={(x,y)∈R2: ρ = x⋅cosϕ +y⋅sinϕ}; 
• parametric set Ls=L(x,y), s=(x,y)∈R2 is the set of parameters for which correspondent lines Gθ include 

observation s=(x,y): Ls=L(x,y)= {(ρ,ϕ)∈R2: ρ = x⋅cosϕ +y⋅sinϕ}.; 

Observations s=(x,y) may be with an error so without it. In the first case y =
_
y +ε(x,y), where ε(x,y)- the error of an 

observation. Errors, which correspond to different observations, are supposed to be independent but not 
obligatory identically distributed. 
One of the generalizations of that original variant may be such one, in which the spaces in the Hough-pare are 
any Euclidean spaces or their appropriate subsets:  
• So=Rm , Sp =Rn  
• Gθ, θ∈Sp, is determined the graphic of mappings y=g(x,θ), θ∈Rl from Rn in Rm . The sample s1, s2,..., sN 

consists of the pares si=(xi, yi): 
yi = g(xi,θ i)∈ Rm, xi ∈ Rn ,  (3) 
yi = g(xi,θ i)+ ε i ∈ Rm, xi ∈ Rn , i=1,…,N  (4) 
Variant (4) represents the scheme of observations with an error, (3) – without it. 
HT for such sample is the sequence L1, L2,..., LN of the subsets from Rl, where  
 Li={ θ∈ Rl: yi = g(xi,θ )}, I=1,…,N. 
Particularly, if the set of mapping is of affine-type (linear + shift) from Rn in Rm, then the matrix  
θ=А∈ Rm×(n+1) of this map may be considered as the parameter, i.e. l= m×(n+1) . 
HT, AF and Hough-estimator are described on the sample (xi,yi), i=1,N, x∈Rn, y∈Rm points of the graphics of 

the affine set of the mappings y = A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
x , - x∈ Rn , y∈ Rm, A –m×(n+1)) matrix, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
x – block vector-column 

from x∈ Rn and 1. 
These observations may be observed in the scheme without the error (3) or with it (4), correspondingly:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
x

Ay i
ii ,  (5) 
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ix
i

ii 1
x

Ay ε+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  , xi∈ Rn , yi∈Rm , Ai∈ R m×(n+1), i =1,…,N.  (6) 

As it was remarked earlier specific parameter Ai∈ Rm×(n+1), i =1,…,N corresponds to each of the observations. 
Only scheme with the error (6 ) and independent errors will be considered below. The last means, that errors 
of the observations 

ixε  , i =1,…,N are independent. The distribution of εx will be denoted by Px:  
Px (B(m))= P{εx ∈B(m)},  (7) 
B(m) – Borel set from Rm. 
HT L(x,y) of an observation (x,y) is the set of affine transforms, mapping x in the observed y, which may be 
disturbed:  

L(x,y) = {A∈ Rm×(n+1): y = A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
x  }.  (8) 

Sr(θ) below denotes the r-ball with a center in the θ in the space of all m×(n+1) matrixes with the trace norm, 
induced by the trace scalar product: 
 (A,B) =tr A′B = Σi (A′B)ii =Σij aijbij . 
The trace norm, obviously, coincides with the Euclidean norm in Rm×(n+1). 
AF in absolute or frequency variants will be defined for the balls Sr(θ) as for arguments and denoted 
correspondingly Ar(B), NAr(B): 
Ar(B) =A(Sr(B))= Σi=1N δ(Sr(B)∩Li), ,  (9) 
NAr(B)= Ar(B)/N =N-1 Σi=1N δ(Sr(B)∩Li), B ∈ Rm×(n+1). (10) 
 

Theorem 1. AF for the sample (xi,yi), i=1,N points of affine observations may be represented by next 
expression: 

Ar(B) = Σi=1N δ(Sr(B)∩Li) = ∑ = + ⎟⎟
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Proof. Accordingly with the theorem 2 [2]  
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that proves the theorem. 
 

Remark 1. Sr(B) in (12) is the r-ball in the trace norm in the matrix space with the center in a B, then the 
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Corollary 1. Obviously, δ(Sr(B)∩Li), i =1,…,N are Bernoulli-distributed random variables with the parameters, 
determined by the expressions  
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Proof. The result is the consequence of taking 1 for each of δ(Sr(B)∩Li), i =1,…,N in (12).  
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Theorem 2.( 0-1 Law). The limit value of the AF when with probability 1 is finite or infinite as ∞→n . It is 
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Proof. The proof repeats that one for scalar case in [8]. 
 

Theorem 3. The next limit take place with the probability 1: 
 ∑ =−=∑−∑ ∩δ =

−
∞→=

−
=

−
∞→

N
1i i

1
rN

N
1i i

1N
1i ir

1
N 0)pN))B(NA(lim)pN))L)B(S(N(lim , where pi, i=1,…,N are 

determined by (13). 
Proof. As in was in previous case the proof repeats that one for scalar case in [8]. 
 

Remark 2. For the case under consideration – vector case – all the consequences from [8] for scalar 
observations are valid. 
 

Remark 3. The statements of the theorems earlier are free from constraints on the distribution of an error. 
Besides, the distribution may depends on x. 
 

Theorem 4. AF for the sequence of K complex observations may be represented by next expression: 
 Ar(B) = Σi=1K δ(Sr(B)∩ Łi) = Σi=1K δ( ||(Yi- BXi)Xi+|| ≤ r) , B ∈ Rm×(n+1), 
where: 
• Łi, i=1,…,K – Hough transforms for the complex observations, 
• А+- General Inverse for А, 
• Yi, i=1,...,K – block-matrixes from the y-components of the original observations the complex observation 

consists of,  
• Хi, i=1,…,K– block-matrixes from the x-components of the original observations the complex observation 

consists of,  

Conclusion  

The subject matter of the paper is generalizing the Hough Transform that convert it in mathematical tool with 
wide range of application in analyzing the “uncertainty”. The abstract form of the HT is represented within the 
framework of Hough-pare of spaces.  
The HT for observations and parameters from Euclidean spaces has been represented and investigated for 
affine sets of transforms. The author would like to believe that the results represented are the only one step to 
promote HT to be the mean for uncertainty analyzing.  
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SYSTEMS ANALYSIS: THE STRUCTURE-AND-PURPOSE APPROACH 
 BASED ON LOGIC-LINGUISTIC FORMALYZATION 

Lyudmila M. Lukiyanova 
Abstract: Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA 
are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that 
are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS 
and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be 
solved.  However, usually SP/PS are not substantiated well enough, because their development is based on a 
collective expertise in which logic of natural language and expert estimation methods are used. That is why 
scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose 
approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards 
formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing 
quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical 
errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and 
vague problems. 
Keywords: industrial organizing system, problem situation, systems analysis, quality of systems analysis, 
purpose structures correctness, structure-and-purpose approach, situations control, logic-and-linguistic 
simulation, analytic evaluation.  

Introduction 
We consider here industrial organizing systems. Along with such general characteristics as uniqueness, 
unpredictable behaviour in concrete situations, capacity to adapt to changing environmental conditions, and to 
alter a structure, industrial organizing systems possess several particularities. Their structures are usually 
hierarchical. Their purposes depend on social and other factors. Their production and technological 
equipment are standardized and unified to a great degree. Volume and assortment of their products are 
changing dynamically. Their level of technological renewal is very high. These and some other factors give 
rise to complex problems that are often characterized by a high level of vagueness. Therefore SA becomes a 
necessary means of efficient function and development for the majority of industrial organizing systems. 
Initial stages of SA (analysis of problems/purposes and synthesis hierarchical SP/PS) are based on expert 
knowledge and experience. Experts elicit problems/purposes, determine the main problem/purpose, 
decompose it to create the structure of problems/purposes of smaller complexity and vagueness, estimate 
PS-purposes to combine them into a final PS. All these tasks are creative, but determining the main 
problem/purpose, decomposing them to obtain the ones of smaller and smaller complexity, greater and 
greater certainty, and then combine them into hierarchical SP/PS are more crucial because a lot of informal 
factors have to be allowed. Tthe majority methods of decomposing purposes are based on a collective 
expertise in which the logic of the natural language is used. Experts use subjective models and collective 
interpretation of purposes, achieving which allows the managerial staff (MS) to solve problems. Natural 
language logic and high level of subjectivism very often stipulate the results that are not logically valid. Logical 
errors in a PS very often cause insufficient solving of the main problem and sometimes even failure in solving 
that problem. 
Widely used approaches to systems analysis stem from the PATTERN method [1] and among the methods of 
decomposing purposes to reduce their complexity and vagueness the methods proposed in [Черняк, 1975], 
[Поспелов, Ириков, 1986], [Перегудов, Тарасенко, 1989], [Saaty, Kearns, 1991], [Силич, Тарасенко, 
1982], [Кондратов, Ростанец, 1982], [Романов, Клыков, 1974] are more useful for industrial organizing 
systems. However, together with their evident value for theory and practice of SA these and the majority of 
other well known methods and approaches have two essential drawbacks: the requirements to the wording of 
the purposes (problems, criteria, functions) have not been clearly defined, rules of decomposition of the 
purposes to form hierarchical PS have been formulated in a general way. It means that the methods are not 
constructive enough. Well-constructed methods have been also developed ([Nilson, 1973], [Романов, 
Клыков, 1974], etc.), but the method [Nilson, 1973] and similar methods are effective for closed and not so 
large worlds. The method [Романов, Клыков, 1974] and similar methods can be used for open and large 
worlds, but the majority of syntactically correct decisions automatically generated by means of them are 
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semantically meaningless, pragmatically useless and therefore inefficient. Besides, conformities to natural 
laws, and principles of problems/purposes setting in industry have not been investigated enough. That is why 
scientific foundations of SA of industrial organizing systems cannot be considered completely formed. 
So, the following SA-scientific-and-technical problem may be formulated for industrial organizing systems: 
there is no objective, constructive to a great degree and integral approach to systems analysis that could 
guarantee the development of correct SP/PS and defining efficient PRS which are adequate to the main 
problem solved. Namely because of the SA-problem, MS often create a contradictory, incomplete SP/PS and 
an inadequate PRS. This fact, resulting in logical errors in a PS, usually reveals itself only in the course of 
achieving the purposes, hampers determining SP/PS-substantiation and creating a sufficient enough PRS as 
the system that can achieve the main purpose and solve the main problem of an organizing system. So, it 
also reduces SA-quality as a whole. 
To solve the SA-scientific-and-technical problem it is necessary to determine basis concepts and establish 
conformities to natural laws of purpose-setting (the first sub-problem of SA-problem), to explore semantics of 
problem/purpose formulations and relations between them in SP/PS that so far have been declared in a 
natural language and have not been studied enough (the second sub-problem), to determine strict to the 
wording SP/PS-properties such as discrepancy and completeness because so far they have also been 
declared in the natural language, consequently they are usually polysemantic and not clear enough (the third 
sub-problem of SA-problem). Therefore integral, the more objective and constructive SA-methodology has to 
be investigated.   

Basis concepts of problem/purpose-setting 
SA involves two main processes with inter-reverse time motion: purpose-setting (p-setting) in which a desired 
result of activity is being formulated and purpose-achieving (p-achieving) in which a real result of activity is 
being achieved by means of the PRS.  Here we determine basis concepts of problem/purpose-setting for 
industrial organizing systems such as a problem, a need, a purpose, a SP/PS (all concepts of SA-semantic 
field are considered in detail in [Lukiyanova, 2002]). 
A need in something is always objective. If a need cannot be satisfied simply, it is a reason of the problem 
situation in the organizing system.  A problem is contradiction between something desired and something that 
is being (e.g. between a desired situation and a current situation; it means that a current situation needs 
correction). 
A purpose is always subjective. We consider concept ‘purpose’ as a general name to designate a desired 
result of activity that is used in p-setting to characterize MS-desire, and a desired result of activity that is used 
in p-achieving to characterize MS-ability in his own system. Analysis of different definitions of ‘purpose’ 
allowed us to formulate the following generalized definition of this concept:   
 <a purpose> ::= < a desired result of activity > [ <a structure >] [<time>].   (1) 
The definition (1) consists of three semantic multipliers. The two last semantic multipliers marked by square 
brackets are facultative. Actually, not each purpose is considered as a structure (e.g. a simple purpose; for its 
achieving MS know and has the means). The second facultative semantic multiplier usually characterizes a 
task of purpose achieving (time is one of redistributed resources for purpose achieving). 
Analysis of more than thousand formulations of problems and purposes showed that semantics of 
connections between formulations of problems and purposes that solve the problems are very close, and 
purposes of  industrial organizing systems are often like negations of the problems, and according to (1) 
purposes may be simple or complex. Analysis also showed that relations between PS-problems and between 
SP-purposes are usually identical.  
A structure of the main, complex and vague, problem/purpose is a SP/PS in which problems/purposes are 
combined by means of structural relations such as subordination, compared, completeness, and   the other  
relations that are used to evaluating of SP/PS-correctness or allow for resources that MS has to purpose 
achieving [Lukiyanova, 2002].   

Conformities to natural laws of purpose-setting in industry 
Problems hamper function and development of a system and can stipulate needs in something. A simple 
problem stipulates a simple need. A simple need can stipulate a simple purpose: 

motivation  
a need  →  a  purpose.     (2) 

The formula (2) expresses the first law of purpose-setting. For a simple purpose, p-setting according to (2) is 
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completed if MS has the means to p-achieving:  
means 

a purpose → a  result.  (3) 
A new problem is not arisen in this case. But p-setting is continuing if MS has not the means to p-achieving. 
Therefore the second law of purpose-setting is: 

a desired result → desired  means.    (4) 
Complex problem is a reason of a complicated purpose. A complicated purpose is considered as a system 
and its structure is analyzed. Formula (4) defines a basis strategy of PS-creating. A few additional strategies 
of PS-creating are considered in [Лукьянова, 2001].  Besides, purposes descriptions and possibilities of its 
decomposing in organizing systems are studied. The following aspects of purposes in their formulations are 
defined: rational limiting of redundancy and significance; evident (in contrast to implicit) semantics of purposes 
descriptions of an industrial organizing systems that expresses purpose parts of their natural language 
formulations, functions of the parts, basis elements of the systems and their determination in space of 
properties. We use the following possibilities of complicated purposes decomposing: status (external-internal, 
etc.), aspects of activities (social, economical, control, industrial, etc.), kinds of economical activity (in 
according to the classificatory of the economical activity kinds), control functions, kinds of industrial activity, 
etc. 
P-setting in any industrial organizing system orients on an external purpose (purposes) established by the 
above-system. Therefore we suggest that external purposes express absolute value for the subordinate 
organizing systems and purposes that are set in the analyzed system as sub-purposes of the external 
purpose express utilitarian value. Thus in PS-creating every purpose excepting the main purpose and 
purposes- leaves of PS may be considered as absolute value to the subordinate purpose and as utilitarian 
value to the above-purpose. This is the third law of purpose-setting. 

Structure-and-purpose analysis of industrial organizing systems 
We suggest a new ‘structure-and-purpose’ paradigm of SA in industrial organizing systems. It uses two 
determining concepts of purpose systems (‘a structure‘ and ‘a purpose’) and allows for purpose domination in 
SA. Actually, an organizing system is a means of its complex purpose achieving. Therefore it is useful to 
analysis the structure of the purpose (a purpose may be considered as a problem negation) to reduce its 
complexness and vagueness. Criteria and functions of PRS are also semantically connected (it is used 
criterion form of a purpose description and there are functional properties in purpose formulations 
[Lukiyanova, 2002]). Besides, purposes (and PS) determine PRS itself and dominate as in p-setting as in p-
achieving processes. Therefore for industrial organizing systems we postulate the following. 
Postulate 1. Abstract semantics of purposes and relations between the purposes determines logical models of 
problems and purposes analysis and hierarchical SP and PS as the results of these process. 
The postulate is based on the hierarchical structures of the industrial organizing systems, on the roles in 
activities of different parts of such systems, and on the concept of absolute and utilitarian value of the parts. 
Postulate 2. Formal logic-semantic analysis of problems/purposes will able to help MS to obtain discrepancy 
and completeness SP/PS. 
To orient in variety methods, techniques, procedures of problems/purposes analysis-synthesis of SP/PS and 
investigate a method using of which can guarantee against logical errors in SP/PS we classified, as shown on 
the figure 1, all possible methods including well-known and wide used ones. We used informal, partial-formal 
and formal degrees of describing their following aspects (bases of the classification): a purpose description 
language to realize input interface between the experts/MS and the formal logic-semantic system (the first 
level of the classification), rules of decomposition of purposes that check correctness of PS-creating (the 
second level of the classification), means of description of PS and its characteristics to realize output interface 
between the formal logic-semantic system and the experts/MS (the third level of the classification). The empty 
classes of methods are shown on the figure 1 as black circles. 
Among the classes, we note the following three homogeneous ones: K111 involves informal methods, K222 

involves partially formal methods, K333 involves formal methods. Methods of the rest classes are 
inhomogeneous. 
So, the first realized class is K111. It involves the most number of the methods such as [Лопухин, 1971], 
[Черняк, 1975], [Перегудов, Тарасенко, 1989], [Saaty, Kearns, 1991] and similar ones. Advantages of the 
methods of this class are a universal and an all-round analysis (i.e. purpose decomposition and at the same 
time PS-estimation). The main disadvantage of these methods is polysemy of purposes, rules of 
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decomposition of purposes, and means of description of a PS and its characteristics. Polysemy causes high-
level subjectivism of analysis and hampers finding logical errors in a PS. 
The second realized class is K113. It involves methods that are similar the method [Поспелов, Ириков, 1986]. 
Advantage of these methods is a formal description of a PS, but this ability does not increase a constructive 
level of the methods to reduce logical errors in the PS. 
The third realized class is K221. It involves methods that are equivalent the method [Силич, Тарасенко, 1982]. 
They standardize purpose descriptions in a very strict form and PS-description in a scenario form. The 
methods allow decomposing purposes automatically at some steps of PS-forming.  The main drawbacks of 
these methods are impossibility decomposing new purposes (problems) and using the methods for other 
organizing systems. The fourth realized class is K231. It involves methods like the method [Романов, Клыков, 
1974] which is well-constructive and flexible at the same time. However, the automatically formed PS may be 
semantically meaningless and pragmatically useless. Besides, the methods do not define PS-characteristics 
by means of which it can be checked logical validation of PS. 
The fifth realized class is K311. It involves methods that are equivalent the method [Кондратов, Ростанец, 
1982]. These methods used formal purpose descriptions that are faintly connected with decomposing 
possibilities. 
The sixth realized class is K331. It involves methods that are similar the method [Nilson, 1973]. As a rule, these 
methods work in closed and not so large worlds. The other their disadvantage is impossibility of allowing for 
semantics of purposes, relations between them, and PS-properties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The classification helped us to find the more adequate class of methods than classes used so far, to set and 
solve the SA-scientific-and-technical problem of industrial organizing systems. It is a class K232 which 
characteristics marked out on the figure 1 by the bold line. Methods of this class use a necessary (for 
perception) level of partial-formal description of problems/purposes, partial-formal description of SP/PS, and 
formal rules of problems/purposes analysis. Man-machine systems based on such methods have the 
following advantages: 1) problems/purposes descriptions in a constraint natural language are effective as for 
experts/MS as for formal systems that analyze problems/purposes, and realize intellectual interface between 
them; 2) a logic model of problems/purposes analysis based on problem area semantics does possible 
eliciting errors of problems/purposes structure analysis; 3) graphic SP/PS imaginations together with  
problems/purposes descriptions in a constraint natural language are effective to realize  output interface.   
According to characteristics of class K232 and the postulates 1 and 2, the following principles of structure-and-
purpose analysis (considered in detail in [Lukiyanova, 2002]) are established: 
1. It is inter-reverse time motion logical causality between p-setting and p-achieving processes. 
2. Man-machine structural analysis of problems/purposes (criteria, functions of PRS) as adequate practical 

reasoning (in contrast to inadequate man reasoning or decomposing problems/purposes algorithm) is 
expedient. 

3. Hierarchical system structures such as SP and PS, PS and structure of functions (SF) of PRS, SF of PRS 
and structure of PRS, etc. are connected semantically and logically. 

Degree of  formaliza-
tion of reducing  rules 

K111 K112 K113 K121K122 K123  K131K132  K133    K211 K212  K213         K221 K222 K223   K231  K232  K233  K311  K312 K313  K321 K322 K323K331K332 K333 

Figure 1. The classification of methods of creating hierarchical PS 
  

Degree of purpose 
description formalization  

PS 
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4. Current situations in industrial organizing systems stipulate problems/purposes (criteria, functions of PRS) 
analysis. 
4.1. Formalization of problems/purposes analysis must allow for semantics of problems/purposes and 

relations between them (logical stratum): 
4.1.1. Partial linguistic formalization of problems/purposes (criteria, functions of PRS) provides evident 

expressing its semantics. 
4.1.2. Logic-semantic formalization of analysis of problems/purposes provides logical discrepancy, 

model completeness of conclusion and semantic applicability of inference rules.  
4.1.2.1. Discrepancy of a hierarchical SP/PS is stipulated by the principle 3.1.2. 
4.1.2.2. Completeness of a hierarchical SP/PS is stipulated by the principle 3.1.2. 

4.1.3. Classification of purpose situations simplifies selection of current analyzing strategy. 
4.1.4. Partial graph-and-linguistic formalization of SP/PS (structure of criteria (SC), SF of PRS) 

provides adequate imagination of structural analysis results.  
4.2. Formalization of p-achieving estimation provides allowing for resources of p-achieving (mathematic 

stratum). 
5. Narrow-minded perception principle (facultative principle). 
To realize principle 4 we suggest a conceptual model problems/purposes (criteria, functions of PRS) analysis 
using the fundamental idea of the situation control theory [Поспелов, 1995]. Let us consider the conceptual 
model shown on figure 2.  In accordance with the 4.1-4.2-principles of structure-and-purpose analysis of 
problem situations in industrial organizing systems, it is stratified into two stratums:  logical and mathematical. 
The logical stratum of SP/PS-creating uses logical methods to check correctness of SP/PS. The mathematical 
stratum uses mathematical methods to problems/purposes estimating. 
In accordance with the 4.1.1-principle, intellectual interface language (Lin1) of structure-and-purpose analysis 
to describe problems/purposes (criteria, functions of PRS) is suggested. As it is studied the most suitable kind 
of a language to describe problems and purposes is the frame language [Лукьянова, 2001] that is based on 
the two-level linguistic model of problem/purpose. The first level (macro-describer) is a role frame expressing 
a functional formula of activity in an industrial organizing system. The second level (micro-describer) is a 
describer of functional elements in space of their properties. The space of properties is divided into some 
groups. By means of the groups it is ordered in-role problem/purpose description by means of specific terms. 
Each group of properties determines its own way of problems/purposes decomposition. Because of natural 
language redundancy the problem/purpose parts of problem/purpose formulations are marked by special 
pointers. The roles, the kinds of properties and a problem/purpose pointer (H/G) express external semantics 
of problems/purposes. Internal semantics of problems/purpose is expressed by basis concepts that form 
terms. It is also developed the language Lin2 to realize input interface with basis knowledge. It is developed as 
simplified version of Lin1. 
According to the 4.1.2-principle logic-semantic formalization of problems/purposes analysis is investigated 
[Lukiyanova, 2002]. It is used the semiotic model theory [Осипов, 1995] and the logic of utilitarian values 
[Ивин, 1970]. As it is shown on figure 2, the three-components semiotic system consists of a formal 
subsystem ST, Ψ-re-constructor that reconstructs ST in accordance with the current situation in the bush of 
problems/purposes, O-reformer that reforms the current linguistic representation of problem/purpose into a 
logical formula and vice versa: 
 ⎧(H/G) fj [ [ ∧ [H/G ] fr]…] [ ⊃f7 ] ⎫ 
                      O :  p  =  (H/G) fj [ [ [ H/G ] fs ] … ]  ↔ ⎨      ⎬                (5) 
 ⎩    [ fs [ [ ∧ fr ] … ] ⊃ ] (H/G) f7. ⎭ 
Here p –  a linguistic representation of a problem/purpose (alternatives of a linguistic representation of 

a problem/purpose are involved in figured brackets); 
 f –  a role phrase  in p ( j, r, s={1, 2, …, 6}). 
According to the 4.1.3-principle it is classified situations on purposes [Lukiyanova, 2002]. Six classes are 
defined, but the only one is correct. Discrepancy and completeness of the hierarchical SP/PS are also 
defined. 
In accordance with the 4.1.4-principle of structure-and-purpose approach to SA, the partial-formal structural 
language (Lout) to realize output interface of the SP-s and SG-s bases is suggested. It is used a theory-graphic 
tree-model which nodes are described in Lin1 and theory-set language to describe (semantically) complicated 
arcs [Lukiyanova, 2002]. The semiotic system via Intellectual interface takes away experts/MS linguistic 
descriptions of problems/purposes, reforms them by means of O-reformer into logical formulae and checks 
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correctness of a current bush of the SP/PS-problems/purposes by means of its logical subsystem ST. Logical 
subsystem ST uses adequate fragments of basis knowledge of the problem situation as its own domains by 
means of Ψ-re-constructor in the time of checking the bush of problems/purposes. If the current bush of 
problems/purposes of the SP/PS is not valid, ST identifies the logical error and forms recommendation to 
correct the problem/purpose of the bush of the SP/PS. The semiotic system and knowledge base of problem 
situation are realized in Delphi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to the 4.1.4-principle an analytic subsystem realizing the analytic hierarchy process [Saaty, Kearns, 
1991] can be used as to the separate problem/purpose as to the bush of problems/purposes estimating, and 
even to the SP/PS estimating as a whole.  
In the time of analysing the bush of problems/purposes of the SP/PS ST is invariable and works by steps. One 
step is an inference that produces in according with a scheme: p1 |⇒ p2 (p1 and p2 are problems/purposes) in 
which semantic relations are conditions of inference rule applicability. In contrast to traditional relations 
semantic ones are determined as  < Ij, Rj > in which the first component (Ij,) is a relation name, Ij ∈ I, I is a set 
of names expressing relative basis Mtz of a problem field [Lukiyanova, 2002].  An inference consists of the 
following acts: for < p1, p2 > it is hypothesized implicative connection p1 → p2 in which p1 supposed as truth 
and a corresponding purpose as an absolutely valuable; truth meaning of p1→ p2 is estimated by basis 
knowledge (fig. 2) and if it is truth then in according with modus ponens p2 is supposed as truth. If in according 
with basis knowledge truth meaning of p1→ p2 is false it is identified as contradiction and  ST  inferences 
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permissible p2’.  An inference is simplified by classification of situations on < p1, p2 > and < p1, p2 , pi., …, pn >.  
Analysis of criteria of purposes achieving is based on the PS. The main criterion usually corresponds to the 
main purpose and local criteria correspond to local purposes of the PS.  Analysis of functions of the PRS is 
also based on the PS. MS determines function for every purpose in the PS. Thus, a SF is formed. The partial-
formal method forming two- or three-levels organizing structure of PRS is suggested in [Лукьянова, 2001], 
[Lukiyanova, 2002]. It consists of systemizing the list of SF-functions and based on the following 
characteristics grouping: subject-object, control levels and phases, character of production process and life 
cycle of production. Systemizing leads to determine functions of the control subsystem and the controllable 
subsystem. Then according to generally accepted rules and norms functions into the subsystems are 
grouped.  The results of analysis are a base to PRS organizing structure synthesis. 

Conclusion 
The new structure-and-purpose approach to SA is suggested. It covers all stages of SA, makes it possible to 
systematize as SA-procedures as its results. P-setting laws, problem situation basis knowledge, control of 
problem solving by means of purposes situation classification, partial-formal imagination of 
problems/purposes/criteria/functions, its structures, logical-linguistic formalization of a structural SA are 
established. 
The approach is used in fishery industry systems (FIS). Several complex program [Лукьянова, 1986], problem 
situations in technological equipment designing [Лукьянова, 1988] and in region FIS were analyzed. 
So, there were elicited 43 problems in a FIS. At preliminary problems analysis each of problems was analyzed 
semantically. Also degree of uncertainty and complexity of the problems were fixed: status, aspects and kinds 
of economical and industrial activities, control functions. Preliminary analysis changed content of some 
problems and their number (50). Further systematization of problems list showed that the percent of external 
problems is 10.5%, the majority of internal problems are problems of control (55.5% from a general number of 
internal problems) and economic problems (26.5%). There are many financial problems (13.5%) among 
economic ones; organizing (22.5%), planning problems (9.5%) and analyzing problems (9%) among control 
ones. Systematization of problems stipulates their correct stratification and more exact determination of  
expert groups. Simplified result of problem stratification is shown on Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. The example of the complex problem decomposed  
 

Then cause-and-effective connections into each aspect, kind of economical and industrial activity, control 
function were analyzed. This analysis helped us to define the main problem which further analyzing was given 
the correct SP. Analogically the PS was created. Then the PRS was simulated and logically valid line diagram 
of p-achieving was formed. Example of the intermediate line diagram realized in Delphi is shown on Figure 4. 
The line diagram based on the PS as a result of p-setting obtained by means of logical-linguistic simulation.  
Correctness of the structure-and-purpose approach to SA for FIS is confirmed by problem solving practice.  
Experts agreed with all logical errors in PS and SP that the semiotic system found and with all 
recommendations for their correction that the semiotic system formed.  
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Figure 4. The example of the intermediate line diagram designed in according with fragment of the PS  
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ADMISSIBLE SUBSTITUTIONS IN SEQUENT CALCULI 
A. V. Lyaletski 

Abstract:  For first-order classical logic a new notion of admissible substitution is defined.  This notion allows 
optimizing the procedure of the application of quantifier rules when logical inference search is made in 
sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created 
that does not require a preliminary skolemization of initial formulas and that is efficiently comparable with 
methods exploiting the skolemization. Some results on its soundness and completeness are given. 
Keywords: completeness, first-order logic, quantifier rule, sequent calculus, skolemization, soundness  

Introduction 
Investigations in computer-oriented reasoning gave rise to the appearance of various methods for the proof 
search in the classical 1st order logic. Particularly, sequent calculi were suggested by Gentzen [1]. But their 
practical application as a logical technique (without preliminary skolemization) of the intelligent systems has 
not received wide use: preference is usually given to the resolution-type methods. This is explained by higher 
efficiency of the resolution-type methods as compared to sequent calculi, which is mainly connected with 
different possible orders of the quantifier rule applications in sequent  calculi while resolution-type methods, 
due to skolemization, are free from this deficiency.  
In its turn, the deduction process in sequent calculi reflects sufficiently well natural theorem-proving methods 
which, as a rule, do not include preliminary formula skolemization so that reasonings are performed within the 
scope of the signature of the initial theory. This feature of sequent calculi becomes important when some 
interactive mode of proof is developed since it is preferable to present the output information concerning the 
proof search in the form usual for man. That is now the problem of the efficient quantifier manipulation makes 
its appearance. 
When quantifier rules are applied, some substitution of selected terms for variables is made. To do this step of 
deduction sound, certain restrictions are put on the substitution. The substitution, satisfying these restrictions, 
is said to be admissible. Here we investigate the classical notion of admissible substitution and show how it 
can be modified so that efficient sequent calculi can be finally obtained. We use the calculus G [2] for the 
demonstration of the way of the construction of such a modification denoted by mG here. Note that when 
constructing mG, we don't touch upon any procedure of selection of propositional rules and terms substituted, 
focussing our attention on quantifier handling only. 

Genzen’s Notion of Admissible Substitutions  
Classical quantifier rules, substituting arbitrary structure terms when applied “from bottom to top", are usually 
of the following form [2]: 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3       (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3  
 
Γ1 → Γ2, A[t/x], ∃xA, Γ3        (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  

where the term t is required to be free for the variable x in the formula A. This restriction of the substitution of t 
for x gives Gentzen’s (classical) notion of an admissible substitution, which proves to be sufficient for the 
needs of the proof theory. But it becomes useless from the point of view of efficiency of computer-oriented 
theorem-proving methods. It is clear from the following example.  
Consider a sequent A1, A2 → B, where A1 is ∀x1∃y1(R1(x1) ∨ R2(y1)), A2 is ∀x2∃y2(R1(y2) ∨ R2(x2)), and B is 
∃x3∀y3(R2(x3) ∨ R3(y3)). The provability of this sequent in calculus G will is established below, while here we 
notice that quantifier rules must be applied to all the quantifiers occurring in A1, A2, and B. Therefore, classical 
notion of admissible substitution yields 90 (= 6!/(2!*2!*2!)) different orders of the quantifier rule applications 
("from bottom to top") to the sequent A1, A2 → B. It is clear that resolution type methods allow avoiding this 
redundant work. 
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Kanger’s Notion of the Admissible Substitutions 
To optimize procedure of the applications of quantifier rules, S.Kanger suggested in [2] his calculus of 
Gentzen type, denoted here by K. In calculus K a "pattern" of a deduction tree is first constructed with the help 
of special variables, the so called parameters and dummies.  At some times an attempt is made to convert a 
"pattern" into proof tree to complete the deduction process.  In case of failure, the process is continued. 
The main difference between K and G consists in a special modification of the above quantifier rules and in a 
certain splitting (in K) of the process of the “pattern" construction into stages.  In K the rules (∀: left) and (∃: 
right) are of the following form: 

Γ1,A[d/x],∀xA, Γ2 → Γ3  
------------------------------- 
    Γ1,∀xA,Γ2 → Γ3             d/t1,...,tn 
 
Γ1 → Γ2,A[d/x],∃xA,Γ3  
------------------------------- 
    Γ1 → Γ2,∃xA,Γ3             d/t1,...,tn 

where t1,...,tn are the terms occurring in the conclusion of the rules, d is the dummy, and d/t1,...,tn denotes that 
when an attempt is made to convert "pattern" into proof tree, the dummy d must be replaced by one of the 
terms t1,...,tn.  The replacement of dummies by terms is made in the end of every stage, and at every stage 
the rules are applied in a certain order. 
This scheme of the deduction construction in calculus K leads to a notion of the Kanger-admissible 
substitution, which is more efficient than the classical one. Thus in the above example it yields only 6 (=3!) 
variants of different possible orders of the quantifier rule applications (but none of these variants is 
preferable). Despite this, the Kanger-admissible substitutions still did not allow to attain the efficiency 
comparable with that when the skolemization is made. It is due to the fact that, as in case of the classical 
admissible substitution, it is required to select a certain order of the quantifier rule applications when an input 
sequent is deduced, and, if it proves to be unsuccessful, the other order of applications is tried, and so on. 

New Notion of Admissible Substitutions 
For constructing the modification mG of calculus G from [2], let us introduce a new notion of admissible 
substitutions in order to get rid of the dependence of the deduction efficiency in sequent calculi on different 
possible orders of quantifier rule applications. The main idea is to determine, proceeding from quantifier 
structures of formulas of an input sequent and a substitution under consideration, would there exists a 
sequence of desired quantifier rule application. (This notion was used in slightly modified form in [3].) 
Substitution is defined as a finite (maybe, empty) set of ordered pairs, every of which contains a variable and 
a term and is written in the form t/x, where x is the variable and t is the term of substitution [4]. 
We assume that besides usual variables there are two countable sets of special variables, namely of 
parameters and dummies. 
Let P be a set of sequences of parameters and dummies, and s be a substitution. Put  T(P,s)  =  {<z,t,p>: z is 
the variable of s, t is the term of s,p P, and z lies in p to the left of some parameter from t}. The substitution s 
is said to be admissible for P if and only if (1) the variables of s are only dummies and (2) in T(P,s) there are 
no elements <z1,t1,p1> ,..., <zn,tn,pn> such that t2/z1 ∈ s,...,tn/z(n-1) ∈ s, t1/zn ∈ s (n>0). 

Calculus mG 
As in the case of calculus G, its modification mG deals with formulas, except that in mG every formula from a 
sequent has a certain sequence of parameters and dummies. Therefore, it is convenient to define calculus 
mG by means of the pairs <p,A>,  where A is the formula and p - the sequence (word)  of parameters and 
dummies.  Also, it will be assumed that the empty sequence is always added to all formulas from the input 
sequent (that is, from the sequent to be proved). 
The rules of the calculus mG are the following. 
Propositional rules: 
Γ1,<p,A>,<p,B>,Γ2 → Γ3             Γ1 → Γ2,<p,A>,Γ3  Γ1 → Γ2,<p,B>,Γ3 
--------------------------------             ----------------------------------------------- 
Γ1,<p,A ∧ B>,Γ2 → Γ3                         Γ1 → Γ 2,<p,A ∧ B>,Γ3 
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Γ1,<p,A>, Γ2 → Γ3   Γ1 → Γ2,<p,B>,Γ3          Γ1 → Γ3,<p,A>,<p,B>,Γ2  
-------------------------------------------------              -------------------------------- 
         Γ1,<p,A ∨ B>,Γ2 → Γ3                                   Γ1 → Γ 2,<p,A ∨ B>,Γ3     
 

Γ1, Γ2 → <p,A>        <p,B>,Γ1,Γ2 → Γ3          <p,A>,Γ1 → Γ3,<p,B>,Γ2  
-------------------------------------------------             -------------------------------- 
         Γ1,<p,A ⊃ B>,Γ2 → Γ3                                    Γ1 → Γ 2,<p,A ⊃ B>,Γ3   
 

 Γ1, Γ2 → <p,A>,Γ3                     <p,A>,Γ1 → Γ2,Γ3  
-------------------------                   --------------------------     
Γ1,<p,¬A>,Γ2 → Γ3                   Γ1 → Γ 2,<p,¬A>,Γ3   
 

Quantifier rules: 
Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
 

Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
 

Γ1 → Γ2,<pz,A[z/x]>, Γ3                        (∀: right’)  
----------------------------------------- 
          Γ1 → Γ2,<p,∀xA>,Γ3   
 

Γ1, <pz,A[z/x]>,Γ2 → Γ3                        (∃: left’) 
------------------------------- 
Γ1,<p,∃xA>,Γ2 → Γ3  
 

Here d is a new dummy, z is a new parameter, p is a sequence of parameters and dummies, Γ1, Γ2, and Γ3 
are arbitrary sequences of pairs, consisting of sequences (of dummies and parameters) and formulas, A, B 
are arbitrary formulas. 
Applying first rules "from bottom to top" to the input sequent and afterwards to its "heirs", and so on, we finally 
obtain a so-called deduction tree. 
A deduction tree D is called a proof tree for the input sequent (in mG) if and only if there exists a substitution 
of terms for variables, s, such that (1) s is admissible for set of all sequences of parameters and dummies 
from D and (2) after application of s to the formulas from all upper sequents of D we obtain axioms, that is, the 
sequents Γ1 → Γ2 such that Γ1 and Γ2 contain a common formula.  
The main result concerning the calculus mG is as follows. 
Theorem. Let A1,...,Am,B1,...,Bn  be the formulas of the 1st order  language.  There exists a proof tree for the 
input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in calculus mG if and only if there  exists a proof tree for the 
input sequent A1,...,Am → B1,...,Bn in calculus G. 
Proof.  
(=>) Let D be a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in the calculus mG,  and s 
be a  substitution,  which  converts all upper sequents of D into axioms and is admissible for set P of all  
sequences  of parameters and dummies from D. Without any loss of generality, we may assume that terms of  
s  do  not  contain  dummies for otherwise these dummies could be replaced by a constant, say, c0. 
Since s is admissible for P, it is possible to construct the following sequence p consisting of  parameters   and 
dummies which form the sequences of P: 
     (i)  every p'  P is a subsequence of p, and  
     (ii) the  substitution  s  is  admissible for {p} (i.e. there is no an element <z,t,p> T({p},s) such that t/z ∈ s. 
Such a sequence p may be generated, for example, by the convolution algorithm from [3], applied to a list of 
all the sequences from P provided that in the convolution algorithm are treated parameters as existence 
quantifiers, and dummies universal quantifiers. 
Property (i) of the sequence p and formulation of the propositional and quantifier rules permit to make the 
following assumption: 
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When D was constructed, propopositional and quantifier rules were applied ("from bottom to top") in the order 
that corresponds to looking through p from the left to right: i.e. when the first quantifier rule was applied, the 
first variable (a parameter or a dummy) of p was generated, when the second quantifier rule was applied, the 
second variable of p was generated, and so on. 
Now it is possible to covert the tree D into proof tree D' for the input sequent A1,...,Am → B1,...,Bn in calculus 
G. To do this, let us "repeat" the process of the construction of D in the above order p and execute the 
following transformations: 
     1) Suppose that in a processed node of D one of the following rules was applied: 
 

Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
or 
Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
 

and t/d s for  some term t. The term t is free for d in A, because the order of applications of quantifier rules is 
reflected by p, and property (ii) is satisfied. Therefore, the admissibility in the classical sense will be observed 
when the above rules (∀: left') and (∃: right') are replaced in D by rules (∀: left) and (∃: right) of the calculus 
G: and all other occurrences of d in D are replaced by t. 
 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3       (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3 
or  
Γ1 → Γ2, A[t/x], ∃xA, Γ3        (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  
 

     2) In other cases the rules of the calculus mG are replaced by their analogs from G by a simple deleting of 
sequences of parameters and dummies from these rules. 
It is evident that D' is a deduction tree in the calculus G. Furthermore, the way of conversion of D into D' 
allows making the conclusion that upper sequents of D' are axioms of the calculus G. Thus, D' is a proof tree 
for the input sequent A1,...,Am → B1,...,Bn in G. 
(<=)  Let D' be a proof tree for the input sequent A1,...,Am → B1,...,Bn in G. Convert D' into tree  D,  which, as 
be can seen bellow,  is a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in mG.  For this 
purpose "repeat" (“from bottom to top”) a process of construction of D', replacing in D' every rule application 
by its analog in mG and subsequently generating substitution s.  (Initially s is the empty substitution.)  
     1) If an applied rule is one of the following: 
 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3      (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3 
or  
Γ1 → Γ2, A[t/x], ∃xA, Γ3       (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  
 

then it is replaced by 
 

Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
or 
Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
 



International Journal "Information Theories & Applications" Vol.10 

 

392 

accordingly with adding  t/d to the existing substitution s, where d is a new dummy,  and with substituting  d  
for  those occurrences  of  t  into "heirs" of the formula A[t/x],  which appeared as  a  result  of  applying  of  a   
replaced   rule "inserting" the term t. 
     2) In all other cases replacement of the rules of G by the rules of mG is evident.  (Note that <,A1>,...,<,Am> 
→ <,B1>,...,<,Bn> is declared as input sequent of D.  The rules (∃: left) 
and  (∀: right)  may  be  considered  as those inserting  new parameters). 
Since D' is a proof tree in the calculus utilizing the classical notion of admissible substitution, then it is clear 
that the finally generated substitution s is admissible (in the new sense) for a set of all sequences of 
parameters and dummies from D. Therefore, D is a proof tree for the input sequent <,A1>,...,<,Am> → 
<,B1>,...,<,Bn> in mG. Q.E.D. 
Corollary 1. For any formulas A1 ,..., Am, B1 ,..., Bn  the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and 
only if there exists a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in calculus mG. 
Proof.  
In accordance with [2] the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and only if there exists a proof 
tree for the input sequent A1,...,Am → B1,...,Bn in the calculus G.  On the basis of the Theorem the latter 
condition holds true if and only if a proof tree for the input sequent  <,A1>,...,<,Am> → <,B1>,...,<,Bn> can be 
constructed in calculus mG. Q.E.D. 
To demonstrate the deduction technique, consider the sequent A1,A2 → B from  the  above example and 
establish its provability in calculus G. To do this, construct a proof tree for the input sequent <,A1>,<,A2> → 
<,B> in calculus  mG and use the Theorem. 
Applying to the initial sequent only quantifier rules we can receive the following sequent: 
<d1z1,R1(d1) ∨ R2(z1)>,<,A1>,<d2z2,R1(z2) ∨ R2(d2)>,<,A2> → <d3z3,R2(d3) ∨ R3(x3)>, <d3z3, R2(d3) ∨ 
R3(x3)>,<,B>, where d1,...,d4 are dummies, z1,...,z4 are parameters. 
Now let us apply prorositional rules to the last sequent as long as they are applicable. As a result, we get a 
deduction tree D. If we generate the substitution s = {z2/d1, z3/d2, c0/d3,  z1/d4}  (c0  is a constant), then we can 
draw the following conclusions concerning s and D: 
     1) s is admissible for  the  set  of  all  sequences of dummies and parameters from D, and 
     2) every upper sequent from D may be transformed into axioms by applying of s to it. 
So, in accordance with the above Theorem the sequent A1,A2 → B is provable in the calculus G. Q.E.D. 

Some Reconstruction of mG  
The formulation of the calculus mG shows that the order of the quantifier rule applications is immaterial. In the 
calculus mG the quantifier rules are needed to determine a quantifier structure of formulas from the input 
sequent. This observation gives us possibility to construct a modification mG' of the calculus mG, which 
contains the so-called doubling rules instead of all the quantifier rules. 
Doubling rules: 
Γ1,<pdz1...zk,A>,<pd'u1...uk,A[d'/d,u1/z1,...,uk/zk]>, Γ2 → Γ3           (D: left) 
--------------------------------------------------------------------------- 
                      Γ1,<pdz1...zk,A>,Γ2 → Γ3 
 

Γ1 → Γ2,<pdz1...zk,A>,<pd'u1...uk,A[d'/d,u1/z1,...,uk/zk]>,Γ3           (D: right) 
--------------------------------------------------------------------------- 
                      Γ1 → Γ2,<pdz1...zk,A>,Γ3  
Here p is a sequence  (maybe, empty) of parameters and dummies, the most right variable of which (in non-
empty case) is a parameter, d is a dummy, for i=1,...,k zi is a dummy or parameter,  and  ui  is  a  new  dummy  
or a parameter (in accordance with zi). 
In calculus mG' a deduction process starts with an input sequent of the form:  <p1,M1>,..., <pm,Mm> → 
<q1,N1>,...,<qn,Nn>, where M1 ,.., Mm, N1 ,..., Nn are formulas  without  quantifiers, and  p1,...,pm,q1,...,qn are 
sequences of parameters and dummies, which are determined by the formula  (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ 
Bn), tested for validability, by the following way: 
Let A’1 , ... , A’m, B’1, ..., B’n be some prefix normal forms of the formulas A1, ..., Am, B1, ..., Bn, respectively. 
Then for every i=1,...,m (j=1,...,n) Mi is a matrix of A’i (Nj  is a  matrix  of  B’j),  and  pi  (qj)  is  obtained by 
means of replacing  in  prefix  of  A’i  (B’j)  of   every   universal (existential)  quantifier  by  a  new  dummy  
and  of every existential (universal) quantifier by a new parameter.  
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     All other notions (addmissible substitutions, deduction trees, proof trees, and so on) are the same as in the 
case of the calculus mG. 
     Corollary 2.  For any formulas A1, ..., Am, B1, ..., Bn the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if 
and only if  there exists a proof tree for the input  sequent <p1,M1>,...,<pm,Mm> → <q1,N1>,...,<qn,Nn> in the 
calculus mG'. 
Proof.  
The formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and only if (A’1 ∧ ... ∧ A’m) ⊃ (B’1 ∨ ... ∨ B’n) is valid, 
where A’1 , ... , A’m, B’1, ..., B’n are prefix normal forms of A1, ..., Am, B1, ..., Bn, respectively. It is easy to see 
that a proof tree for the input sequent <p1,M1>,...,<pm,Mm> → <q1,N1>,...,<qn,Nn> in mG' may  be  constructed 
on the basis of a proof tree for the input sequent <,A’1>, ... , <,A’m> → <,B’1>,...,<,B’n> and vice versa. To 
complete the proof, use Corollary 1. Q.E.D. 
Remark. In calculus mG', the quantifier structures of formulas A1, ..., Am, B1, ..., Bn are taken into account by 
means of sequences p1, ..., pm, q1, ..., qn. Selection of sequences for determination  of  quantifier  
dependencies does not play a principal role and was made for the  purpose  of  visualizing and  simplifying  of  
the  subject matter. It is possible to construct a (correct and complete) version of calculus mG' using  analogs  
of  "schemes" [5] instead of sequences (which also consist  of  parameters  and  dummies  and  reflect  the 
quantifier  structures  of  initial formulas more exactly) and modifying the rules (D: left) and (D: right). Observe 
also that Herbrand theorem in the form A from [5] may be easily obtained on the basis of a correctness and 
completeness of the version of calculus mG'. 

Conclusion 
In this paper the questions of implementation of computer-oriented sequent calculi are not considered 
because the development of efficient calculi requires optimizing the order of the propositional rule applications 
and selecting a method for generating of terms which may produce a proof tree. Bypassing details observe 
that for this purpose the unification algorithm combined with the introduced notion of admissible substitution is 
suitable. It was the approach that investigated at the level of modern vision [7] of the Evidence Algorithm 
programme, EA, advances by V. Glushkov. By now, the first version of the System for Automated Deduction, 
SAD, has been implemented (see Web-site ‘http://ea.unicyb.kiev.ua’). This implementation is based on a 
number of papers devoted to EA and SAD (see, for example, [8-10]). 
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THE SUBCLASSING ANOMALY IN COMPILER EVOLUTION 
Atanas Radenski 

Abstract. Subclassing in collections of related classes may require re-implementation of otherwise valid 
classes just because they utilize outdated parent classes, a phenomenon that is referred to as the subclassing 
anomaly. The subclassing anomaly is a serious problem since it can void the benefits of code reuse 
altogether. This paper offers an analysis of the subclassing anomaly in an evolving object-oriented compiler. 
The paper also outlines a solution for the subclassing anomaly that is based on alternative code reuse 
mechanism, named class overriding.  

1   Introduction 
Object-oriented applications are collections of related classes. For example, a typical compiler incorporates 
(1) a set of mutually recursive syntax trees and (2) translation operations on such trees; in an object-oriented 
compiler, such mutually related trees are implemented as mutually related classes. 
As the requirements for an object-oriented application evolve, so should do the applications itself. For 
example, a programming language may need to be enhanced with new linguistic features, or it may need to 
have existing features modified. Consequently, an object-oriented compiler for such language may need to 
have some of its classes adequately adapted. 
Subclassing is the principal object-oriented programming language feature that provides code adaptation. 
(Many patterns have evolved as more robust alternatives to straight forward subclassing for adaptation 
purposes, but in this paper we are interested in a discussion of linguistic primitives.) Subclassing allows the 
derivation of new classes from existing ones through extension and method overriding. A subclass can inherit 
variables and methods from a parent class, can extend the parent class with newly declared variables and 
methods, and can override inherited methods with newly declared ones.  
When a class that needs to be updated belongs to a collection of classes but is independent from all other 
classes from the collection, the functionality of that class can be easily updated through subclassing and 
method overriding. Subclassing is a straightforward code adaptation mechanism in the case of independent 
classes. 
Unfortunately, subclassing may not properly support code adaptation when there are dependencies between 
classes. More precisely, subclassing in collections of related classes may require re-implementation of 
otherwise valid classes just because they utilize outdated parent classes, a phenomenon that has been 
termed as the subclassing anomaly (Radenski 2002). The subclassing anomaly is a serious concern since it 
can largely invalidate the benefits of inheritance altogether. 
The goal of this paper is to offer an analysis of the subclassing anomaly as it appears in an object-oriented 
compiler (Section 3). This analysis is preceded by an overview of the subclassing anomaly in domain-
independent manner (Section 2). The paper outlines a solution to the subclassing anomaly based on an 
alternative code reuse mechanism called class overriding (Section 4), and concludes with a discussion of 
related work (Section 5). 

2 Overview of the Subclassing Anomaly 
Subclassing in a collection of dependent classes may require re-implementation of otherwise valid 
classes just because they depend on the parent class. The need to re-implement such otherwise valid classes 
is referred to as the subclassing anomaly. The subclassing anomaly needs to be understood because it may 
seriously affect code reusability. This section is devoted to a brief overview of the subclassing anomaly. A 
more detailed analysis of the subclassing anomaly in a problem independent manner is presented in 
(Radenski 2002). 
Depending on the programming language, a collection of classes can be represented as a namespace (in 
C#), a stateless package (in Java), or as a package with a state (in Ada 95). In this paper we utilize C# as 
sample language in order to provide clarity of discussion. However, all results presented in the paper can be 
applied equally well to virtually any compiled object-oriented language. 
Let us assume that in a collection of related classes, a container class instantiates and utilizes an object of a 
constituent class. Let us also assume that at a later point of the existence of the collection of classes, the 
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constituent class needs to be adapted to changing requirements, while the container class remains valid, 
meaning that it still provides relevant functionality and needs no changes.  
Subclassing of the constituent produces an evolved constituent subclass of the original constituent class, 
which is then incorporated in the evolved collection. The problem is that the integrity of the evolved collection 
is violated, since in the evolved collection the container class still instantiates and utilizes an object of the old 
parent constituent class, rather than an object of the evolved constituent class. Even though the container 
class is assumed to provide relevant functionality, it needs to be re-implemented (which is anomaly), so that it 
creates an object of the evolved constituent class and thus maintains the integrity of the evolved collection.  
Classes may depend on each other in various ways. Some dependencies do not cause anomalies, while 
others do. The so-called monomorphic dependencies, as defined below, trigger the subclassing anomaly. 
Object-oriented languages allow two types of references to classes: polymorphic references and 
monomorphic references. A polymorphic reference to a class C stands (1) for C itself and (2) for all possible 
subclasses of C. A monomorphic reference to a class C stands for C only but not for any subclasses of C. 
Polymorphic references to a class C occur in: 

• parameter, variable, and constant declarations, e.g.: void f (C x); C x; 
• type tests, e.g.: if (y is C) …; if (y instanceof C) …;  
• type casts, e.g.: x = (C) y; 

Monomorphic references to a class C occur in: 
• constructor invocations, e.g.: x = new C (); 
• static member access, e.g.: C.staticMethod ();  
• subclass definitions, e.g.: class C1 : C {…} ; class C1 extends C {…}; 

A class A depends monomorphically on class C if the definition of A contains a monomorphic reference to C; 
further on, we skip the word monomorphically and simply say that A depends on C. A class A depends on C 
when A invokes the constructor of C, when A extends C, or when A refers to a static member of C.  
The subclassing anomaly is triggered by monomorphic dependencies within a collection of classes. When the 
collection evolves, subclasses can be defined in order to adapt the collection to the changing environment. 
However, no matter how subclassing is applied, a monomorphic reference continues to stand for the outdated 
base class in the evolved collection. Thus, all classes that contain monomorphic references must be re-
implemented, often in textually equivalent form, as members of the evolved collection. Such re-implemented 
classes must be recompiled so that monomorphic references are bound to up-to-date subclasses. In contrast 
to monomorphic references, polymorphic references to outdated base classes do not necessarily require re-
implementation of the referring classes - because polymorphic references stand not only for the base class 
(as monomorphic references do), but for all of its subclasses as well. 

3 Analysis of the Subclassing Anomaly in an Evolving Object-Oriented Compiler 
This section is devoted to an analysis of the subclassing anomaly in an evolving object-oriented compiler. Our 
goal is to provide a non-trivial example of the subclassing anomaly as defined in the previous section and to 
reveal various kinds of class references that trigger the anomaly. 
This is not an artificially constructed design example: it is derived from a popular book on object-oriented 
compilers (Watt, 2000). Depending on one’s personal perspective, this design might be considered bad or 
good (we consider it good), but what is more important, is that it is common design which exhibits the 
subclassing anomaly. 
The sample compiler has the usual three phases of syntactic analysis, contextual analysis, and code 
generation. As shown on Fig. 1, the three phases are implemented as Parser, Checker, and Encoder objects. 
The parser, checker, and encoder take one pass each, communicating via a syntax tree that represents the 
source program.  
Syntax trees are defined as a hierarchical collection of interfaces and classes. On the top of the hierarchy, a 
SyntaxTree interface encapsulates methods common for all abstract syntax trees (such as a visitor method 
implemented by both the contextual analyzer and the code generator). Any multiple-form non-terminal symbol 
is represented by a single interface and several classes that implement this interface, one for each form. For 
example, statements are represented by the Statement interface and several classes that implement this 
interface, such as WhileStatement, IfStatement, etc.  
The recursive-descent Parser class consists of a group of methods parseN, one for each non-terminal symbol 
N.  The task of each parseN method is to performs syntactical analysis of a single N-form, and build and 
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return its syntax tree. These parsing methods cooperate to perform syntactical analysis of a complete 
program. For example, parseWhileStatement performs syntactical analysis of a single WhileStatement, and 
creates and returns an instance of a WhileStatement syntax tree (Fig. 1). 

 
 
Anomaly triggered by constructor invocation. Suppose that a developer needs to enhance all syntax trees 
classes with a display method, thus converting the CompilerCollection into an UpdatedCompiler (Fig. 1). One 
approach is to use subclassing in order to extend with a display method all original syntax tree classes, such 
as WhileStatement, IfStatement, etc.  
Unfortunately, subclassing of the syntax tree classes does not affect any other classes form the 
CompilerCollection and all parseN methods from the Parser class continue to instantiate the old syntax tree 
classes. For example, the parseWhileStatement method form the Parser class, as defined in the 
CompilerCollection, instantiates class WhileStatement which is also defined in the CompilerCollection. 
To effectively update the CompilerCollection and convert it into an UpdatedCompiler, the developer needs to 
re-implement the otherwise valid Parser class. The re-implementation of the Parser class is textually identical 
with the old one and only needs to be encapsulated within the UpdatedCompiler.  
The necessity to re-implement a valid Parser class is triggered by the subclassing of the syntax tree classes, 
and this phenomenon is an example of the subclassing anomaly. Note that each parseN method from the 

 

namespace CompilerCollection {  
public class Compiler { 

    public static void compileProgram (...) 
    {  Parser parser = new Parser (...); 
     Checker checker = new Checker (...); 
     Encoder encoder = new Encoder (...); 
     Program syntaxTree = parser.parse (…);      
     checker.check (syntaxTree);      
     encoder.encode (syntaxTree);          
    } 

} 
public abstract class SyntaxTree {… } 
public abstract class Statement : SyntaxTree {…} 
public class WhileStatement : Statement  

   { Expression e; Statement s; …} 
   … 

public class Parser {… 
    public Statement parseWhileStatement () 
    { … Expression e = parseExpression ();  
     … Statement s = parseStatement (); 
     … return new WhileStatement (e, s);  
    } 
    …. 

} 
public class Checker {…} 
public class Encoder {…} 

} 
 

 
using CompilerCollection; 
namespace UpdatedCompiler { 
   public class WhileStatement : 
CompilerCollection.WhileStatement 
   { public void display () {…} } 
   public class IfStatement : CompilerCollection.IfStatement  
   { public void display () {…} } 
   … 
   public class Parser {… // identically re-implemented 
    public Statement parseWhileStatement () 
    { … Expression e = parseExpression ();  
     … Statement s = parseStatement (); 
     … return new WhileStatement (e, s);  
    } 
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Parser class instantiates an object of class N, where N is the syntax tree representation for N. These 
monomorphic dependencies of class Parser on classes N trigger the inheritance anomaly. 
Anomaly triggered by subclass definition. A developer who needs to enhance all syntax trees classes with 
a display method needs to start with their parent class. Technically, the developer should use subclassing in 
the UpdatedCompiler in order to extend the SyntaxTree abstract class with a display method. Unfortunately, 
the Statement subclass of the original SyntaxTree class is not affected by this subclassing and remains 
without a display method, as originally defined in CompilerCollection. Therefore, the developer needs to re-
implement in the UpdatedCompiler the otherwise valid Statement class. The re-implementation of the 
Statement class is textually identical with the old one and only needs to be encapsulated within the 
UpdatedCompiler.  
The necessity to re-implement a valid Statement class is triggered by the subclassing of the SyntaxTree class, 
and this phenomenon is an example of the subclassing anomaly. Note that the Statement class is defined in 
the CompilerCollection as a subclass of SyntaxTree. This monomorphic dependency of the Statement class 
on the SyntaxTree class triggers the inheritance anomaly. 
Anomaly triggered by static member access. A compiler may use classes with static members for various 
purposes. For example, all token kinds may be specified as static members of a Token class and all operation 
codes can be encapsulated as static members of a Machine class. Parser methods need to access static 
members of the Token class, e.g. Token.While. Suppose now that a developer of an UpdatedCompiler needs 
to enhance the Token class with a new token, such as Repeat. One approach is to use subclassing in order to 
extend Token with a Repeat static member. Unfortunately, subclassing of the Token class does not affect any 
of the static references to the original Token class, as defined in the CompilerCollection. All inherited parser 
methods continue to use the old version of the Token class, while new parser methods that are developed in 
the UpdatedCompiler utilize the updated Token class. If the developer wants to have the parser utilize the 
same Token class, the developer must re-implement the whole Parser class in the UpdatedCompiler. The re-
implementations of all inherited parser methods are textually identical with the old ones and only need to be 
encapsulated within the updated Parser class.  
The necessity to re-implement valid parser methods is triggered by the subclassing of the Token class, and 
this phenomenon is an example of the subclassing anomaly. Note that the parser methods access static 
members of the Token class. This monomorphic dependency of the Parser class on the Token class triggers 
the subclassing anomaly. 

4 Elimination of the Subclassing Anomaly with Class Overriding 
Class overriding, an object-oriented language feature that is complementary to subclassing, can be used to 
eliminate the subclassing anomaly (Radenski 2002). In contrast to subclassing, class overriding does not 
create a new and isolated derived class, but rather extends and updates an existing class. Class overriding is 
not limited to a single class but propagates across a collection of related classes: it updates all classes from 
the collection that refer to the class being overridden. Thus, class overriding preserves the integrity of a 
collection of classes by guaranteeing that any update to a class replaces the previous version of the class 
within the whole collection. 
The definition of class overriding is based on the concept of replication. Replication consists in embedding a 
replica of each class from an existing collection of classes (the replicated collection) into a newly created 
collection of classes (the replicating collection). In addition to class replicas, the replicating collection can be 
further extended with newly defined classed or subclasses.  
Replication changes class membership: while all original classes are members of the replicated collection, the 
class replicas become members of the replicating collection. Except for class membership, class replication 
preserves all other class properties, including names and access levels. In the replicating collection, each 
class replica is referred to by the same name and incorporates the same public, protected, and private access 
levels as the original class in the replicated collection. 
A class replica can be overridden (meaning replaced) across the entire replicated collection with its own 
extension. Similarly to a subclass, the overriding class: 

• inherits all data and method members of the class replica 
• can override some of the inherited methods 
• can extend the replica with additional data and method members  

The overriding class replaces the class replica across the entire replicated collection, meaning that all classes 
from the replicated collection are updated to use the overriding class instead of the replica. Technically this is 
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achieved by late class binding: class references are bound to particular class definitions late, at class loading 
time, rather than early, at compile time. This is in contrast to traditional compiled languages, such as C#, 
which use late binding only for methods but limits monomorphic class references to early static binding.  
C#, and likewise, various other object-oriented languages, can be enhanced to support class overriding. In 
C#, collections of classes can be represented as namespaces. Therefore, C# is to be extended with 
namespace replication statements and with class overriding definitions.  
 

 
A C# outline of a compiler that is updated by means of namespace replication and class overriding – thus 
avoiding the subclassing anomaly - is presented in Fig. 2. Class overriding updates the WhileStatement and 
IfStatement across the entire replicated CompilerCollection. No re-implementation of valid classes is needed. 

5 Conclusions 
This extensibility problem (Findler, 1999; Flatt 1999) appears when a recursively defined set of data and 
related operations are to be extended with new data variants or new operations. A set of recursive data and 
related operations can be straightforwardly represented as a collection of dependent classes. Thus, compiler 
extensibility can be viewed as a special case of recursive class extensibility. Although extensibility can be 
achieved through subclassing, it requires extensive use of type casts and cumbersome adaptation code, a 
necessity that is referred to as the extensibility problem.  
The compiler extensibility problem can be avoided by following design patterns that are targeted specially at 
extensibility, such as the extensible visitor (Krishnamurthi et al., 1998), the generic visitors (Palsberg and Jay, 
1997), and the translator pattern (Kühne, 1997). Using such patterns implies serious penalties. In the case of 
the extensible visitor and the translator patterns, the penalty is the significant programming effort needed for 
an extension. In the case of the generic visitors, the penalty is the significant run-time overhead imposed by 
the utilization of reflectivity. 
Several known linguistic techniques can be applied to attack the compiler extensibility problem, as for 
example the extensible data types with defaults of Zenger and Odersky (2001) and the evolving open classes 
of Clifton et al. (2000). None of the known language-level mechanisms seems to offers a silver bullet solution 
for software evolution. Compared to other approaches, class overriding is simpler and easier to use method to 
eliminate the subclassing anomaly. 
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namespace CompilerCollection {  
public class Compiler { … } 
public abstract class SyntaxTree {… } 
public abstract class Statement : SyntaxTree {…} 
public class WhileStatement : Statement { Expression e; Statement s; …} 

   … 
public class Parser {… }  
public class Checker {…} 
public class Encoder {…} 

} 

 
namespace UpdatedCompiler { 
   replicate CompilerCollection; 
   override public class WhileStatement  { public void display 
() {…} } 
   override public class IfStatement { public void display () 
{…} } 
   … 
} 

Figure 2. Elimination of the subclassing anomaly by namespace replication and class overriding. 
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FRONTAL SOLUTIONS:  
AN INFORMATION TECHNOLOGY TRANSFER TO ABSTRACT MATHEMATICS 

V. Jotsov 
Abstract: The paper introduces a method for dependencies discovery during human-machine interaction. It is 
based on an analysis of numerical data sets in knowledge-poor environments. The driven procedures are 
independent and they interact on a competitive principle. The research focuses on seven of them. The 
application is in Number Theory. 
Keywords: knowledge discovery and data mining, modeling, Number Theory. 

1. Introduction 
The offered research has begun since 1986 after the exploration of some of the early D. Lenat’s papers [Lenat 
1976, Lenat 1983]. They gave us the conviction, that the information technologies (IT) are suitable for 
applications in models which are bounded by Number Theory. The newest evolutionary programming (EP) 
[EAEA 1997, EA 1997, Nordin 1999] research confirms the possibilities for elaborating new formulas. The 
considered paper follows the line from our papers [Jotsov1 1999, Jotsov2 1999]. Compared with the works of 
Lenat [Lenat 1983], or with other sources in the references on informatics, the majority of our papers describe 
the mathematical results, not the method. The paper’s scope is interdisciplinary and includes many 
significantly far research areas. To some extent the proposed method is a continuation of the Lenat’s ideas 
and serves the same purposes: elicitation of new knowledge in the integer data processing, derivation of new 
formulas, and whenever possible generation of new mathematical theorems. At the same time it has some 
points in common with the Narin’yani’s, Shvetsov’s constraint programming [Narin’yani 2000,Shvetsov 1997] 
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and reasoning in the Altshuller or Hadamard or Polya style [Altshuller 1979, Hadamard 1975, Polya 1963]. 
The approach is enriched from the most remote principles coming from both directions but it uses no plausible 
reasoning. 

2. The FRONTAL Method and the Working Environment 

The shortly described below FRONTAL method interacts with several other methods under the common 
control of a new type of an evolutionary metamethod. The metamethod avoids or defeats crossovers, 
phenotypes, mutations, etc. Below we choose the description in an analogous manner as the way to reduce 
the extra descriptions, because the general scheme of the chosen strategy is rather voluminous. The 
evolutionary metamethod swallows and controls the following methods: 
  I. FRONTAL method; 
  II. KALEIDOSCOPE method; 
  III. FUNNEL method; 
  IV. CROSSWORD method. 
The KALEIDOSCOPE method is the background for the human-machine strategies for work. The machine 
forms and visualizes different mappings for the chosen groups of numbers or like, while the obtained results 
are estimated by the human. The human makes the necessary conclusions and undertakes the required 
steps. Analogically the kaleidoscope rotations form different images in a hazardous manner, and the spectator 
takes an informal decision whether the seen by him is nice, original etc.  
Let’s assume you have a plastic funnel. If you fix it vertically above the ground, you can direct a stream of 
water or of vaporous drops etc. If you change the funnel direction, then the stream targeting will be hampered. 
Fixing the funnel horizontally makes it practically useless. Analogically in the evolutionary method the general 
direction in numerical models is determined likewise. In other words this is a movement along the predefined 
gradient of the information. This term is proposed in a manner which has some connection to [Baldi 1995]. 
Just like in the case of the physical example in the beginning of the investigation there are lots of undirected 
hazardous steps towards conclusions and hypotheses. The FUNNEL method is based on inconsistency tests 
with known information. 
Let us assume that the reader solves a problem with a complex sentence of 400 letters with vague for the 
reader explanations. Let the unknown sentence be horizontally located. The reader can’t solve the problem in 
an arbitrary manner, because the number of combinations is increased exponentially. Now it is convenient to 
facilitate the solution by linking the well known to the reader information with the complex one from the same 
model. The reader tries to find vertical words that he is conscious about like the place of our conference KDS 
2003 - Varna. The more the crosspoints are, the easier is the solution of the horizontal sentence. The 
approach for the CROSSWORD is even easier. Here both the easy meanings and the difficult ones are from 
one domain, therefore there exists an additional help to find the final solution. 
For pity the paper length does not allow us to make more detailed descriptions of the mentioned above 
methods, and/or their connections, interactions, etc. We will turn exclusively to the considered FRONTAL 
method. 
The trend in the investigation includes solutions of complex hypotheses and problems which require the 
usage of integer-number models. Great number of these problems have been unsolved for centuries; their 
decisions cannot be obtained prima vista or in a frontal manner. This is the reason for the development and 
application in mathematics of an evolutionary strategy. In it the preproofs are on the first place. In the 
process of solving oversophisticated problems the first draft solutions comprise only the first step in the 
marked by the FUNNEL direction. This direction is an approximate. This is due to the initial conditions and 
knowledge constraints. Fig. 1 depicts a similar general direction for research by the A-B line. The obtained 
intermediate solutions follow another route, A-C-D-B. The solution B is inaccessible from the node C or from 
any other node before D.  The user can change the direction according to her/his wish. D-E on Fig. 1 is a 
deviation from the line A-B. The new branch marks the process of solving another problem. Any of the 
intermediate solutions may contradict or doesn’t correspond to the final solution (B). Together they form the 
set of preproofs for B. The mathematical proofs are formed in the process of evolution with no probabilities. In 
the evolutionary metamethod the preproofs are usually weak, with bottlenecks and/or incomplete. The 
preproofs in the considered domain are never so good as to be included in the “official” proof. Nevertheless 
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they must not be easily rejected. They are weaker, but in our case they are not heuristical by nature, and they 
might assist the solution of other problems as well. 
 
 

E           
  
     B 
 D 
 
              
                 C    A 
 
 

Fig. 1. 
 

The presented evolutionary meta-method has the following features. The solution is evolved step by step. At 
every step it is possible to have a progress or a regress compared with the previous decision. The role of 
probabilities and other subjective estimations is played by interactive approaches for knowledge acquisition, 
data linkage, mappings and other processing of data and knowledge. The investigated FRONTAL method  (I) 
includes the following procedures. Their short abbreviations are given in bold letters. 
1. MOC: Mix Or Change (data/knowledge); 
2. BIND: Connects the information (data sets/knowledge) during the automatic work or shows it to the user; 
3. WHY & HOW: Forwards it (data sets/knowledge) to the user; 
4. CS: Constraint Satisfaction (of knowledge), based on the weak negation ~; 
5. SPREAD (knowledge); 
6. WHAT: Explanation (of data/knowledge); 
7. EF: Elimination Filter. 
All the seven procedures can be modified together with the change of the different models. Now we introduce 
in short the FRONTAL method terminology. Let M be a set of such models Mi which contain sets of arithmetic 
progressions {ai+bik}∞

k=0. At that: 
 
(1)  bi p jp j M

p j P=
∈
∏ ∈; .     

 
where P denotes the prime numbers set. Every progression from Mi may be treated as a result after sieving 
out the set of positive integers, consisting of all piM and such composite numbers that at least one of piM 
divides them. To simplify the contents other models are not included, e.g. based on geometrical progressions. 
It is accepted that (ai,bi)=1;  ai<bi. 
Four operations are introduced in every model: {+,-,*,/}. Possibly every application of the algorithms based on 
the FRONTAL method leads to some change of different parameters inside the built-up algorithms whenever 
the model changes. This model changes serve as an algorithm stability test. This is the right place to use 
MOC. Denote V={v1,v2,...vz} is a set of parameters. During our first investigations in the eighties we used V in 
a way similar to the genotype from Genetic Algorithms (GA). The user had the option to accept such vi which 
deserved his attention and the system proceeded with the goal task. We offered that every task must begin 
with V={∅}. Thus the released assumption brings the user closer to data mining tasks. 
The author proposes the following generalized MOC algorithm with an automatic mode set-up: A. Fixing of vi 
in the current model; B. Case-based inclusion of vi from previous solutions; C. The algorithm proceeds with 
review of  vi =0; D. An inverse mapping of (C.) is introduced or vi→max; E. vi  is replaced by another 
parameter in V; F. The algorithm goes on with the WHAT procedure or with other procedures from the 
FORWARD method. The general MOC scheme is postulated with the formulas (2) and (3). 
 

(2)  S(V→V’); card(V)≠card(V’). 
 

(3)  L(S(vi,k))→L(S(vi,j)); S(vi,k)≠ S(vi,j). 



International Journal "Information Theories & Applications" Vol.10 

 

402 

Here S is a situation which has arisen as a result from the MOC activity changing the set V or its separate 
element vi. L is the modal operator possibility. 
For example, let v5=2 means that all the numerical data are copied in a bidimensional array. This 

automatically inputs v6 = 
→
 x  and v7= 

→
 y in V. During the activation of  (D.)  v8= 

→
 z is introduced, etc. When 

processing (C.), the bounded with v5 parameters v6=0 or v7=0 are affected. In this way MOC acquires new 
knowledge from the data investigation. The next example is not so theoretical. Rather it is connected with 
numbers from eight arithmetic progressions. 
The following denotations are introduced. {m+nk}∞

k=0  is an arithmetic progression (progression for short). In it 
m is the first member, and n is the step. π(x) is the total number of the primes which are elements of the set P 
(pi∈P, pi≤x). πn,m(x) is the number of primes ≤x which are contained in the progression. S5 is an union of 8 
progressions {y+nk}∞

k=0, y∈Y, Y={1,7,11,13,17,19,23,29}. Every of these progressions is represented as a 
column in Fig. 2 if the elements of S5 are shown vertically. Fig. 3 shows the same environment in a slightly 
different manner. Every of the elements in S5 is computed in the following way. The first number from the 
corresponding column - see line 1 - is added to the number from the same line and the leftmost column. For 
example s14,2=7+390 is in line 14 and column 2. Composite numbers in S5 are represented as products of 
prime numbers. The primes are the result of the decomposition of the composites. In Fig. 3 the primes are 
omitted while the particular cases y∈Y are given in brackets. MOC has no logical inference. It simply finds 
and changes the scope parameters one by one while the rest of the parameters remain unchanged. The lines 
below show the cases when MOC pastes or cuts some of the elements in the interpretation. For example 
during the investigation of the operations addition and multiplication in S5 the following parameters attract the 
attention: primes (with just a single divisor), composites with at least 2 divisors, 8 columns which are parallel 

to the vertical axis  y→    and 15 lines which are parallel to x→   . These 4 parameters can have other designations, 
which will have similar meanings. The names are not significant. The parameters are established by mere 
observations e.g. directly on the figures. The following transforms for the transition from Fig. 2 to Fig. 3 are 
used: 
(T1). The primes are determined but not shown from all the numbers in the fragment, see Fig. 2. The very 
omission introduces some new information. The figures below demonstrate the following versions of 
transformations in S5. 
(T2). All the composites are presented as products of prime divisors. 
(T3). All the composites with the divisor of 13 are successively connected with straight lines. 
 

1 7 11 13 17 19 23 29 
31 37 41 43 47 49 53 59 
61 67 71 73 77 79 83 89 
91 97 101 103 107 109 113 119 

121 127 131 133 137 139 143 149 
151 157 161 163 167 169 173 179 
181 187 191 193 197 199 203 209 
211 217 219 223 227 229 233 239 
241 247 251 253 257 259 263 269 
271 277 281 283 287 289 293 299 
301 307 311 313 317 319 323 329 
331 337 341 343 347 349 353 359 
361 367 371 373 377 379 383 389 
391 397 401 403 407 409 413 419 
421 427 431 433 437 439 443 449 

 
Fig. 2. 

 (T4). All the composites with the divisor of 17 are successively connected with straight lines. The result is 
shown in Fig. 4. The transformation itself is in the divisor replacement. 
 (T5). Besides the graphical interpretations in Fig 3 and Fig. 4 must be added similar pictures for the 
“neighbors below” 43 and 47 or 13+30, 17+30. The result has the same succession of beat for the columns 
with periods 30 times 43 and 30 times 47. The illustrations resemble the Fig. 3 and Fig. 4 but they are more 
elongated due to the greater period. 
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(T6). The parameter influence of x→    is “reduced”. So the attention is concentrated upon the beat succession 
for the columns S5 and the lines are “compressed”. The results are depicted in Fig. 5 and Fig. 6. 

 
 

0 (1) (7) (11) (13) (17) (19) (23) (29) 
30      72 
60     7⋅11 
90 7⋅13       7⋅17 
120 112   7⋅19   11⋅13 
150   7⋅23   132 
180  11⋅17     7⋅29 11⋅19 
210  7⋅31 13⋅17 
240  13⋅19  11⋅23  7⋅37 
270     7⋅41 172  13⋅23 
300 7⋅43     11⋅29 17⋅19 7⋅47 
330   11⋅31 73 
360 192  7⋅53  13⋅29 

 
Fig. 3. 

 
 

0 (1) (7) (11) (13) (17) (19) (23) (29) 
30      72 
60     7⋅11 
90 7⋅13       7⋅17 
120 112   7⋅19   11⋅13 
150   7⋅23   132 
180  11⋅17     7⋅29 11⋅19 
210  7⋅31 13⋅17 
240  13⋅19  11⋅23  7⋅37 
270     7⋅41 172  13⋅23 
300 7⋅43     11⋅29 17⋅19 7⋅47 
330   11⋅31 73 
360 192  7⋅53  13⋅29 
390 17⋅23   13⋅31 11⋅37  7⋅59 
420  7⋅61   19⋅23 
450 11⋅41     7⋅67 11⋅43 
480 13⋅37   17⋅29 7⋅71 

 
Fig. 4. 
 
 

1    2    3    4    5    6    7    8 1    2    3    4    5    6    7    8 
y    1 y 

2 
3 
4 
5 
6 
7 
8 

 
Fig. 5. Fig. 6. 
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The discussed six relatively simple transformations show plainly and unambiguously that the cited in Fig. 5 
way to beat the columns is one and the same for all the elements in column 4 in S5: 13, 43... The result is in 
relation with the transition from a piece of S5 to the whole S5 or v.v. It is specially discussed in the SPREAD 
presentation. Fig. 6 presents the situation with the elements in column 5 (17,47...) which is analogous. 
The two numerical sets in Fig. 5 and in Fig. 6 interpret the same cycles as those in Fig. 3 and Fig. 4. These 

cycles have common “similarity centers” on y→  . Moreover the two figures coincide if one of them is rotated 180  

degrees  around y→  (T7). The revealed dependency is valid only for numbers of the type n and 30k-n for every 
positive integer k. If the beat cycle for the columns in Fig. 5 is in a column starting with the element m, then 
the analogical cycle in Fig. 6 is in a column starting with 30-m. The constantly repeated number 30 leads to 
(T8): 30=2⋅3⋅5. The act of mathematical creation for Fig. 2-Fig. 3 is unambiguously simple when mapping Fig. 
5 to Fig. 6. The revealing of different numerical properties takes place in the described above MOC 
procedure. Other transformations can be pointed like (T9): the discovery of numbers which can’t be divisors of 
any integer number. Zero which is not an element in S5, but being a similarity center for the positive and 
negative parts in S5, is set in this manner. The interpretation of any prime cycle as on Fig. 7 is unified by the 

total discrimination of the influence of y→  ; (T10) is a suitable example as an illustration vs. (T7). 
 

1    2    3    4    5    6    7    8 
 

   •    •    •    •    •    •    •    •    1 
 
Fig. 7. 
 

All discussed transformations are just consequences of observations based on the model. They give no 
answers to questions like WHY or HOW the presented results are obtained. The body of the preproofs is 
formed on the basis of such conclusions. 
The achieved with MOC results may be related and compared. This is the purpose of the BIND procedure. 
The extracted information is analyzed by BIND on the basis of juxtapositions. BIND is based on the above 
function mapping Sx1(v1,...vz)=Sx2(v1,...vz) or Sx1(v1,...vz)≠Sx2(v1,...vz) where xi are different objects or data 
groups. The detailed BIND overview exceeds consideration line in the paper. The obtained results most of all 
lack of proving power and the inference obtained is nonmonotonous. Therefore after determining the 
regularities it is possible to formulate prompting queries to the user which are decorated in the well known 
form WHY and HOW. The system forms the basis for the general solution, and the details are an object for a 
manual or an interactive work. In this way, the investigation evolves itself. Using the WHY&HOW procedure, a 
new set is built from mutually related formulas and knowledge from the same domain. 
The CS procedure is formalized in a manner similar to the one in [Narin’yani 2000]. An outstanding feature of 
the presented variant of CS is that the bounds of the domain are not restrictive in the case of a weak negation 
~. After the contradictory resolution these bounds are overcome. The contradiction concentrates the attention 
to the incompleteness in the scope. The goal-forming scenario in the constraint satisfaction paradigm is 
formulated as follows. Let the variables x1, x2, ... xn be the mapped sets of their value spaces X1, X2, ... Xn. 
The constraints Cj(x1,x2,...,xn), j=1,...k are valid for the same Xj. It is necessary to find such sets <a1, a2, ... an> 
such that ai∈Xi and they satisfy all Cj simultaneously. 
Denote M* is a subdefinite model or - roughly speaking - an incomplete model. Let Ci(x1,x2,...,xn) is one from 
the investigated constraints, and N(x1,x2,...,xn) be such that: 
 

(4)  N(x1,x2,...,xn) → ~Ci(x1,x2,...,xn). 
 

This means that the constraint is violated because (4) contains the weak nonclassical negation ~. The ~ 
based inconsistencies may be solved after the complementation of M* with new knowledge/data. The 
augmented model is denoted with M’. In it the examined constraint takes the form C’i(x1,x2,...,xn), z=n or z≠n, 
where: 
 

(5)  C’i(x1,x2,...,xn) → ~Ci(x1,x2,...,xn). 
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There are other possible ways for the transition M*-M’ besides N(x1,x2,...,xn). One of them is to include a new 
parameter v’ in M*. Another approach is possible in the case when the system of constraints has no solution. 
Often in such cases there exists an information which admits the re-examination of Ci(x1,x2,...,xn). For 
example, let us examine the numbers x≥11. Then we may come to the conclusion that: 

(6)  π ( )
ln( )

.x
x

x
>  

Here M* has no constraints and Ci={∅}. The result can be monotonously generalized to the whole interval 
[0,∞]. The case when x=8 violates the formula (6). This contradicts the assumptions especially the case 
Ci={∅}. The introduction of C’1: x≥11 leads to the result: 

(7)  π( ) .
ln( )

x
x

x

x
  >

≥11
 

The last three procedures do not contain  substantially new theoretical ideas. SPREAD is based on the well 
known concept of mathematical induction. WHAT is designed to communicate with humans, because the 
internal representation of the solutions is obscure. EP serves as a barrier against knowledge duplications or a 
surplus knowledge.  
The interaction between the first five procedures is on a competitive basis according to the JUNGLE principle. 
In some cases they act in the role of demons. In the rest of the cases the top priority is assigned to the 
procedure from the previous iteration or this one which has generated the most effective solutions. The 
following formalization is aimed to derive this simple estimates and agreements. JUNGLE is based upon 
estimates 0≤f(Qi)≤1 for every procedure of the FRONTAL-based set Q={Q1,...,Q7}. In this case it is preferable 
to compare the described JUNGLE strategy with the one from GA “the fittest wins” ([EAEA 1997], p.3). We 
use it in the form “the winner is best estimated”. If f(Qi)=1, then the procedure interacts with EF and the user. If 
0.25≤f(Qi)<1, then the display contains this value, and the corresponding solutions are considered only on the 
user request. The user may interfere in the automatic process of the estimation. The threshold value f(Qi)=1 is 
achieved in the following situations: 
 

(8)  S(Qj)→G(Qi); j≠i; i,j=1...7;  G(Qi)→f(Qi)=1. 
 

where G is the modal operator necessity, S(Qj) is a scenario in Qj leading to G(Qi). An example of (8) is 
presented above after (T6) thus activating SPREAD by MOC. 
 

(9)  U→f(Qi)=1. 
 

Here U means user-defined activation. The user defines the necessary parameters for Qi. 
 

(10)  S(Q3)=c  →  f(Qi)=1. 
 

where S(Q3) is the BIND output. The meaning of c (for short from convergence) is that the results from the 
two independent research lines coincide. Fig. 7 depicts an example leading to S(Q3)=c. In the future JUNGLE 
may incorporate Machine Learning (ML) approaches. At that: 
 

(11)  S(Q3)=a  →  G(Qi). 
(12)  S(Q3)=e  →  G(Qi). 
 

where a means “the memorized logical inference is abbreviated”; e means an explanation of the obtained 
earlier results. f(Qi)<1 is obtained in the following cases: 
 

(13)  fp(Qi)=maxj(fpj(Qi)),j=1,...7 → f(Qi)=0.5 fp(Qi). 
 

where fp(Qi) are all the memorized evaluations in MOC. 
 

(14)  fp(Qi)=maxt(fpj(Qi,t)),j=1,...7 → f(Qi)=0.7 fp(Qi). 
 

Only the last remembered value for the corresponding f(Qi) is taken into account in (14). Some of the above 
presented procedures are included not only in the FRONTAL, but also in the neighboring methods. The set of 
all those methods uses the same JUNGLE principle. 
The goal function is easy to change (see Fig. 1), so the procedures from 1 up to 7 may operate not only with 
data, but also with goals. E.g. BIND can operate with hypothesis I with hypothesis J in S5, etc.  
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3. Experimental Studies and Some of Theoretical Results 
The software for the research includes more than 20 programs written in Visual Basic and more than 200 MB 
Excel data. The assistant and defensive software consists of more than 20 programs in C and C++. 
The introduced method generated new results even during the first investigations in 1986. The following 
strategy was formulated later. The target is to find dependencies in the arrangements of different sets of 
numbers, e.g. which are multiples of 17. (For example see Fig. 4 and the multiplication cycle 17). One can say 
that the start is with zero information. We introduce descriptions of well known hypotheses, e.g. the twin 
primes hypothesis, Goldbach’s conjecture etc. in the same model. Finally we obtain new mathematical 
dependencies and formulas. In practice this approach starts with a research of the twin primes hypothesis 
with a difference of 2: these are couples of prime numbers 5 and 7, 11 and 13 etc. The hypothesis is based on 
the suggestion that there exist an infinite number of such similar pairs. The hypothesis formalization must not 
be mistaken with the goal function. It is simply a model inside the given sets of progressions. The research of 
the multiplication operations with prime numbers in different numerical models, e.g. in S5 leads to the 
conclusion that the principle properties of different composite numerical unions are also prime number 
functions (15), (16)! This result at a first glance is very remote from the twin primes hypothesis. This result 
relates to the proof of Theorem 1 which was not a target in the research. Nevertheless it may assist in the 
process of solving for many different goals. The famous Dirichlet’s theorem is a corollary from the Theorem 1. 

(15) c x c x
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c x
pK K

p

p

K
p

pz z

, , , , , ,( ) ( ) ( ).6 1 1 6 1
7

1 6 5
5

7 5

= +−
=

−
=

∑ ∑   

(16) .)()()(
75

7
5,6,1

5
1,6,15,6, ∑∑

=
−

=
− +=

zz p

p
K

p

p
KK p

xc
p
xcxc    

where pza∈{a+6k}∞
k=0, Ck,6,a(x) are all the composites ≤x from {a+6k}∞

k=0 which contain k prime divisors. 
 

Theorem 1.  
We have the interval [0,x]. In it we have two progressions {m1+nk}∞

k=0 and {m2+nk}∞
k=0 and the relevant 

numbers are mutually prime: (m1,n)=1, (m2,n)=1. Denote Δπn,mi (x), i=1,2. The denotation introduces the 
difference (delta) in the number of the primes  ≤x included in both progressions. This difference may not be 

greater  then the number of the primes in the range [0, √x
_
.
_ 

], which is signed as follows: Δπn,mi(x)≤ π(√x
_
.
_   

).  
The Theorem 1 proof is given in [Jotsov2 1999]. Theorem 1 is the basic tool for the derivation of the twin 
primes formula: 

(17) Px p p
x

x
( , ) ~ .

( ( ))
.+ 2 1 320323632

2π
 

where Px(p,p+2) is the number of twin prime couples ≤x, ~ means “asymptotically equal”. The solutions below 
are related to the well known Hardy-Littlewood’s hypothesis, the formalization of which is introduced in (19). 
The formalization check of it revealed a series of inconsistencies, so the hypothesis was transformed in (18). 
Finally the FRONTAL method has lead to a new hypothesis 1 which is stronger than the Hardy-Littlewood’s. 

(18) Px p p d p dz K z
x z

xz( , , . . . )
( ( ))

.+ + − ≥ −1 1 1
π

 

where Px is the number of z-tuples  ≤x. They have different admittable differences between, and Kz are the 
corresponding coefficients [Riesel 1985].  

(19) Px p p d p dz K z
x

x z( , , . . . ) ~
(ln )

.+ + −1 1  

Hypothesis 1. 
Denote z the arithmetic progressions {a1+b1k}∞

k=0 ... {az+bzk}∞
k=0 with a noncoinciding step of progressions. 

Let all the corresponding (a,b)=1. If z-tuples of positive integers (ci,di,...zi) are compared; all of them are 
positive integer numbers; ci=a2-a1+(b2-b1)(i-1+w1) ... zi-ci=az-a1+(bz-b1)(i-1+wz), and w are positive integers, 
then there exist infinitely many such z-tuples (ci, di, ... zi) in which all the numbers are primes ci∈P, di∈P, ... 
zi∈P. 
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Hypothesis 1 is formulated as a result of the application of Theorem 1 to the formula (18). Finally the MOC 
procedure was applied to the model of the Hardy-Littlewood’s hypothesis in S5. At the end we shall reveal an 
indicative fact. The paper containing the draft with the Theorem 1 proof is one page long. The initial version of 
the theorem comprised more than 30 pages with several bottlenecks. The author improved the proof using 
manually the FRONTAL method and the CROSSWORD method. The obtained by now results confirm the 
effect in cases with infinite sets of integers and they reveal possibilities for solving problems with higher 
complexity. 

4. Some of the Advantages 

The greater part of the seven procedures and their interaction inside the FRONTAL method are completely 
original. This method operates in the environment of other methods which are also proposed by the same 
author. The usage of this method in Number Theory leads to new mathematical results which are widely 
discussed and acknowledged as original. Part of them is accepted for a publication in Australia. Another 
fraction is under consideration in AMS. The results from section 3 after Theorem 1 are only partially issued in 
the math periodicals. They are presented as an illustration of the method for the way in which a front of 
mutually related solutions can be formed. It is possible to set a way for applications of contemporary IT in 
computational mathematics, residing on the presented method. 

5. Conclusions 

A new IT method is proposed for the interactive construction of formulas and proofs in Number Theory. It 
follows from the consideration that even a non-specialist can make easy explainable solutions if she/he uses 
the present work with the described method. The method is multi-target oriented and its main part is domain 
independent. 
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ON STATISTICAL HYPOTHESIS TESTING VIA SIMULATION METHOD 
B. Dimitrov, D. Green, Jr., V.Rykov, P. Stanchev 

Abstract: A procedure for calculating critical level and power of likelihood ratio test, based on a Monte-Carlo 
simulation method is proposed. General principles of software building for its realization are given. Some 
examples of its application are shown. 

1    Introduction 

In this paper we show how the present day fast computer could solve non-standard old statistical problems. In 
most cases statisticians work with approximations of test statistics distributions, and then use statistical tables. 
When approximations do not work the problem is usually tabled. We propose a simulation approach which we 
do believe could be helpful in many cases 
The problem of statistical hypothesis testing is very important for many applications. In the notable but rare 
case, it is possible to find some simple test statistic having a standard distribution. However, in the general 
case the statistics based on the Likelihood Ratio Test (LRT) does not usually have one of the known standard 
distributions. The problem could be overcome with the help of an appropriate simulation method. This method 
was first used in [3] for a specific case of almost lack of memory (ALM) distributions. In this paper we propose 
a general approach for using the method, describe its general principles and algorithms, show how to build up 
an appropriate software, and illustrate with examples its application. 

2    LRT and the Simulation Approach 

It is well known according to Neyman-Pearson theory [7], that the most powerful test for testing a null 
hypothesis 0H : f(x) = 0f (x) versus an alternative 1H : f(x) = 1f (x) is the LRT. For this test, the critical 

region W for a sample 1x ,…, nx  of size n has the form 

W= , t  
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where )x, …,(x n10f  and )x, …,(x n11f are joint probability densities of the distributions of observations 
(the likelihood functions) under hypotheses 0H  and 1H with probability density functions (p.d.f.) (.)0f and 

(.)1f  respectively. The notation 
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is used for test's statistic. For independent observations this statistic can be represented in the form 
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Considering the observations 1x ,…, nx  as independent realizations of random variable (i.i.d. r.v.) X with 
p.d.f. (.)0f the significance level of the test is 
 =α =}W{PH0

 }t)X,,X(w{P nH α10
>… . (1) 

Here an appropriate critical value αt  for any given significance level α is the smallest solution of equation (1). 

On the other hand, considering the same observations 1x ,…, nx  as independent realizations of random 
variable Y with p.d.f. (.)1f ,  the power of the test is 
 =απ =}{

1
WPH }),,({ 11 αtYYwP nH >… . (2) 

Thus, to find the critical value for a given significance level α  and the power of the test )(απ , a statistician 

needs to know the distributions of the test statistic w  under hypotheses 0H  and 1H . 
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For parametric hypothesis testing the problem becomes more complicated because in such cases one has to 
be able to find a free of parameter distribution of this statistic. 
To avoid calculations of these functions we propose to use the simulation method. This means that instead of 
searching for exact statistical distributions, we will calculate appropriate empirical distributions as their 
estimations.  This method gives the desired results due the fact (based on the Strong Law of Large Numbers) 
that the empirical distribution function of the test statistic converges with probability one to the theoretical 
distribution. 
In the following, due to numerical reasons, instead of statistic w we will use its natural logarithm, and for 
simplicity we will denote this statistic with the same letter, w , 

 =w ln ∏
≤≤ ni i

i

xf
xf

1 0

1

)(
)(

 = ∑
≤≤

−
ni

ii xfxf
1

01 ))(ln)((ln . (3) 

Due to additional statistical reasons, instead of the cumulative distribution functions (CDF) of the statistic 
w under hypotheses 0H  and 1H , we will use their tails, 

 oF )(t  = }),,({ 10
tXXwP nH >… , (4) 

and 
 1F )(t   = }),,({ 11

tYYwP nH >… . (5) 
For large size samples, n>>1, it is possible to use a simplier approach based on the Central Limit Theorem. It 
is well known that this theorem provides a normal approximation of the distribution for sums of i.i.d. r.v.'s 
under conditions of existence of finite second moments. This would allow one to calculate and use only two 
moments of the test statistic w  and then to calculate the appropriate significance level and power of the test 
making use of the respective normal approximation. 
To show how it works, let us denote by U and V the r.v.'s 

)(ln)(ln 01 XfXfU −= ,       )(ln)(ln 01 YfYfV −= , 
where X and Y are taken from distributions with densities (.)0f and (.)1f  respectively, corresponding to 
hypotheses 0H  and 1H . Denote by Uμ , Vμ  and 2

Uσ , 2
Vσ  their expectations and variances respectively, 

when they exist. Then, for large samples, n>>1, under null hypothesis, the test's statistic w  has 
approximately normal distribution with parameters n Uμ , and n 2

Uσ .  This means that the significant level αt  
for given value of α can be found from the equation 
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Here α−1z  is the (1-α)-quantile of the standard normal distribution. Thus, the critical value αt  for the test 
statistic w  at a given significance level α is 
 αt  ≈ n Uμ  + α−1z  nUσ . (6) 

The power of the test equals 
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From this equality it is possible to see that the power of the test mainly depends on the difference in 
expectations of the r.v.'s U and V. 
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In some cases the parameters Uμ , Vμ  and 2
Uσ , 2

Vσ  can be calculated in a closed (explicit) form. In 
general it is possible to estimate them also with the help of Monte-Carlo techniques and then use the 
respective estimated values instead of the exact ones. Appropriate algorithms for calculating the empirical 
cumulative distribution functions (CDF) of the test's statistic under hypotheses 0H  and 1H for both cases 
are described below. 

3    Algorithms 
In this section two algorithms for calculation of the tails of CDF of LRT's statistic w  under both null and 
alternative hypothesis (the null 0H : f(x) = 0f (x) and the alternative 1H : f(x) = 1f (x)), based on a Monte-
Carlo method are proposed. One algorithm can be applied for any sample size n. The second algorithm 
should be used for large samples, n>>1, mainly when the parameters Uμ , Vμ  and 2

Uσ , 2
Vσ  are finite. 

Algorithm 1.  LRT for any sample size 
Begin. Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 
Step 1. Generate a sequence of N random samples ),,( )()(

1
j
n

j xx … , j=1,…,N, from a distribution with p.d.f. 
(.)0f , and calculate N values of the test statistics 

wwj = ),,( )()(
1

j
n

j xx …  = ∑
≤≤

−
ni

j
i

j
i xfxf

1

)(
0

)(
1 ))(ln)((ln ,  j=1,…,N.                     (8) 

Step 2. Calculate the complementary empirical distribution function 

F {1)(,0 N
tN = number of }' tsw j > ,      t > 0. 

Step 3. Calculate the critical value αt  for the test statistic w  at a given significance level α as the smallest 

solution of the equation  F α=)(,0 tN . 
Step 4. Generate a sequence of N random samples ),,( )()(

1
j
n

j yy … ,j=1,…,N, from a distribution with p.d.f. 
(.)1f , and calculate the values of the test statistics jw , analogous to (8), with )( j

iy ’s instead of 
)( j

ix ’s. 
Step 5. Calculate the complementary empirical distribution function for the new sample  

F {1)(,1 N
tN = number of }' tsw j > ,      t > 0. 

Step 6. Calculate the power of the test statistic w  at the given significance level α from the equation 
F αα π=)(,1 tN . 

Step 7. Enter the application’s data:  For a given user's sample ),,( 1 nxx … , calculate the test  statistic 

ww = ),,( 1 nxx …  = ∑
≤≤

−
ni

ii xfxf
1

01 ))(ln)((ln . 

Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus the alternative  

1H : f(x) = 1f (x) by making us of the Likelihood Ratio Test from the equation 

F −= pwN )(,0 value. 

Make a decision by comparing the calculated  p-value and α. Alternatively, reject the hypothesis 0H  
if the inequality 

α
tw > holds. 

Calculate the probability of committing an error of type II (when testing the null hypothesis 0H : f(x) = 

0f (x) versus the alternative 1H : f(x) = 1f (x) by making use of the Likelihood Ratio Test by the 
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simulation method) from the equation 
−1 F −= β)(,1 wN  the probability of type II error. 

Step 8. Print results: 
The chosen  null hypothesis 0H : f(x) = 0f (x) and alternative hypothesis 1H : f(x) = 1f (x), the 
selected significance level α, and the sample size n . 
- The  p-value of the test; 
- The power of the test, βπ α −= 1 ; 
- The calculated value of the test statistic w , and the calculated by simulation critical value 

α
t ; 

- The graphs of the tails of the empirical CDFs  F )(,0 tN  and  F )(,1 tN . 
End.  
 
For large size samples when the second moments of the r.v.’s U, and V exist, it is possible to modify and 
simplify the simulation algorithm as shown below. 
 

Algorithm 2.   LRT for large samples. 
Begin. Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 
Step 1. Generate a sequence of N random variables ),,( 1 Nxx … , from a distribution with p.d.f. (.)0f , and 

calculate N values of the statistics 
uu j = )( jx  = )(ln)(ln 01 jj xfxf − ,    j=1,…,N.                                 (9) 

and its sample mean u , and sample variance 2
us  according to 
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N 1

22

1
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Step 2. Calculate the critical value αt  for the test statistic w  at a given significance level α from the equation 

αt  ≈ nu  + α−1z nsu ⋅⋅ ,                                                        (11) 
where α−1z  is the (1-α)-quantile of the standard normal distribution. 

Step 3. Generate a sequence of N random variables ),,( 1 Nyy … , from a distribution with p.d.f. (.)1f , and 
calculate N values of the statistics 

vv j = )( jy  = )(ln)(ln 01 jj yfyf − ,    j=1,…,N.                                 (12) 

and its sample mean v , and sample variance 2
vs  according to (10) for the data (12). 

Step 4. Calculate the power of the test at the given significance level α from the equation 

απ  =  1 Φ− (
V

U

V s
s

zn
s
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α−+
−

1 ).                                        (13) 

where )(xΦ  is the c.d.f. of the standard normal distribution. 
Step 5. Enter the application’s data:  For a given user's sample ),,( 1 nxx … , calculate the test statistic 

ww = ),,( 1 nxx …  = ∑
≤≤

−
ni

ii xfxf
1

01 ))(ln)((ln .   

Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus the alternative 1H : 
f(x) = 1f (x) by making us of the Likelihood Ratio Test from the equation 

p-value= }),,({ 10
wXXwP nH >… ≈ 1 Φ− (
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where w  is the calculated statistic from the sample. Make a decision by comparing the calculated p-
value and α. Alternatively, reject the hypothesis 0H  if the inequality 

α
tw > holds, where αt  is 

calculated by (11). 
Calculate the probability of committing an error of type II (when testing the null hypothesis 0H : f(x) = 

0f (x) versus the alternative 1H : f(x) = 1f (x) by making use of the LRT by the simulation method) 
from the equation β = απ−1  with the απ  calculated in Step 4.  

Step 6. Print results: 
- The chosen null hypothesis 0H : f(x) = 0f (x) and alternative hypothesis 1H : f(x) = 1f (x), the 

selected significance level α, and the sample size n ; 
- The  p-value of the test; 
- The power of the test, βπ α −= 1 ; 
- The calculated test statistic w , and the calculated by simulation critical value 

α
t ; 

- The graphs of the tails of the CDFs  

F )(,0 tN  = 1 Φ− (
ns
unt

u

⋅− ),  and  F )(,1 tN  = 1 Φ− (
ns
vnt

v

⋅− ). 

End.  
 

4    The Software 

For practical application of the above algorithms an appropriate software should be utilized. The software 
should have a friendly interface, which allows work in two different regimes: individual (customized), and 
automatic. 
In the individual regime only particular observations are tested for any pair of given null and alternative 
hypotheses. Automatic regime allows one to calculate and show the significance level and power functions as 
functions of the test's statistic, and also as functions of some parameters of the model. In this way it would 
allow one to investigate some parametric models. 
The interface includes the main menu, which allows the users to choose: 
• the regime for investigation; 
• the p.d.f. for hull and alternative hypotheses from a given list of distributions, which include almost all 

standard discrete and continuous distributions, or 
• propose an option to the user for selecting probability distribution’s formula or tables of his/her own choice. 
The submenu allows: 
• one to choose the parameter values for hypothesis testing for individual regime; or 
• one to choose the intervals and steps of increment for parameters varying for the problem investigated in 

an automatic regime. 
The software allows also different type of presentation of the results: numerical, graphical, comparison with 
respect to various variables, or with respect to family of functions. These and other appropriate possibilities 
make the content of the design menu. 
The design will be based on the new technologies presented in [8]. 

5    An Example 

Below we consider one example on which the work of algorithms in the previous section will be illustrated.  
Example.  An ALM  distribution versus other ALM distribution with uniform distribution. 
It is known that when in the ALM distribution  

 =)(xf  )()1( c
c
xxfaa Y

c
x
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, (14) 
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where a  is a parameter of distribution,  c  is the length of a period, and )(xfY  is an arbitrary distribution on 
the interval [0,c). More details about ALM distributions can be found in [5]. 
Here for the ALM distribution in the null hypothesis 0H  we choose ),(0 xf  presented by (14) with 
parameters chosen in the following way  
 c=1,    0a =.5,    )(0, xfY =1  for  0 ≤  x ≤  1. (15) 

This means that the r.v. X with distribution (14) is based on the uniform distribution of Y 0  on [0,1] (cycle of 
length 1), and probability for jump over a cycle without success is 0a =.5. Any other choice of the parameter 

0a ≠.5 will produce an ALM distribution ),(1 xf different from the chosen )(0 xf .  And this p.d.f.  )(1 xf   will 
appear in our considerations as an alternative hypothesis 1H . 
Thus, we study the likelihood ratio test according to Algorithms 1 and 2 above with the choice for the p.d.f. 

)(0 xf , with 0a =.5, and choosing various other values for parameter 1a ≠.5. In studying the power function 
dependence on significance level α we select 1a =.05,.1,.15,… ,.9,.95; N = 10000, n = 10, c = 1. 
 
F(0)   : 0a =.5  F(1)  ,  1a = .1                      Power f-n πα   
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Fig. 1. Cumulative distribution functions for the test statistic and the power function of the test 
 
The results for the power function in this case of significance level α=.05 are shown on Fig. 1.  

6    Conclusions 

The problem of hypotheses testing arises in many statistical applications. In analytical form its solution can be 
done for a very limited number of cases. The method proposed in this paper gives the solution for practically 
all cases. Nevertheless, for its practical realization special computer tools with friendly interface are needed. 
This work is now in the progress, and we show here some examples of the approach used for some special 
case of distributions, - so called almost lack of memory distributions. 
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A GRADIENT-TYPE OPTIMIZATION TECHNIQUE FOR THE OPTIMAL CONTROL 
FOR SCHRODINGER EQUATIONS  

M. H. FARAG 
Abstract: In this paper, we are considered with the optimal control of a schrodinger equation. Based on the 
formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite 
difference method is then developed to solve the constrained optimization problem. Finally, a numerical 
example is given and the results show that the method of solution is robust. 
Keywords: Optimal control, schrodinger equation, Existence and uniqueness theory, Gradient method. 
AMS subject classification: 49J20, 49M29, 49M30, 49K20   

1.  Introduction 
Optimal control of systems governed by partial differential equations is an application-driven are of 
mathematics involving the formulation and solution of minimization problems [1,3]. In this paper, we are 
considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the 
cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed 
to solve the constrained optimization problem. Finally, a numerical example is given and the results show that 
the method of solution is robust. 

2.  Problem Formulation 
We consider the functional on the form 

dt
T

0

2)t(1f)t,l(y1αdt
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and  )l,0(1
2W)x(φ,)T,0(1

2W)t(1f,)t(0f ∈∈ , are given functions. 
 

Definition 1. 

The problem of finding the function  )Ω(1,0
2V)t,x(y ∈  from condition (2)-(4) at given Uu∈ is called 

the reduced problem. 
 
Definition 2. 

A function )Ω(1,0
2V)t,x(y ∈  is said to be a solution of the problem (2)-(4), if for all 
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is valid and  ,0)T,x(η =  but η   is the adjoint of  η  . 
 

Proposition 1 

Let )Ω(1,0
2W)t,x(f ∈ and )l,0(1

2W)t,x(φ ∈ . Then the problem (2)-(4) has a unique solution and  
satisfies the following estimate  
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Proposition 2 
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2W)t,x(φ ∈ . Then the solution of the reduced problem (2)-(4) )Ω(1,0

2V)t,x(y ∈   

belongs to the space  )Ω(1,2
2W and satisfies the following estimate   
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+≤+ is valid and 

02C,]T,0[t >∈∀  is dos not depend on φ and f . 
 

Proposition 3 
Let all the conditions Proposition 2 be valid. Then the optimal control problem (1)-(4) has at least one solution. 

3.  Variation of the Cost Functional 

3.1   The Adjoint Problem 

Results [4] imply that the function  )u,t,x(ΦΦ=  is a solution in  )Ω(2L  of the adjoint problem 

)T,0(x)1,0(Ω)t,x(,0Φu
2x

Φ2
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t
Φi)8( =∈=−

∂

∂
+

∂
∂

 



International Journal "Information Theories & Applications" Vol.10 

 

416 

)T,0(t],)t(1f)t,l(y[
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)T,0(t],)t(0f)t,0(y[
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∂

∂

∈−−=
∂

∂
∈=

 

where )t,x(y  is the solution of (1)-(4) corresponding to Uu ∈ . 
 

Definition 3. 
For each Uu ∈  , a function )u;t,x(Φ  is a solution of the adjoint problem (8)-(9) belonging to the control  
u  iff 

(I) )Ω(2L)u;t,x(Φ ∈  , 
(II) The integral identity  

dt)t,0(1η])t(0f)t,0(y[
T

0
0α2
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∫

 

is valid )Ω(1,2
2W1η ∈∀ , .0lx|x)1η(0x|x)1η()0,x(1η =====    

On the basis of the above assumptions and the results [5], we have the following proposition: 
 

Proposition  4. 
The adjoint problem  (8)-(9)has a unique solution from )Ω(2L  and he following estimate   

,]2Γ1Γ[3C2
)Ω(LΦ)11(

2
+≤  where  

2

)T,0(W

)t(1f)t,1(y1Γ,
2

)T,0(W

)t(0f)t,0(y1Γ
2
1

2
2
1

2

−=−=
 

is valid and 3C  is a certain constant. 

3.2  The Gradient Formulae of Cost Functional 
The sufficient differentiability conditions of the functional (5) and its gradient formulae will be given as follows:  
 

Theorem 1. 
Let the above assumptions be satisfied. Then )u(J  is Gato differentiable, and its gradient satisfies  

∫ ∞∈∀−=
Ω

).Ω(1,0Wω,dtdxω)Φy(Re)u(Jδ)12(  

Proof : 

Suppose that Uu ∈  and )Ω(1,0Wuδ ∞∈ such that Uuδu ∈+ and denoting  
).u;t,x(y)uδu;t,x(y)t,x(yδ −+=   Then )uδ;t,x(yδ is the solution of the boundary value problem: 
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and the solution of the above boundary value problem satisfies the following estimation 
2
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2
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2
≤  

where 4C  is a constant and independent of uδ . 
From (15) and using the theorem of imbedding [6], we have  
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)t,x(yuδ5C)T,0(L)t,l(yδ)T,0(L)t,0(yδ)16( 1,0

222
≤+  

where 5C  is a constant and independent of .uδ  
The increment of the functional )u(J  can be expressed as: 
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If we take complex adjoint for (10),(13), we have 
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Subtracting (13) from (19), (10) from (18) and in the obtained relation we put yδ,Φ  instead of  1η,η  
, then we have  
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By substituting the last relation in (17), we have  

2
)T,0(L)t,l(yδ1α

2
)T,0(L)t,0(yδ0α

Ω
.

Ω
dtdxuδΦyδRedtdxuδyδΦyReJδ)21(

22
++

∫ ∫−−=

 

Suppose that  
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It is clear that,  
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By substituting (26) in (21), we obtain 
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Hence, in light of the variation functional, we have 
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and this proves the differentiability of the functional  and gradient formulae of the function )u(J . This 
completes the proof of the theorem. 
Using Tikhinov method [7], we define the following functional 
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4.  Discrete Problem 

We consider the set of node values   { } M,0j,hJ0xjx,kt,jx =+=  

τ
TN,
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lM,N,0k,τk0tkt ===+= and the following notations [8]: 
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After applying the numerical integration formula [8],we have the discertisation of the optimal control problem 
(1)-(5) as follows:  Let it is required to minimize the functional  

}
2k

jω
k
ju

2
12k

Mω
k
Mu

2
12k

0ω
k
0u

1M

1j
h{

N

1k
τmν

}2]k
1f

k
My[1α

2]k
0f

k
0y[0α{

N

0k
τ])u([mI)32(

−+−+−∑
−

=
∑
=

+

−−−∑
=

=

 

on the control set  

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

==≤

==≤≤=
=

N,2k,M,0j,2αt)k
ju(

,N,0k,M,0j,1α
k
ju0α),k

ju(]u[:]u[
M
NU

 

under the conditions   
N,1k,1M,1j,k

jfk
jyk

ju)k
jy(0Bt)k

jy(i)33(
xx

=−==−+  

,M,0j,00
jy)34( ==  

N,1k,]k
0yk

0ut)k
0u([ik

0fx)k
0y(

h
0B2)35( =−−=  

N,1k,]k
Myk

Mut)k
Mu([ik

Mfx)k
My(

h
0B2)36( =−−=−  

Now, the discrete gradient formulae will be given as follows:  
 

Theorem  2 
The functional  )u(mJ  is differentiable, and its gradient satisfies  
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jΦ  is the solution of discrete adjoint problem: 
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5.  Solution of Control Problem 

5.1  The Projection Gradient Method 
Here we describe the projection gradient method [9] for the solution of the optimal control problem such as: 
construct a sequence   m1nu +  by setting  
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and   ...,1,0m,...,1,0n,N,1k,M,0j ====  
Using the above sequence we construct the project in the form 
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5.2  Numerical Algorithm 
With the gradient obtained, the following gradient type algorithm can then be developed for the optimal value 

of  *u based on the projection gradient method (PGM )which described in the above section.  
The outlined of the algorithm for solving control problem are as follows: 

Step 1: Choose an initial control  0n,U)n(u =∈ . 

             If )n(u,0))n(u(/I = is the solution of the problem. 
Step 2 : At each iteration n  do 
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    Solve the state problem, then find   ))n(u,(.y . 
         Solve the adjoint problem for (1)-(3), then find          

             ))n(u,.(Φ .  Find optimal control 
)1n(

*u +
using  PGM. 

    End do. 

Step 3:  Test the optimality of 
)1n(u +

.  

     If  
)1n(u +

 is optimum, stop the process.  

     Otherwise, go to Step 4. 

Step 4    Set 1nn,)n(u)1n(u +==+
 and go to Step 2. 

6.  Numerical Results 

Designed algorithm is implemented as a FORTRAN routine [10]. Numerical experiment is carried out to check 
its performance. The initial data of the problem (1)-(5) are taken as follows: 

)1t2x()tx(i1)t,x(f,
2

tx1)t,x(ω

0.1)0(u,xi)x(φ,)t1(i1f,ti0f
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+++−−=
+

+=

==+==

−======

 

The number of division of the intervals was taken as  20MN ==  . The computed control values of  

N,0j,13
ju = the values of relative error are shown in Tables 1 ,2 and the 3D plots of the optimal control 

and initial values are presented in Figures 1,2 . The optimal value of the cost functional is   
03E48526.0)*u(J)u(JUuinf*J −==∈= . 

 
 
 

The computed control values of  N,0j,13
ju =  

0.15592E+01 0.15950E+01 0.16301E+01 0.16641E+01 
0.17221E+01 0.17464E+01 0.17714E+01 0.18021E+01 
0.18332E+01 0.18602E+01 0.19112E+01 0.19830E+01 
0.20679E+01 0.21474E+01 0.22155E+01 0.22837E+01 
0.23625E+01 0.24368E+01 0.24078E+01 0.24324E+01 
0.24718E+01    

 

The values of relative error of  N,0j,13
ju =  

0.025528 0.004683 0.012478 0.02563 
0.050038 0.030459 0.048194 0.046236 
0.041988 0.032024 0.033075 0.042328 
0.055069 0.061758 0.060028 0.056052 
0.054668 0.049211 0.000924 0.028029 
0.049297    
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Fig.  1.  Optimal control  )t,x(u∗  

 
Fig.  2.  Initial control  )t,x(0u  
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AUTOMATIC TRANSLATION OF MSC DIAGRAMS INTO PETRI NETS 
S. Kryvyy, L. Matvyeyeva, M. Lopatina 

 
Abstract: Development-engineers use in their work languages intended for software or hardware systems 
design, and test engineers utilize languages effective in verification, analysis of the systems properties and 
testing. Automatic interfaces between languages of these kinds are necessary in order to avoid ambiguous 
understanding of specification of models of the systems and inconsistencies in the initial requirements for the 
systems development.  
Algorithm of automatic translation of MSC (Message Sequence Chart) diagrams compliant with MSC’2000 
standard into Petri Nets is suggested in this paper. Each input MSC diagram is translated into Petri Net (PN), 
obtained PNs are sequentially composed in order to synthesize a whole system in one final combined PN. 
The principle of such composition is defined through the basic element of MSC language — conditions. While 
translating reference table is developed for maintenance of consistent coordination between the input 
system’s descriptions in MSC language and in PN format. This table is necessary to present the results of 
analysis and verification on PN in suitable for the development-engineer format of MSC diagrams. The proof 
of algorithm correctness is based on the use of process algebra ACP. The most significant feature of the 
given algorithm is the way of handling of conditions. The direction for future work is the development of 
integral, partially or completely automated technological process, which will allow designing system, testing 
and verifying its various properties in the one frame. 
Keywords: MSC diagram, MSC language, condition, automatic translation, Petri Net. 

Introduction 
While designing and developing of either software or hardware it is of vital importance to detect and remove 
defects in product on its early stages in order to avoid time and resource losses. Development-engineers and 
test engineers (verifiers) use in their work different approaches and specification languages, that eventually 
leads to ambiguous understanding of the same portion of a project, to inaccuracies, incompletenesses or 
even to the inconsistencies in the initial requirements for the development. Development-engineers usually 
utilize languages intended for design purposes (as VHDL, MSC, SDL, UML and so on), while test engineers 
(verifiers) utilize languages effective in verification and testing (languages of mathematical logics, automata 
theory, algebraic and net languages). The way-out of this situation is a development of automatic interfaces 
between languages of these kinds. Given work is devoted to the development of automatic interface between 
the languages MSC (Message Sequence Chart) and PN (Petri Nets). The work suggests an algorithm of 
automatic translation of MSC diagrams compliant with MSC’2000 language standard [ITU-TS, 2000] into Petri 
Nets, which allow verifying automatically a lot of properties of the system under design. The algorithm works 
on a certain subset of MSC’2000 language. 

1. Syntactic MSC constructions 

MSC is a modelling technique that uses a graphical interface, which was standardized by ITU (International 
Telecommunication Union, earlier CCITT). It is usually applied to applications of the telecommunication 
domain, since they have properties of distributed reactive real-time systems, often in combination with SDL 
language [Grabowski, 1991]. These very properties of the systems make an MSC with possibility of scenario 
describing extremely suitable as for specification so for testing purposes. This means that MSC can be 
applied on every stage of system development, even on the stage of test case development. MSC describes 
message flow between the instances, which present asynchronously communicating objects of the system or 
system entities like blocks, services or processes of the system. One MSC diagram describes a certain 
portion of system behaviour or a scenario of communication between the instances.  
MSC has two syntactical representations: textual and graphical, which are in one-to-one relation according to 
a standard.  Basic elements of the language are those which define message flow, namely, instance, 
message, action, set->reset, set->time-out, stop, create and condition.  An example of an MSC is presented 
on Figure 1(a). As far as this example is of illustrative kind, it only introduces a minimal set of possible MSC 
constructions as instances and messages. Let’s describe basic elements of the language MSC’2000, which 
are considered in the given work. 
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1.1. Instances, messages and system environment. 
Instance is a basic primitive of MSC, which in graphics is presented as vertical line with its name.  
Message transmissions, which are acts of communication between instances, are presented by horizontal 
arrows with possible curve or tilt under angle for reflecting “overtaking” or “intersection” of messages. The 
beginning of the vector marks a sending of the message and its ending marks receiving of the message. 
Evens of sending and receiving of the messages are ordered along the instances so that sending of the 
message always happens earlier than its receiving. There is one more rule in standard MSC’2000 for ordering 
events along the instances: everything located above happens earlier than that located below. A MSC 
diagram imposes a partial ordering on the set of events being contained. A binary relation which is transitive, 
antisymmetric and reflexive is called partial order. The partial ordering can be described by its connectivity 
graph.  
 

 
Figure 1 

 
At the Picture 1(b) there is a graph, which reflects the order of events on instances in the diagram “msc 
event_ordering” (Figure 1(a)). Event out(m1) means sending of the message m1, in(m1) – receiving of 
message m1.  
Environment of the system (the set of instances) is presented by the borders of MSC.  
 

1.2. Conditions 

Condition is used as for restricting or defining a set of MSC traces through indicating states of the system so 
for defining the composition of one MSC diagram from the several MSC diagrams. Condition can describe a 
global state of the system which is extended to all MSC instances existing in the time of this condition; it also 
can describe a state for a certain subset of MSC instances. In the first case condition is called global. 
Instances presenting dynamic objects can be began and finished, so far globality of a state considers 
dynamically changing set of instances. 
Standard MSC‘2000 [ITU-TS, 2000] defines conditions of two types: setting condition and guarding condition. 
Conditions of the first type are those which describe the current state of the system. Conditions of the second 
type restrict behaviour of the MSC to execution of events in a certain part of MSC depending on the value of 
the given guarding condition.  
Besides of composition role, conditions according to the standard [ITU-TS, 2000] are the means of events 
synchronization. For example, if two instances share one and the same condition, then for each message 

msc event_ordering

proc_a proc_b proc_c

m1

m2

m3

m4

in( m1)

in(m3)

out(m2)

out(m3)

out(m4)in(m4)

in(m2)

(b)(a)
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between these instance its sending and receiving events shall happen both before or both after setting of the 
condition. If two conditions are ordered directly sharing the common instance, or indirectly through conditions 
on other instances, then this order must be respected on all instances that share these two conditions. 
 

2. MSC semantics 
The first version of MSC language standard defined the semantics incompletely and informally, however in 
ideal development of the language and its semantics shall go in parallel. Need of semantics standardization 
was becoming apparent, as even MSC experts could not always agreed on interpretation of the particular 
properties. Associated with this situation and extension of MSC language application in 1992 three new 
approaches of MSC semantics defining were submitted to standardization committee CCITT (now ITU-TS or 
Telecommunication Standardization section of the International Telecommunication Union). 
The first approach was based on the theory of finite automata.  
The second one was based on theory of Petri Nets using partially ordered sequences of events in the system. 
Given semantics is known to be extremely suitable for modelling of distributed asynchronous systems.  
The third approach was based on process algebra ACP (Algebra of Communicating Processes) and 
interleaving model, when system is modelled by the sequence of transitions supposing that events are atomic 
and has no duration, and in every moment of time only one event can be executed. Semantics of interleaving 
simulates independence (asynchronism) among the subsystems (instances) through nondeterministic 
interleaving of independent parallel activities. 
Every of the three approaches given for definition of MSC language semantics has its advantages and 
disadvantages, but the committee for standardization chose third approach to be the basis for formal definition 
of MSC language semantics. MSC language semantics based on process algebra [Bergstra, 1984] was 
defined for textual representation of MSC diagrams [ITU-TS, 1995] in expressions of process algebra that was 
called denotation semantics. Operational semantics is defined through addition of transitional rules to 
algebraic expressions. So, operational semantics is reflection of MSC-specifications into transition system. 
Yet it should note that operational semantics of MSC is not defined and standardized formally. 
 

3. Algorithm of translation of MSC diagrams into Petri Net  

The first progresses in defining MSC semantics basing on Petri Nets were presented in [Grabowski, 1993]. 
Nowadays research work on translating of MSCs into Petri Nets goes on and its results are covered, for 
example, in [Kluge, 2000], [Heymer, 2000], [Kluge, 2001]. However the authors develop semantics for the 
MSC'96 and MSC'2000 standards basing on Petri Nets, and, what’s more, elaborate on MSCs into the Petri 
Nets translation, an automatic translation is not considered in these papers.  
 

3.1. Description of algorithm 

The following is the formalized description of the translation algorithm. 
INPUT: A set of the MSC diagrams in the basic subset of the language MSC'2000. 
OUTPUT: A Petri Net adequate to the set of initial MSC diagrams. 
METHOD: Translation of every MSC diagram of the input set into a Petri Net is performed in two stages in 
parallel with composing of corresponding to each MSC diagram Petri Nets into one final combined Petri Net 
(synthesis).  
 
Begin 
Stage 1. Building of the partial-order graph to reflect events order in the initial MSC diagrams imposed by 
static requirements of MSC'2000 standard [ITU-TS, 2000] (see Figure 1). 
Stage 2. Translating of the partial-order graph obtained at the stage 1 into the Petri Net. 
End 
 
Let's give more detailed description of the algorithm’s stages and start with the description of how synthesis is 
proceeds. 
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Detailed description of the synthesis 
Each input MSC diagram is being translated into PN, the PNs are sequentially “glued” in order to compose 
(synthesize) a whole system in one PN, while the principle of such composition is defined at the level of MSC 
language - through conditions. Let's detail semantics of the basic element of MSC language condition as it 
was described in the MSC'2000 standard.  
According to the MSC'2000 standard condition defines a system state of instance, which it covers . A system 
state of the instance is interpreted not as a current global state of the whole system, but as a set of the current 
values of  a certain subset of attributes coherent with the instance (system object/entity), another words, 
condition is a precondition of occurring the event in the system. Let's explain this statement. MSC language 
was created to specify systems with local interconnections among the asynchronous parallel processes. 
Asynchronous models are typically built on cause-and-effect relation among events rather than on clocked 
sequence of system state changes. Asynchronous systems also present time moments or intervals as events. 
So event in this model is considered to be either atomic or compound with internal structure formed from “sub-
events”. Thus, condition is a precondition of occurring the event in the system and simultaneously a 
synchronizing action. The steps of the synthesis are carried out according to the following rules, on the 
assumption of fulfilling the following requirements. 
 
The requirements:  
1. We only consider a subset of MSC'2000, including the elements: instances, message inputs and outputs, 
setting conditions in textual representation. It is supposed, that all input diagrams are syntactically correct and 
satisfy the static requirements of the MSC'2000 standard. For example, for each event of a message sending 
the diagram shall have a pair event — a message consumption. 
2. Naming of instances is complete and exact.  
3. Naming of conditions is complete and exact, meaning of the conditions do not influence synthesis in any 
way. 
4. Each instance shall have initial and final conditions either local or, probably, shared by several instances. 
The given requirement is not referred to a case of creation and termination of the instance within the scope of 
the given diagram.  
The condition is called initial, if the diagram has not any event or condition which precedes it, and final, if there 
is no event or condition after the given condition. Not only singular but also multiple initial and final conditions 
are possible, in logic they can be represent as conjunction of all initial conditions, and, correspondingly, 
conjunction of all final conditions.  
 

 
Figure 2 
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For example, at Figure 2 conditions B and C represent a multiple final condition, D — singular final condition 
or simply final condition, A is an initial condition. 
5. Each diagram from the input set shall satisfy the following: every initial and final condition of MSC shall 
cover a minimum one instance, on which an event occurs (in given case, either sending or consumption of the 
message). 
6. "Gluing" is forced and carried out according to the following rules. 
The Rules: 
1. If the first MSC diagram has a final condition, which corresponds (has the same name) to the initial 
condition of the second MSC diagram, and these conditions cover the same set of instances in the both 
diagrams, than the first and the second diagrams can be “glued” together via the given condition regardless of 
the fact that this condition is either global or local for the diagrams. For example, at Figure 3 msc Z is a 
synthesis or composition of msc X and msc Y. The dashed line shows places of "gluing". 
 

 
Figure 3 

 
 
This rule also assumes the opportunity to “glue" by condition not only two diagrams in sequence, but also to 
“glue" together more than two diagrams at once (“multiple gluing”), this means that "gluing" is a non-
deterministic alternative composition in opposite to the delayed choice operator for alternatives. As a result of 
gluing we receive an MSC diagram presenting a set of possible alternative traces in the system. Let's 
consider, for example, Figure 4. There are two possible continuations of the diagram msc X: it is msc Y and 
msc Z. And the choice is made when the condition C occurs and it is not delayed until the events presented 
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on msc Z (msc Result 1) and on msc Y (msc Result 2) begin to differ from each other, namely, before 
passing of the messages m and k.  
2. The following is a very important rule for "gluing" of MSC diagrams by overlapped and multiple conditions:  
a) conditions occur simultaneously and are equal to the conjunction of these conditions,  
b) the order of their enumeration in the diagrams is of no importance because of simultaneous occurrence  of  
conditions, 
c) these conditions can glue together independently from each other.  
Let's consider an example at Figure 5. Each of MSC diagrams X1, X2, X3 is a possible continuation of msc X. 
The conditions B and C are overlapped in msc X and msc X3. 
All requirements and rules mentioned above do not contradict the MSC'2000 standard, and only specify it. 
Composing of one common Petri Net is performed in accordance with semantics of the synthesis of MSC 
diagrams described above. A table of initial and final conditions of the initial MSCs plays a key role in the 
synthesis, as it contains all information necessary for composing. It is formed on the stage 1 during sequential 
processing of MSCs. Thus, the gluing is performed along with translation of MSCs applying the table of initial 
and final conditions. 
 
 

 
Figure 4 
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Detailed description of stage 1. Partial-order graph for system events is built according to the following 
rules: 
1. Directed edges of the graph set an order of the events. 
2. Events of sending and consumption of messages and conditions correspond to the graph nodes. It is 
necessary to emphasize, that a condition is also represented by an event, namely, event of synchronization. 
Moreover the graph defines nodes of two types: a graph node which denotes intermediate condition or event 
of message consumption/sending, and a graph node which denotes initial or final conditions. They differ in the 
way of translation into the elements of Petri Net during the second stage. 
Detailed description of stage 2. Rules for the second stage of translation (translation of the graph into the 
Net) are the following: 
1. Each directed edge of the partial-order graph is translated into a place of Petri Net. 
2. An arrow of each directed edge of the graph corresponds to an arrow of Petri Net that directs tokens’ flow in 
Petri Net. 
3. A graph node of the first type (denoted intermediate conditions and events of an message input 
(consumption) and message output (sending)) is translated into a transition of Petri Net. 
4. A graph node of the second type (denoted final and initial conditions) is translated into combination of 
transition and place of Petri Net. This place is a joint element for “gluing” into the common Petri Net 
(representing input system as a whole) .  
While translating reference table is developed for maintenance of consistent coordination between the input 
system’s descriptions in MSC language and in Petri Net format. This table is necessary to present the results 
of analysis and verification on Petri Net in suitable for the development-engineer format of MSC diagrams.  
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Unfortunately, limited size of the paper does not allow to place here the proof of algorithm correctness even in 
the reduced version. We note only that the proof of algorithm correctness is based on the use of process 
algebra ACP. 
 

Conclusion 
Summing up, we note, that the algorithm of an automatic translation, presented in the paper, considers only 
the subset of MSC language, therefore extending of this subset to the maximum or even up to the whole MSC 
language is an obvious direction of the further research. The most significant feature of the given algorithm is 
the way of handling of conditions, since the literature indicates this problem in translation process as the most 
difficult. What is also important is obtaining of necessary experience for developing analog translators for the 
languages: SDL, UML, etc. The ultimate goal of this research is development of integral, partially or 
completely automated technological process, which will allow designing system, testing and verifying its 
various properties in the one frame. 
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REPRESENTING REFLECTIVE LOGIC IN MODAL LOGIC 
Frank M. Brown 

Abstract: The nonmonotonic logic called Reflective Logic is shown to be representable in a monotonic Modal 
Quantificational Logic whose modal laws are stronger than S5.  Specifically, it is proven that a set of 
sentences of First Order Logic is a fixed-point of the fixed-point equation of Reflective Logic with an initial set 
of axioms and defaults if and only if the meaning of that set of sentences is logically equivalent to a particular 
modal functor of the meanings of that initial set of sentences and of the sentences in those defaults.  This 
result is important because the modal representation allows the use of powerful automatic deduction systems 
for Modal Logic and because unlike the original Reflective Logic, it is easily generalized to the case where 
quantified variables may be shared across the scope of the components of the defaults thus allowing such 
defaults to produce quantified consequences.  Furthermore, this generalization properly treats such 
quantifiers since all the laws of First Order Logic hold and since both the Barcan Formula and its converse 
hold. 
Keywords: Reflective Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 
One of the simplest nonmonotonic logics which inherently deals with entailment conditions in addition to 
possibility conditions in its defaults is the so-called Reflective Logic [Brown 1989].  The basic idea of 
Reflective Logic is that there are some assumptions Γ and some non-logical "inference rules" of the form: 

α : β1,...,βm 
χ 

which suggest that χ may be inferred whenever α is inferable and each β1,...,βm is consistent with everything 
that is inferable. Such "inference rules" are not recursive and are circular in that the determination as to 
whether χi is derivable depends on whether βj is consistent which in turn depends on what was derivable 
from this and other defaults.  Thus, tentatively applying such inference rules by checking the consistency of 
β1,...,βm with only the current set of inferences produces a χi result which may later have to be retracted.  
For this reason valid inferences in a nonmonotonic logic such as Reflective Logic are essentially carried out 
not in the original nonmonotonic logic, but rather in some (monotonic) metatheory in which that nonmonotonic 
logic is defined.  [Brown 1989] explicated this intuition2 by defining Reflective Logic in terms of the set 
theoretic proof theory metalanguage of First Order Logic (i.e. FOL) with the following fixed-point expression:  

'κ=(rl 'κ {'Γi} 'αi:'βij/'χi) 
where rl is defined as:  (rl 'κ {'Γi} 'αi:'βij/'χi) =df (fol({'Γi}∪{'χi:('αiε'κ)∧∧j=1,mi('(¬βij)∉'κ)})) 
where 'αi, βij, and 'χi are the closed sentences of FOL  occurring in the ith "inference rule" and {'Γi} is a set of 
closed sentences of FOL and 'Γi is the ith sentence in that set.  A closed sentence is a sentence without any 
free variables.  fol is a function which produces the set of theorems derivable in FOL from the set of sentences 
to which it is applied.  The quotations appended to the front of these Greek letters indicate references in the 
metalanguage to sentences of the FOL object language.  Interpreted doxastically this fixed-point equation 
states: 
 

the set of closed sentences which are believed is equal to: 
  the set of closed sentences derived in FOL from 
    the union of the set of closed sentences: {'Γi}, 
                 and the set of closed sentences of the form 'χi such that for each i,  
                             the closed sentence 'αi is believed and for each j, the closed sentence 'βij is believable. 

                                                           
2 This explication is simpler but less sophisticated in its properties than that of Default Logic [Reiter 1980].  
The fixed-points of both logics obey the laws: 'κ=(fol 'κ), 'κ⊃{'Γi}, and 
((αiε'κ)∧∧j=1,mi('(¬βij)∉'κ))→('χiε'κ).  However, the fixed points of Default Logic are a subset of the 
fixed-points of Reflective Logic, but the converse is in general not true.  Moreover, the fixed-points of 
Reflective Logic are the kernels of the fixed points of Autoepistemic Logic [Moore 1985].  
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The purpose of this paper is to show that all this metatheoretic machinery including the formalized syntax of 
FOL, the proof theory of FOL, the axioms of a strong set theory, and the set theoretic fixed-point equation is 
not needed and that the essence of Reflective Logic is representable as a necessary equivalence in a simple 
(monotonic) Modal Quantificational Logic.  Interpreted as a doxastic logic this necessary equivalence states: 
that which is believed is logically equivalent to 
  for each i , Γi  and for each i,  if αi is believed and for each j, βij is believable then χi 

thereby eliminating all mention of any metatheoretic machinery. 
The remainder of this paper proves that this modal representation is equivalent to Reflective Logic.  Section 

2 describes a formalized syntax for a FOL object language.  Section 3 describes the part of the proof theory of 
FOL needed herein (i.e. theorems FOL1-FOL4).  Section 4 describes the Intensional Semantics of FOL which 
includes laws giving the meaning of FOL sentences: M0-M7, theorems giving the meaning of sets of FOL 
sentences: MS1, MS2, MS3, and laws specifying the relationship of meaning and modality to the proof theory 
of FOL (i.e. the laws R0, A1, A2, and A3 and the theorems: C1, C2, C3, and C4).  The modal version of 
Reflective Logic, called RL, is defined in section 5 and explicated with theorems MR1-MR6 and SS1-SS2.  In 
section 6, this modal version is shown by theorems RL1 and RL2 to be equivalent to the set theoretic fixed-
point equation for Reflective Logic.  Figure 1 outlines the relationship of all these theorems in producing the 
final theorems RL2, FOL4, and MR6.   
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FOL1FOL2

C2FOL3

MR1 MR2

MR3 MR4
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Figure 1: Dependencies among the Theorems 

 

2. Formal Syntax of First Order Logic 

We use a First Order Logic (i.e. FOL) defined as the six tuple: (→, #f, ∀, vars, predicates, functions) where 
→, #f, and ∀ are logical symbols, vars is a set of variable symbols, predicates is a set of predicate symbols 
each of which has an implicit arity specifying the number of associated terms, and functions is a set of 
function symbols each of which has an implicit arity specifying the number of associated terms.  The sets of 
logical symbols, variables, predicate symbols, and function symbols  are pairwise disjoint.  Lower case 
Roman letters possibly  indexed with digits are used as variables.  Greek letters possibly indexed with digits 
are used as syntactic metavariables. γ, γ1,...γn, range over the variables, ξ, ξ1...ξn range over sequences of 
variables of an appropriate arity, π,π1...πn range over the predicate symbols, φ, φ1...φn range over function 
symbols, δ, δ1...δn, σ   range over terms, and α, α1...αn, β, β1...βn,χ, χ1...χn, Γ1,...Γn,ϕ range over 
sentences.  The terms are of the forms γ and (φ δ1...δn), and the sentences are of the forms (α→β), #f, (∀γ 
α), and (π δ1...δn).  A nullary predicate π or function φ is written as a sentence or a term without 
parentheses.  ϕ{π/λξα} represents the replacement of all occurrences of π in ϕ by λξα followed by lambda 
conversion.  The primitive symbols are shown in Figure 2 with their intuitive interpretations. 
 

Symbol Meaning 
α→ β if α then β. 
#f falsity 
∀γ α for all γ, α. 

Figure 2: Primitive Symbols of First Order Logic 
 
The defined symbols are listed in Figure 3 with their definitions and intuitive interpretations. 
 



International Journal "Information Theories & Applications" Vol.10 

 

433

Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 

Figure 3: Defined Symbols of First Order Logic 
 
The FOL object language expressions are referred in the metalanguage (which also includes a FOL syntax) 
by inserting a quote sign in front of the object language entity thereby making a structural descriptive name of 
that entity.   In addition to referring to object language sentences, the formalized metalanguage also needs to 
refer to sets of sentences of FOL.  Generally, a set of sentences is represented as: {'Γi} which is defined as: 
{'Γi: #t} which in turn is defined as: {s: ∃i(s='Γi)} where i ranges over some range of numbers (which may be 
finite or non-infinite).  With a slight abuse of  notation we also write 'κ, 'Γ  to refer to such sets. 

3. Proof Theory of First Order Logic 
First Order Logic (i.e. FOL) is axiomatized with a recursively enumerable set of theorems as the set of axioms 
is itself recursively enumerable and its inference rules are recursive.  The axioms and inference rules of FOL 
[Mendelson 1964] are those given in Figure 4.  They form a standard set of axioms and inference rules for 
FOL. 
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ ( β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β  where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: ((∀γ(α → β)) →  (α→(∀γ β)))  where γ does not occur in α. 

Figure 4: Inferences Rules and Axioms of FOL 
In order to talk about sets of sentences we include in the metatheory set theory symbolism as developed 
along the lines of [Quine 1969].  This set theory includes the symbols ε, ∉, ⊃, =, ∪ as is defined therein. 
The derivation operation (i.e. fol) of any First Order Logic obeys the Inclusion (i.e. FOL1) and Idempotence 
(i.e. FOL2) properties:  
FOL1: (fol 'κ)⊃'κ      Inclusion 
FOL2: (fol 'κ)⊃(fol(fol 'κ))     Idempotence 
From these two properties we prove: 
FOL3:  (rl 'κ 'Γ 'αi:'βij/'χi))=(fol(rl 'κ 'Γ 'αi:'βij/'χi)) 
proof: FOL1 and FOL2 imply that (fol(fol 'κ))=(fol 'κ).  Since rl begins with fol this implies: 'κ=(fol(rl 'κ)) QED. 
 
FOL4: ('κ=(rl 'κ 'Γ 'αi:'βij/'χi))→('κ=(fol 'κ)) 
proof:  From the hypothesis and FOL3: 'κ=(fol(rl 'κ 'Γ 'αi:'βij/'χi)) is derived.  Using the hypothesis to replace 
(rl 'κ 'Γ 'αi:'βij/'χi) by 'κ in this result gives: 'κ=(fol 'κ).  QED. 

4. Intensional Semantics of FOL 
The meaning (i.e. mg) [Brown 1978, Boyer&Moore 1981] or rather disquotation of a sentence of First Order 
Logic (i.e. FOL) is defined to satisfy the laws given in Figure 5 below3.  mg is defined in terms of mgs which 
maps each FOL object language sentence and an association list into a meaning.  Likewise, mgn maps a FOL 
object language term and an association list into a meaning.  An association list is simply a list of pairs 
consisting of an object language variable and the meaning to which it is bound. 
 
                                                           
3 The laws M0-M7 are analogous to Tarski's definition of truth except that finite association lists are used to 
bind variables to values rather than infinite sequences.  M4 is different since mg is interpreted as being 
meaning rather than truth. 
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M0: (mg 'α) =df (mgs '(∀γ1...γn α)'())  where 'γ1...'γn are all the free variables in 'α 
M1: (mgs '(α → β)a) ↔ ((mgs 'α a)→(mgs 'β a)) 
M2: (mgs '#f a) ↔ #f 
M3: (mgs '(∀ γ α)a) ↔ ∀x(mgs 'α(cons(cons 'γ x)a)) 
M4: (mgs '(π δ1...δn)a) ↔ (π(mgn 'δ1 a)...(mgn 'δn a))  for each predicate symbol 'π. 
M5: (mgn '(φ  δ1...δn)a) = (φ(mgn 'δ1 a)...(mgn 'δn a))   for each function symbol 'φ. 
M6: (mgn 'γ a) = (cdr(assoc 'γ a)) 
M7: (assoc v  L) = (if(eq? v(car(car L))) (car L) (assoc v(cdr L))) 
       where: cons, car, cdr, eq?, if are axiomatized as they are axiomatized in Scheme. 

Figure 5: The Meaning of FOL Sentences 
 
For example, the meaning of the sentence "Everything is less than something" is the proposition that 
everything is less than something.  Thus the meaning operator disquotes its argument.  Here is an example 
derivation: 
(mg '(∀x∃y(< x y))) 
Replacing the defined symbols of the object language by primitive symbols of the object language gives: 
(mg '(∀x((∀y((< x y)→#f))→#f))).  By M0 this is equivalent to:  (mgs '(∀x((∀y((< x y)→#f))→#f)) '()) 
By M3 this is equivalent to:  ∀x(mgs '((∀y((< x y)→#f))→#f) (cons(cons 'x  x)'())) 
By M1 this is equivalent to:  ∀x((mgs '(∀y((< x y)→#f)) (cons(cons 'x  x)'())) →(mgs '#f (cons(cons 'x  x)'()))) 
By M2 this is equivalent to:   ∀x((mgs '(∀y((< x y)→#f)) (cons(cons 'x  x)'()))→#f) 
We would now like to apply M3 to: (mgs '(∀y((< x y)→#f)) (cons(cons 'x  x)'()))  
but we cannot since the bound variable x in M3 would capture the variable x which is free in this expression.  
In order to apply M3 we must first rename the bound variable x in M3 to be some other variable which will not 
capture any free variables in this expression.  In this case we rename the bound x in M3 to be y, and then use 
that version of M3 to produce the equivalent expression: 
∀x((∀y(mgs '((< x y)→#f)  (cons(cons 'y y)(cons(cons 'x  x)'())))) →#f) 
By M1 this is equivalent to: 
∀x((∀y((mgs '(< x y) (cons(cons 'y y)(cons(cons 'x x)'()))) →(mgs '#f (cons(cons 'y y)(cons(cons 'x  x)'()))))) 
→#f) 
By M2 this is equivalent to:  ∀x∃y((mgs '(< x y) (cons(cons 'y y)(cons(cons 'x  x)'()))) By M4 this is equivalent 
to: ∀x∃y(<(mgn 'x(cons(cons 'y y)(cons(cons 'x  x)'()))) (mgn 'y (cons(cons 'y y)(cons(cons 'x  x)'())))) 
By M6 twice this is equivalent to: ∀x∃y(< x y) 
 
The meaning of a set of sentences is defined in terms of the meanings of the sentences in the set as: 
 (ms 'κ) =df ∀s((sε'κ)→(mg s)) 
MS1: (ms{'α: Γ}) ↔ ∀ξ(Γ→α)  where ξ is the sequence of all the free variables in 'α and where Γ is any 
sentence of the intensional semantics. 
proof: (ms{'α:Γ})  Unfolding ms and the set pattern abstraction symbol gives: ∀s((sε{s: ∃ξ((s='α)∧Γ)})→(mg 
s)) 
where ξ is a sequence of the free variables in 'a.  This is equivalent to: ∀s((∃ξ((s='α)∧Γ)))→(mg s)) 
which is logically equivalent to: ∀s∀ξ (((s='κ)∧Γ)→(mg s)) which is equivalent to: ∀ξ(Γ→(mg 'α)) 
Unfolding mg using M0-M7 then gives: ∀ξ(Γ→α) QED 

The meaning of the union of two sets of FOL sentences is the conjunction of their meanings (i.e. 
MS1) and the meaning of a set is the meaning of all the sentences in the set (i.e. MS2): 
 

MS2: (ms{'Γi}) ↔ ∀i∀ξiΓi 
proof:  (ms{'Γi})  Unfolding the set notation gives: (ms{'Γi: #t}) 
By MS1 this is equivalent to: ∀i∀ξi(#t→Γi) which is equivalent to: ∀i∀ξiΓi QED. 
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MS3: (ms('κ∪'Γ)) ↔ ((ms 'κ)∧(ms 'Γ)) 
proof: Unfolding ms and union in: (ms('κ∪'Γ)) gives: ∀s((sε{s: (sε'κ)∨(sε'Γ)})→(mg s)) or rather: 
∀s(((sε'κ)∨(sε'Γ))→(mg s)) which is logically equivalent to: (∀α((sε'κ)→(mg s)))∧(∀s((sε'Γ)→(mg s))) 
Folding ms twice then gives:((ms 'κ)∧(ms 'Γ)) QED. 
 

The meaning operation may be used to develop an Intensional Semantics for a FOL object language by 
axiomatizing the modal concept of necessity so that it satisfies the theorem: 
C1:          ('αε(fol 'κ))  ↔  ([] ((ms 'κ)→(mg 'α))) 
for every sentence 'α and every set of sentences 'κ of that FOL object language. The necessity symbol is 
represented by a box: [].  C1 states that a sentence of FOL is a FOL-theorem (i.e. fol) of a set of sentences of 
FOL if and only if the meaning of that set of sentences necessarily implies the meaning of that sentence.   
One modal logic which satisfies C1 for FOL4 is the Z Modal Quantificational Logic described in [Brown 1987; 
Brown 1989] whose theorems are recursively enumerable.  Z has the metatheorem: (<>Γ){π/λξα}→ (<>Γ) 
where Γ is a sentence of FOL and includes all the laws of S5 Modal Logic [Hughes & Cresswell 1968] whose 
modal axioms and inference rules are given in Figure 6.  Therein, κ and Γ represent arbitrary sentences of 
the intentional semantics. 
R0: from α infer ([] κ)   A2:  ([](κ→ Γ)) → (([]κ)→ ([]Γ)) 
A1: ([]κ) → κ    A3: ([]κ) ∨ ([]¬[]κ) 

Figure 6: The Laws of S5 Modal Logic 
These S5 modal laws and the laws of FOL given in Figure 4 constitute an S5 Modal Quantificational Logic 
similar to [Carnap 1946; Carnap 1956], and a FOL version [Parks 1976] of [Bressan 1972] in which the 
Barcan formula: (∀γ([]κ))→([]∀γκ) and its converse hold.  The R0 inference rule implies that anything 
derivable in the metatheory is necessary.  Thus, in any logic with R0, contingent facts would never be 
asserted as additional axioms of the metatheory.  For example, we would not assert ([](κ↔Γ)) as an axiom 
and then try to prove ([](κ→α)).  Instead we would try to prove that ([](κ↔Γ))→([](κ→α)). 

The defined Modal symbols used herein are listed in Figure 7 with their definitions and 
interpretations. 
Symbol Definition Meaning  Symbol Definition Meaning 
<>κ ¬ [] ¬κ α is logically possible  [κ] Γ  [] (κ→Γ) β entails α 
κ≡ Γ [] (κ↔Γ) α is logically equivalent to β  <κ> Γ <> (κ∧Γ) α and β is logically possible 

Figure 7: Defined Symbols of Modal Logic 
For example, folding the definition of entailment, C1 may be rewritten more compactly as: 
C1':          ('αε(fol 'κ)) ↔  ([(ms 'κ)](mg 'α)) 
This compact notation for entailment is used hereafter. 
From the laws of the Intensional Semantics we prove that the meaning of the set of FOL consequences of a 
set of sentences is the meaning of that set of sentences (C2), the FOL consequences of a set of sentences 
contain the FOL consequences of another set if and only if the meaning of the first set entails the meaning of 
the second set (C3), and the sets of FOL consequences of two sets of sentences are equal if and only if the 
meanings of the two sets are logically equivalent (C4): 
C2: (ms(fol 'κ))≡(ms 'κ) 
proof: The proof divides into two cases: 
(1) [(ms 'κ)](ms(fol 'κ)))  Unfolding the second ms gives: [(ms 'κ)]∀s((sε(fol 'κ))→(mg s)) 
By the soundness part of C1 this is equivalent to:  [(ms 'κ)]∀s(([(ms 'κ)](mg s))→(mg s)) 
By the S5 laws this is equivalent to: ∀s(([(ms 'κ)](mg s))→ [(ms 'κ)](mg s))  which is a tautology. 
(2) [(ms(fol 'κ))](ms 'κ)  Unfolding ms twice gives: [∀s((sε(fol 'κ))→(mg s))]∀s((sε'κ)→(mg s)) 
which is: [∀s((sε(fol 'κ))→(mg s))]((sε'κ)→(mg s))  Backchaining on the hypothesis and then dropping it 
gives: (sε'κ)→(sε(fol 'κ)).  Folding ⊃ gives an instance of FOL1. QED. 
                                                           
4An S5 modal logic which satisfies a metatheorem analogous to C1 for Propositional Logic is the system S5c 
given in [Hendry and Pokriefka 1985] which has axiom schemes stating that every conjunction of distinct 
propositional constants is logically possible.  This extends the trivial possibility axiom that some proposition 
is neither #t nor #f used in [Lewis 1936; Bressan 1972].  
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C3: (fol 'κ)⊇(fol 'Γ) ↔ ([(ms 'κ)](ms 'Γ)) 
proof: Unfolding ⊇ gives: ∀s((sε(fol 'Γ))→(sε(fol 'κ))) 
By C1 twice this is equivalent to: ∀s(([(ms 'Γ)](mg s))→([(ms 'κ)](mg s))) 
By the laws of S5 modal logic this is equivalent to: ([(ms 'κ)]∀s(([(ms 'Γ)](mg s)))→(mg s))) 
By C1 this is equivalent to: [(ms 'κ)]∀s((sε(fol 'Γ))→(mg s)).  Folding ms then gives: [(ms  'κ)](ms(fol 'Γ)) 
By C2 this is equivalent to:  [(ms  'κ)](ms 'Γ). QED. 
 
C4: ((fol 'κ)=(fol 'Γ)) ↔ ((ms 'κ)≡(ms 'Γ)) 
proof:  This is equivalent to (((fol 'κ)⊇(fol 'Γ))∧((fol 'Γ)⊇(fol 'κ))) ↔ ([(ms 'κ)](ms 'Γ))∧([(ms 'Γ)](ms 'κ)) 
which follows by using C3 twice. 
 

5. Reflective Logic Represented in Modal Logic 

The fixed-point equation for Reflective Logic may be expressed as a necessary equivalence in an S5 Modal 
Quantificational Logic as follows: κ≡(RL κ Γ αi:βij/χi)  where RL is defined as:  (RL κ Γ αi:βij/χi) =df 
Γ∧∀i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)  where Γ, αi, βij, and χi are propositions of FOL.  When the context is 
obvious Γ αi:βij/χi is omitted and just (RL κ) is written.  Given below are some simple properties of RL. The 
first two theorems state that RL entails Γ and any conclusion χi of a default whose entailment condition holds 
in κ and whose possible conditions are possible with κ. 
MR1:  [(RL κ Γ αi:βij/χi)]Γ 
proof: By R0 it suffices to prove: (RL κ Γ αi:βij/χi)→Γ.  Unfolding RL gives: 
Γ∧∀i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)→Γ  which is a tautology. QED. 
 
MR2: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(RL κ Γ αi:βij/χi)]χi) 
proof: Unfolding RL gives: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([Γ∧∀i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)]χi) 
Using the hypotheses on the ith instance gives: 
(([κ]αi)∧(∧j=1,mi(<κ>βij)))→ ([Γ∧∀i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)∧χi]χi) which is a tautology. QED. 
 
The concept (i.e. ss) of the combined meaning of all the sentences of the FOL object language whose 
meanings are entailed by a proposition is defined as follows: 
(ss κ) =df ∀s(([κ](mg s))→(mg s)) 
SS1 shows that a proposition entails the combined meaning of the FOL object language sentences that it 
entails.  SS2 shows that if a proposition is necessarily equivalent to the combined meaning of the FOL object 
language sentences that it entails, then there exists a set of FOL object language sentences whose meaning 
is necessarily equivalent to that proposition: 
SS1: [κ](ss κ) 
proof: By R0 it suffices to prove: κ→(ss κ).  Unfolding ss gives: κ→∀s(([κ](mg s))→(mg s)) 
which is equivalent to:∀s(([κ](mg s))→(κ→(mg s)))  which is an instance of A1. QED. 
 
SS2: (κ≡(ss κ))→ ∃s(κ≡(ms s)) 
proof: Letting s be {s: ([κ](mg s)) gives (κ≡(ss κ))→ (κ≡(ms{s: ([κ](mg s)))).  Unfolding ms and lambda 
conversion gives: (κ≡(ss κ))↔ (κ≡∀s(([κ](mg s))→(mg s))).  Folding ss gives a tautology. QED. 
 
The theorems MR3 and MR4 are analogous to MR1 and MR2 except that RL is replaced by the combined 
meanings of the sentences entailed by RL. 
MR3: [ss(RL κ ∀iΓi αi:βij/χi)]∀iΓi 
proof: By R0 it suffices to prove:  (ss(RL κ ∀iΓi αi:βij/χi))→∀iΓI which is equivalent to:  
(ss(RL κ ∀iΓi αi:βij/χi))→Γi.  Unfolding ss gives:  (∀s(([(RL κ ∀iΓi αi:βij/χi)](mg s))→(mg s)))→Γi 
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which by the meaning laws M0-M8 is equivalent to:  (∀s(([(RL κ ∀iΓi αi:βij/χi)](mg s))→(mg s)))→(mg 'Γi) 
Backchaining on (mg  'Γi) with s in the hypothesis being 'Γi in the conclusion shows that it suffices to prove:  
([(RL κ ∀iΓi αi:βij/χi)](mg 'Γi)) which by the meaning laws: M0-M7 is equivalent to: ([(RL κ ∀iΓi αi:βij/χi)]Γi) 
which by the laws of S5 Modal Logic is equivalent to: ([(RL κ ∀iΓi αi:βij/χi)]∀iΓi) 
which is an instance of theorem MR1. QED. 
 
MR4: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→ ([ss(RL κ Γ αi:βij/χi)]χi) 
proof:  Unfolding the last ss gives: (([κ]αi)∧∧j=1,mi(<κ>βij))→ ([∀s(([(RL κ Γ αi:βij/χi)](mg s))→(mg s))]χi) 
Instantiating s in the hypothesis to 'χi and then dropping the hypothesis gives: 
(([κ]αi)∧∧j=1,mi(<κ>βij))→ ([([(RL κ Γ αi:βij/χi)](mg 'χi))→(mg 'χi)]χi) 
Using the meaning laws M0-M7 gives: (([κ]αi)∧∧j=1,mi(<κ>βij))→ ([([(RL κ Γ αi:βij/χi)]χi)→χi]χi) 
Backchaining on χi shows that it suffices to prove:(([κ]αi)∧∧j=1,mi(<κ>βij))→([(RL κ Γ αi:βij/χi)]χi) 
which is an instance of theorem MR2. QED. 
 
Finally MR5 and MR6 show that talking about the meanings of sets of FOL sentences in the modal 
representation of Reflective Logic is equivalent to talking about propositions in general. 
MR5: (ss(RL κ(∀iΓi)αi:βij/χi))≡(RL κ(∀iΓi)αi:βij/χi) proof: In view of SS1, it suffices to prove 
:( [(ss(RL κ(∀iΓi)αi:βij/χi))](RL κ(∀iΓi)αi:βij/χi)).  Unfolding the second occurrence of RL gives:[(ss(RL 
κ(∀iΓi)αi:βij/χi))](∀iΓi∧∀i((([κ]αi)∧∧j=1,mi<κ>βij)→χi) which holds by theorems MR3 and MR4. QED. 
 
MR6: (κ≡(RL κ(∀iΓi)αi:βij/χi))→∃s(κ≡(ms s)) 
proof: From the hypothesis and MR5 κ≡(ss(RL κ ∀iΓi αi:βij/χi)) is derived.  Using the hypothesis to replace 
(RL κ(∀iΓi)αi:βij/χi) by κ in this result gives:  κ≡(ss(RL κ(∀iΓi)αi:βij/χi)),  By SS2 this implies the 
conclusion. QED. 
 

6. Conclusion: The Relationship between Reflective Logic and the Modal Logic 
The relationship between the proof theoretic definition of Reflective Logic [Brown 1989] and the modal 
representation is developed and proven in two steps.  First theorem RL1 shows that the meaning of the set rl 
is the proposition RL and then theorem RL2 shows that a set of FOL sentences which contains its FOL 
theorems is a fixed-point of the fixed-point equation of Reflective Logic with an initial set of axioms and 
defaults if and only if the meaning (or rather disquotation) of that set of sentences is logically equivalent to RL 
of the meanings of that initial set of sentences and those defaults. 
 
RL1: (ms(rl(fol 'κ){'Γi}'αi:'βij/'χi))≡(RL(ms 'κ)(∀iΓi)αi:βij/χi) 
proof: (ms(rl(fol 'κ){'Γi}'αi:'βij/'χi)) 
Unfolding the definition of rl gives:  ms(fol({'Γi}∪{'χi:('αiε(fol 'κ))∧∧j=1,mi('(¬βij)∉(fol 'κ))})) 
By C2 this is equivalent to: ms({'Γi}∪{'χi:('αiε(fol 'κ))∧∧j=1,mi('(¬βij)∉(fol 'κ))}) 
Using C1 twice gives:  ms({'Γi}∪{'χi: (([(ms 'κ)](mg 'αi)) ∧∧j=1,mi¬([(ms 'κ)](mg '(¬βij))))}) 
Using MS3 gives:  (ms {'Γi})∧(ms{'χi: (([(ms 'κ)](mg 'αi)) ∧∧j=1,mi¬([(ms 'κ)](mg '(¬βij))))}) 
Using MS2 gives:  (∀iΓi)∧(ms{'χi: (([(ms 'κ)](mg 'αi)) ∧∧j=1,mi¬([(ms 'κ)](mg '(¬βij))))}) 
Using MS1 gives:  (∀iΓi)∧∀i((([(ms 'κ)](mg 'αi))∧∧j=1,mi¬([(ms 'κ)](mg '(¬βij))))→(mg 'χi)) 
Using M0-M7 gives: (∀iΓi)∧∀i((([(ms 'κ)]αi)∧∧j=1,mi¬([(ms 'κ)]¬βij))→ χi) 
Folding the definition of RL then gives:  (RL(ms 'κ)(∀iΓi)αi:βij/χi) QED. 
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RL2: ((fol 'κ)=(rl(fol 'κ){'Γi} 'αi:'βij/'χi))↔((ms 'κ)≡(RL(ms 'κ)(∀iΓi)αi:βij/χi)) 
proof: (fol 'κ)=(rl(fol 'κ){'Γi} 'αi:'βij/'χi) By FOL3 this is equivalent to: (fol 'κ)=(fol(rl(fol 'κ){'Γi} 'αi:'βij/'χi)) 
By C4 this is equivalent to: ((ms 'κ)≡(ms(rl(fol 'κ){'Γi} 'αi:'βij/'χi))) 
By RL1 this is equivalent to: (ms 'κ)≡(RL(ms 'κ)(∀iΓi) αi:βij/χi))  QED. 
 
Theorem RL2 shows that the set of theorems: (fol 'κ) of a set 'κ is a fixed-point of a fixed-point equation of 
Reflective Logic if and only if the meaning (ms 'κ) of 'κ is a solution to the necessary equivalence.  
Furthermore, by FOL4 there are no other fixed-points (such as a set not containing all its theorems)  and by 
MR6 there are no other solutions (such as a proposition not representable as a sentence in the FOL object 
language).  Therefore, the Modal representation of Reflective Logic (i.e. RL), faithfully represents the set 
theoretic description of Reflective Logic (i.e. rl).Finally, we note that ∀iΓi and (ms 'κ) may be generalized to 
be arbitrary propositions Γ and κ giving the more general modal representation:  κ≡(RL κ Γ αi:βij/χi). 
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REPRESENTING DEFAULT LOGIC IN MODAL LOGIC 
Frank M. Brown 

Abstract: The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal 
Quantificational Logic whose modal laws are stronger than S5.  Specifically, it is proven that a set of 
sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of 
axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically 
equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in 
those defaults.  This result is important because the modal representation allows the use of powerful 
automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily 
generalized to the case where quantified variables may be shared across the scope of the components of the 
defaults thus allowing such defaults to produce quantified consequences.  Furthermore, this generalization 
properly treats such quantifiers since both the Barcan Formula and its converse hold. 
Keywords: Default Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 
One of the most well known nonmonotonic logics [Antoniou 1997] which inherently deals with entailment 
conditions in addition to possibility conditions in its defaults is the so-called Default Logic [Reiter 1980].  The 
basic idea of Default Logic is that there is a set of axioms Γ and some non-logical default "inference rules" of 
the form: 

α : β1,...,βm 
χ 

which suggest that χ may be inferred from α whenever each β1,...,βm is consistent with everything that is 
inferable.  Such "inference rules" are not recursive and are circular in that the determination as to whether χ is 
derivable depends on whether βj is consistent which in turn depends on what was derivable from this and 
other defaults.  Thus, tentatively applying such inference rules by checking the consistency of β1,...,βm with 
only the current set of inferences produces a χ result which may later have to be retracted.  For this reason, 
valid inferences in a nonmonotonic logic such as Default Logic are essentially carried out not in the original 
nonmonotonic logic, but rather in some (monotonic) metatheory in which that nonmonotonic logic is defined.  
[Reiter 1980] explicated this intuition by defining Default Logic in terms of the set theoretic proof theory 
metalanguage of First Order Logic (i.e. FOL) with the following fixed-point expression: 'κ=(dl 'κ {'Γi} 'αi:'βij/'χi) 
where dl is:  (dl 'κ {'Γi} 'αi:'βij/'χi) =df ∩{p: (p⊇(fol p))∧(p⊇{'Γi})∧∀i((('αiεp)∧∧j=1,mi('(¬βij)∉'κ))→('χiεp))} 
where 'αi, 'βij, and 'χi are the closed sentences of FOL occurring in the ith default "inference rule" and {'Γi}  is 
a set of closed sentences of FOL.  A closed sentence is a sentence without any free variables.  fol is a 
function which produces the set of theorems derivable in FOL from the set of sentences to which it is applied.  
The quotations appended to the front of these Greek letters indicate references in the metalanguage to the 
sentences of the FOL object language.  Interpreted doxastically this fixed-point equation states: 
The set of closed sentences which are believed is equal to 
  the intersection of all sets of closed sentences which are potentialially believed such that: 
     the closed sentences derived by the laws of FOL from the potential beliefs are themselves potentially 
believed, 
     the closed sentences in {'Γi}  are potentially believed, 
     and for each i,   if the closed sentence 'αi is potentially believed 
             and for each j, the closed sentence 'βij is believable then the closed sentence 'χi is potentially 
believed. 
The purpose of this paper is to show that all this metatheoretic machinery including the formalized syntax of 
FOL, the proof theory of FOL, the axioms of a strong set theory, and the set theoretic fixed-point equation is 
not needed and that the essence of Default Logic is representable as a necessary equivalence in a simple 
(monotonic) Modal Quantificational Logic.  Interpreted as a doxastic logic this necessary equivalence states: 



International Journal "Information Theories & Applications" Vol.10 

 

440 

That which is believed is logically equivalent to some potential belief such that: 
       Γ is potentially believed 
       and for each i, if αi is potentially believed and for each j, βij is believable then χi is potentially believed. 
thereby eliminating all mention of any metatheoretic machinery. 
The remainder of this paper proves that this modal representation is equivalent to Default Logic.  Section 2 
describes a formalized syntax for a FOL object language.  Section 3 describes the part of the proof theory of 
FOL needed herein (i.e. theorems FOL1-FOL9).  Section 4 describes the Intensional Semantics of FOL 
including the meaning operator (i.e. the laws M0-M7) and the relationship of meaning and modality to the 
proof theory of FOL (i.e. the laws R0, A1, A2 and A3 and the theorems C1, C2, C3, and C4).  The modal 
version of Default Logic, called DL, is defined in section 5 and explicated with theorems MD1-MD7 and SS1-
SS2.  In section 6, this modal version is shown by theorems DL1 and DL2 to be equivalent to the set theoretic 
fixed-point equation for Default Logic.  Figure 1 outlines the relationship of all these theorems to the final 
theorems DL2, FOL9, and MD7. 

FOL8

DL2 DL1
FOL9

C1

C2

C4

SS1

MD5

MD3 MD4

MD1 MD2M0-M7

MD6

MD7

SS2C3FOL6

FOL3 FOL2 FOL1

FOL7 FOL4 FOL5 MS1

MS2

 
Figure 1: Dependencies among the Theorems 

 

2. Formal Syntax of First Order Logic 

We use a First Order Logic (i.e. FOL) defined as the six tuple: (→, #f, ∀, vars, predicates, functions) where 
→, #f, and ∀ are logical symbols, vars is a set of variable symbols, predicates is a set of predicate symbols 
each of which has an implicit arity specifying the number of associated terms, and functions is a set of 
function symbols each of which has an implicit arity specifying the number of associated terms.  The sets of 
logical symbols, variables, predicate symbols, and function symbols are pairwise disjoint.  Lower case Roman 
letters possibly indexed with digits are used as variables.  Greek letters possibly indexed with digits are used 
as syntactic metavariables. γ, γ1,...γn, range over the variables, ξ, ξ1...ξn range over sequences of variables 
of an appropriate arity, π,π1...πn range over the predicate symbols, φ, φ1...φn range over function symbols, 
δ, δ1...δn, σ range over terms, and α,α1...αn, β, β1...βn,χ, χ1...χn, Γ1,...Γn,ϕ range over sentences.  
The terms are of the forms γ and (φ δ1...δn), and the sentences are of the forms (α→β), #f, (∀γ α), and (π 
δ1...δn).  A nullary predicate π or function φ is written as a sentence or a term without parentheses.  
ϕ{π/λξα} represents the replacement of all occurrences of π in ϕ by λξα followed by lambda conversion.  
The primitive symbols are shown in Figure 2 with their intuitive interpretations. 

Symbol Meaning 
α→ β if α then β. 
#f falsity 
∀γ α for all γ, α. 

Figure 2: Primitive Symbols of First Order Logic 
The defined symbols are listed in Figure 3 with their definitions and intuitive interpretations. 

Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 

Figure 3: Defined Symbols of First Order Logic 
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The FOL object language expressions are referred in the metalanguage (which also includes a FOL syntax) 
by inserting a quote sign in front of the object language entity thereby making a structural descriptive name of 
that entity.   A set of sentences is represented as: {'Γi} which is defined as: {'Γi: #t} which in turn is defined 
as: {s: ∃i(s='Γi)} where i ranges over some range of numbers (which may be finite or non-infinite).  With a 
slight abuse of  notation we also write 'κ, 'Γ  to refer to such sets. 

3. Proof Theory of First Order Logic 

First Order Logic (i.e. FOL) is axiomatized with a recursively enumerable set of theorems as the set of axioms 
is itself recursively enumerable and its inference rules are recursive.  The axioms and inference rules of FOL 
[Mendelson 1964] are those given in Figure 4.  They form a standard set of axioms and inference rules for 
FOL. 
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ (β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β  where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: (∀γ(α → β)) →  (α→(∀γ β))  where γ does not occur in α. 

Figure 4: Inferences Rules and Axioms of FOL 
In order to talk about sets of sentences we include in the metatheory set theory symbolism as developed 
along the lines of [Quine 1969].  This set theory includes the symbols ε, ∉, ⊃, =, ∪ as is defined therein. 
The derivation operation (i.e. fol) of any First Order Logic obeys the Inclusion (i.e. FOL1), Idempotence (i.e. 
FOL2), and Monotonic (i.e. FOL3) properties:  
FOL1: (fol 'κ)⊃'κ   Inclusion 
FOL2: (fol 'κ)⊃(fol(fol 'κ))  Idempotence 
FOL3: ('κ⊃'Γ) → ((fol 'κ)⊃ (fol 'Γ)) Monotonicity 
From these three properties we prove the following theorems of the proof theory of First Order Logic: 
FOL4 ((fol 'κ)⊃(fol 'Γ))↔((fol 'κ)⊃'Γ)  proof: The proof divides into two parts: (1) ((fol 'κ)⊃(fol 'Γ)) → ((fol 
'κ)⊃'Γ).  By FOL1 the hypothesis implies the conclusion. (2) ((fol 'κ)⊃'Γ)→((fol 'κ)⊃(fol 'Γ)) By FOL3 the 
hypothesis implies (fol(fol 'κ))⊃(fol  'Γ) which by FOL2  implies the conclusion. QED. 
FOL5: ∀p((p=(fol p))→α)↔∀p(α{p/(fol p)}) and ∃p((p=(fol p))∧α)↔∃p(α{p/(fol p)}) 
proof: The universal quantifier version follows from the existential quantifier version by running negation 
through both sides of the bi-implication.  The existential version is proven as follows.  There are two cases: 
(1) ((p=(fol p))∧α)→ ∃p(α{p/(fol p)}).  The existentially quantified p is replaced by p giving: 
 ((p=(fol p))∧α)→(α{p/(fol p)}) The  the hypothesis is used to replace p in α by (fol p) giving the conclusion. 
(2)   (α{p/(fol p)})→ ∃p((p=(fol p))∧α) Letting p in the conclusion be (fol p) gives: 
(α{p/(fol p)})→ (((fol p)=(fol(fol p)))∧(α{p/(fol p)})) which holds by FOL1 and FOL2. 
FOL6: (∩{p: (p⊇(fol p))∧ϕ})={s:∀p((ϕ{p/(fol p)})→(sε(fol p)))}  proof: ∩{p: (p⊇(fol p))∧ϕ} By FOL1 this is 
equivalent to: ∩{p: (p=(fol p))∧ϕ}.  Unfolding the definition of intersection gives:{s:∀p((pε{p: (p=(fol 
p))∧ϕ})→(sεp))} which is equivalent to: {s:∀p(((p=(fol p))∧ϕ)→(sεp))}.  By FOL5 this is equivalent to: 
{s:∀p((ϕ{p/(fol p)})→(sε(fol p)))} QED. 
FOL7:  If α is a sentence of proof theory then: (∩{p: (p⊇(fol p))∧α})=(fol(∩{p: (p⊇(fol p))∧α})) 
proof: From FOL1 it suffices to prove: (sε(fol(∩{p: (p⊇(fol p))∧α})))→(sε(∩{p: (p⊇(fol p))∧α})).  Unfolding 
the intersections  and simplifying gives: (sε(fol{s: ∀p(((p⊇(fol p))∧α)→(sεp))}))→∀p(((p⊇(fol 
p))∧α)→(sεp))which is equivalent to: ((sε(fol{s:(sεp)∧∀p(((p⊇(folp))∧α)→(sεp))}))∧(p⊇(fol p))∧α)→(sεp).  
Folding intersection then gives: ((sε(fol({s:(sεp)}∩{s:∀p(((p⊇(folp))∧α)→(sεp))})))∧(p⊇(fol p))∧α)→(sεp).  
Using the second hypothesis to replace p by (fol p) and then dropping the second and third hypotheses gives: 
(sε(fol(p∩{s:∀p(((p⊇(folp))∧α) →(sεp))})))→(sε(fol p)).  Folding ⊃ gives: (fol p)⊃(fol(p∩{s:∀p(((p⊇(fol 
p))∧α) →(sεp))})).  Generalizing, it suffices to prove for all α: (fol p)⊃(fol(p∩α)).  Since p⊃(p∩α) this 
follows by FOL3. QED. 
FOL8: (dl 'κ 'Γ 'αi:'βij/'χi)=(fol(dl 'κ 'Γ 'αi:'βij/'χi)) proof: Unfolding dl gives:∩{p: (p⊇(fol p))∧(p⊇'Γ)∧  
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∀i((('αiεp)∧ ∧j=1,mi('(¬βij)∉'κ))→('χiεp))}.  By FOL7 this is equivalent to: fol(∩{p: (p⊇(fol p))∧(p⊇'Γ) 
∧∀i((('αiεp)∧∧j=1,mi('(¬βij)∉'κ))→('χiεp))}) Folding dl then proves the theorem: fol(dl 'κ 'Γ 'αi:'βij/'χi) QED. 
FOL9: ('k=(dl 'κ 'Γ 'αi:'βij/'χi))→('κ=(fol 'κ))  proof: From the hypothesis and FOL8 'k=(fol(dl 'κ  'Γ 'αi:'βij/'χi)) 
is derived.  Using the hypothesis to replace (dl 'κ  'Γ 'αi:'βij/'χi) by 'κ in this result gives: ('κ=(fol 'κ))  QED. 

4. Intensional Semantics of FOL 

The meaning (i.e. mg) [Brown 1978, Boyer&Moore 1981] or rather disquotation of a sentence of First Order 
Logic (i.e. FOL) is defined to satisfy the laws given in Figure 5 below .   mg is defined in terms of mgs which 
maps a FOL object language sentence and an association list into a meaning.  Likewise, mgn maps a FOL 
object language term and an association list into a meaning.  An association list is a list of pairs consisting of 
an object language variable and the meaning to which it is bound. 
M0: (mg 'α) =df (mgs '(∀γ1...γn α)'())  where 'γ1...'γn are all the free variables in 'α 
M1: (mgs '(α → β)a) ↔ ((mgs 'α a)→(mgs 'β a)) 
M2: (mgs '#f a) ↔ #f 
M3: (mgs '(∀ γ α)a) ↔ ∀x(mgs 'α(cons(cons 'γ x)a)) 
M4: (mgs '(π δ1...δn)a) ↔ (π(mgn 'δ1 a)...(mgn 'δn a))  for each predicate symbol 'π 
M5: (mgn '(φ  δ1...δn)a) = (φ(mgn 'δ1 a)...(mgn 'δn a))   for each function symbol 'φ 
M6: (mgn 'γ a) = (cdr(assoc 'γ a)) 
M7: (assoc v  L) = (if(eq? v(car(car L))) (car L) (assoc v(cdr L))) 
       where: cons, car, cdr, eq?, if are axiomatized as they are axiomatized in Scheme. 

Figure 5: The Meaning of FOL Sentences 
The meaning of a set of sentences is defined in terms of the meanings of the sentences in the set as: 
 (ms 'κ) =df ∀s((sε'κ)→(mg s)) 
MS1: (ms{'α: Γ}) ↔ ∀ξ(Γ→α)  where ξ is the sequence of all the free variables in 'α and where Γ is any 
sentence of the intensional semantics.  proof: (ms{'α:Γ})  Unfolding ms and the set pattern abstraction 
symbol gives: ∀s((sε{s: ∃ξ((s='α)∧Γ)})→(mg s)) where ξ is a sequence of the free variables in 'a.  This is 
equivalent to: ∀s((∃ξ((s='α)∧Γ)))→(mg s))  which is logically equivalent to: ∀s∀ξ (((s='κ)∧Γ)→(mg s)) 
which is equivalent to: ∀ξ(Γ→(mg 'α)) Unfolding mg using M0-M7 then gives: ∀ξ(Γ→α) QED 
The meaning of the union of two sets of FOL sentences is the conjunction of their meanings (i.e. MS3) and 
the meaning of a set is the meaning of all the sentences in the set (i.e. MS2): 
MS2: (ms{'Γi}) ↔ ∀i∀ξiΓi  proof:  (ms{'Γi})  Unfolding the set notation gives: (ms{'Γi: #t}) 
By MS1 this is equivalent to: ∀i∀ξi(#t→Γi) which is equivalent to: ∀i∀ξiΓi QED. 
MS3: (ms('κ∪'Γ)) ↔ ((ms 'κ)∧(ms 'Γ))  proof: Unfolding ms and union in: (ms('κ∪'Γ)) gives: ∀s((sε{s: 
(sε'κ)∨(sε'Γ)})→(mg s)) or rather:  ∀s(((sε'κ)∨(sε'Γ))→(mg s)) which is logically equivalent to: 
(∀α((sε'κ)→(mg s)))∧(∀s((sε'Γ)→(mg s))).  Folding ms twice then gives:((ms 'κ)∧(ms 'Γ)) QED. 
 

The meaning operation may be used to develop an Intensional Semantics for a FOL object language by 
axiomatizing the modal concept of necessity so that it satisfies the theorem: 
C1:          ('αε(fol 'κ))  ↔  ([] ((ms 'κ)→(mg 'α))) 
for every sentence 'α and every set of sentences 'κ of that FOL object language.  The necessity symbol is 
represented by a box: [].  C1 states that a sentence of FOL is a FOL-theorem (i.e. fol) of a set of sentences of 
FOL if and only if the meaning of that set of sentences necessarily implies the meaning of that sentence. One 
modal logic which satisfies C1 is the Z Modal Quantificational Logic described in [Brown 1987; Brown 1989] 
whose theorems are recursively enumerable and which extends the weaker possibility axioms used in [Lewis 
1936; Bressan 1972;  Hendry & Pokriefka 1985].  Z includes all the laws of S5 modal Logic [Hughes & 
Cresswell 1968] whose laws are given in Figure 6.  κ and Γ represent arbitrary sentences of the intentional 
semantics. 
R0: from α infer ([] κ)   A2:  ([](κ→ Γ)) → (([]κ)→ ([]Γ)) 
A1: ([]κ) → κ    A3: ([]κ) ∨ ([]¬[]κ) 

Figure 6: The Laws of S5 Modal Logic 
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These S5 modal laws and the laws of FOL given in Figure 4 constitute an S5 Modal Quantificational Logic 
similar to [Carnap 1946; Carnap 1956], and a FOL version [Parks 1976] of [Bressan 1972] in which the 
Barcan formula: (∀γ([]κ))→([]∀γκ) and its converse hold.  The R0 inference rule implies that anything 
derivable in the metatheory is necessary.  Thus, in any logic with R0, contingent facts would never be 
asserted as additional axioms of the metatheory.  The defined Modal symbols used herein are listed in Figure 
7. 
Symbol Definition Meaning  Symbol Definition Meaning 
<>κ ¬ [] ¬κ α is logically possible  [κ] Γ  [] (κ→Γ) β entails α 
κ≡ Γ [] (κ↔Γ) α is logically equivalent to β  <κ> Γ <> (κ∧Γ) α and β is logically possible 

Figure 7: Defined Symbols of Modal Logic 
 
From the laws of the Intensional Semantics we prove that the meaning of the set of FOL consequences of a 
set of sentences is the meaning of that set of sentences (C2), the FOL consequences of a set of sentences 
contain the FOL consequences of another set if and only if the meaning of the first set entails the meaning of 
the second set (C3), and the sets of FOL consequences of two sets of sentences are equal if and only if the 
meanings of the two sets are logically equivalent (C4): 
C2: (ms(fol 'κ))≡(ms 'κ)  proof: The proof divides into two cases: (1) [(ms 'κ)](ms(fol 'κ)).  Unfolding the 
second ms gives: [(ms 'κ)]∀s((sε(fol 'κ))→(mg s)).  By the soundness part of C1 this is equivalent to:  [(ms 
'κ)]∀s(([(ms 'κ)](mg s))→(mg s)).  By the S5 laws this is e: ∀s(([(ms 'κ)](mg s))→ [(ms 'κ)](mg s))  which is 
a tautology. 
(2) [(ms(fol 'κ))](ms 'κ)  Unfolding ms twice gives: [∀s((sε(fol 'κ))→(mg s))]∀s((sε'κ)→(mg s)) 
which is: [∀s((sε(fol 'κ))→(mg s))]((sε'κ)→(mg s))  Backchaining on the hypothesis and then dropping it 
gives: (sε'κ)→(sε(fol 'κ)).  Folding ⊃ gives an instance of FOL1. QED. 
C3: (fol 'κ)⊇(fol 'Γ) ↔ ([(ms 'κ)](ms 'Γ)) 
proof: Unfolding ⊇ gives: ∀s((sε(fol 'Γ))→(sε(fol 'κ))).By C1 twice this is:∀s(([(ms 'Γ)](mg s))→([(ms 'κ)](mg 
s))) 
By the laws of S5 modal logic this is equivalent to: ([(ms 'κ)]∀s(([(ms 'Γ)](mg s))→(mg s))).  By C1 this is: 
[(ms 'κ)]∀s((sε(fol 'Γ))→(mg s)).  Folding ms then gives: [(ms  'κ)](ms(fol 'Γ)).  By C2 this is :  [(ms  'κ)](ms 
'Γ). QED. 
C4: ((fol 'κ)=(fol 'Γ)) ↔ ((ms 'κ)≡(ms 'Γ))  proof:  This is equivalent to (((fol 'κ)⊇(fol 'Γ))∧((fol 'Γ)⊇(fol 'κ))) 
↔ ([(ms 'κ)](ms 'Γ))∧([(ms 'Γ)](ms 'κ)) which follows by using C3 twice. 

5. Default Logic Represented in Modal Logic 

The fixed-point equation for Default Logic may be expressed as a necessary equivalence in an S5 Modal 
Quantificational Logic supplemented with propositional quantifiers [Fine 1970; Bressan 1972] which obey the 
normal laws of Second Order Logic (i.e. laws analogous to MR2, MA4, and MA5 given in Figure 4 where γ is 
now a propositional variable), as follows:  κ≡(DL κ Γ αi:βij/χi) 
where DL is defined as: (DL κ Γ αi:βij/χi)=df ∃p(p∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>βij))→[p]χi)) 
where the propositional variable p does not occur in Γ, αi, βij, and χi.    When the context is obvious Γ 
αi:βij/χi is omitted and just (DL κ) is written.  The idiom ∃p(p∧([]ϕ)) may be intuitively read as a nominal as 
the (possibly infinite) disjunction of all propositions such that []ϕ.  When []ϕ holds for only a finite number of 
propositions: ϕ1,...,ϕn then ∃p(p∧([]ϕ))is equivalent to: ϕ1∨...∨ϕn, but there is in no requirement that ϕ 
holds for only a finite or even only a denumerable number of propositions. 

The first two theorems state that DL entails Γ and any conclusion χi of a default whose entailment 
condition holds in DL and whose possible conditions are possible with κ. 
MD1: [(DL κ  Γ αi:βij/χi)]Γ 
proof: Unfolding DL gives: [∃p(p∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>βij))→([p]χi)))]Γ.  Since p is not free in Γ, 
pulling ∃p out of the hypothesis of the entailment gives: 
∀p((([p]Γ)∧∀i((([p]αi)∧∧j=1,mi<κ>βij)→([p]χi)))→([p]Γ)) which is a tautology. QED. 
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MD2: (([(DL κ  Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij)) → ([(DL κ Γ αi:βij/χi)]χi) 
proof: Unfolding both occurrences of DL gives: 
(([∃p(p∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi<κ>βij)→([p]χi)))]αi)∧(∧j=1,mi(<κ>βij))) 
→([∃p(p∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>βij))→([p]χi)))]χi) 
Since p is not free in αi and χi, pulling ∃p out of the hypotheses of the outer two entailments gives: 
((∀p((([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>βij))→([p]χi)))→([p]αi)))∧(∧j=1,mi(<κ>βij))) 
→∀p((([p]Γ)∧∧i((([p]αi)∧∧j=1,mi(<κ>βij))→([p]χi)))→([p]χi)) 
Instantiating the p in the hypothesis to the p in the conclusion gives: 
(((([p]Γ)∧∀i((([p]αi)∧∧j=1,mi<κ>βij)→([p]χi)))→([p]αi))∧(∧j=1,mi(<κ>βij))∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>
βij))→([p]χi))) →([p]χi) 
which simplifies to just: (([p]αi)∧∧j=1,mi(<κ>βij)∧([p]Γ)∧∀i((([p]αi)∧∧j=1,mi(<κ>βij))→([p]χi))) →([p]χi) 
Forward chaining using the first and second hypotheses on the fourth proves the theorem. QED. 
 
The concept (i.e. ss) of the combined meaning of all the sentences of the FOL object language whose 
meanings are entailed by a proposition is defined as follows:  (ss κ) =df ∀s(([κ](mg s))→(mg s)).  SS1 shows 
that a proposition entails the combined meaning of the FOL object language sentences that it entails.  SS2 
shows that if a proposition is necessarily equivalent to the combined meaning of the FOL object language 
sentences that it entails, then there exists a set of FOL object language sentences whose meaning is 
necessarily equivalent it: 
SS1: [κ](ss κ) 
proof: By R0 it suffices to prove: κ→(ss κ).  Unfolding ss gives: κ→∀s(([κ](mg s))→(mg s)) 
which is equivalent to:∀s(([κ](mg s))→(κ→(mg s))) which is an instance of A1. QED. 
SS2: (κ≡(ss κ))→ ∃s(κ≡(ms s)) 
proof: Letting s be {s: ([κ](mg s)) gives (κ≡(ss κ))→ (κ≡(ms{s: ([κ](mg s)))).  Unfolding ms and lambda 
conversion gives: (κ≡(ss κ))↔ (κ≡∀s(([κ](mg s))→(mg s))).  Folding ss gives a tautology. QED. 
The theorems MD3 and MD4 are analogous to MD1 and MD2 except that DL is replaced by the combined 
meanings of the sentences entailed by DL. 
MD3: [ss(DL κ ∀iΓi αi:βij/χi)]∀iΓi 
proof: By R0 it suffices to prove (ss(DL κ ∀iΓi αi:βij/χi))→∀iΓi which is equivalent to: 
 (ss(DL κ ∀iΓi αi:βij/χi))→Γi.  Unfolding ss gives:  (∀s(([(DL κ ∀iΓi αi:βij/χi)](mg s))→(mg s)))→Γi which 
by the meaning laws M0-M7 is equivalent to: (∀s(([(DL κ ∀iΓi αi:βij/χi)](mg s))→(mg s)))→(mg 'Γi).  
Backchaining on (mg  'Γi) with s in the hypothesis assigned to be 'Γi in the conclusion shows that it suffices to 
prove:  
([(DL κ ∀iΓi αi:βij/χi)](mg 'Γi)) which by the meaning laws: M0-M7 is equivalent to: ([(DL κ ∀iΓi αi:βij/χi)]Γi) 
which by the laws of S5  is equivalent to: ([(DL κ ∀iΓi αi:βij/χi)]∀iΓi) which is an instance of MD1. QED. 
MD4: (([ss(DL κ Γ αi:βij/χi)]αi)∧(∧j=1,mi<κ>βij))→ ([ss(DL κ Γ αi:βij/χi)]χi) 
proof:  Unfolding the last ss gives: 
(([ss(DL κ Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→([∀s(([(DL κ Γ αi:βij/χi)](mg s))→(mg s))]χi) 
Instantiating s in the hypothesis to 'χi and then dropping the hypothesis gives: 
(([ss(DL κ Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→([(([(DL κ Γ αi:βij/χi)](mg 'χi))→(mg 'χi))]χi).  Using the 
meaning laws M0-M7 gives: (([ss(DL κ Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→([(([(DL κ Γ 
αi:βij/χi)]χi)→χi)]χi).Backchaining on χi, it suffices to prove: (([ss(DL κ 
Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→([(DL κ Γ αi:βij/χi)]χi) 
By SS1 and the first hypothesis it suffices to prove:  
(([(DLκ Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→([(DL κ Γ αi:βij/χi)]χi) which is an instance of MD2. QED. 
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Finally MD5, MD6, and MD7 show that talking about the meanings of sets of FOL sentences in the modal 
representation of Default Logic is equivalent to talking about propositions in general. 
MD5: (∃p((ms p)∧([(ms p)](∀iΓi))∧∀i((([(ms p)]αi)∧∧j=1,mi<κ>βij)→[(ms p)]χi)))≡(DL κ(∀iΓi)αi:βij/χi) 
proof: The proof divides into two entailments: 
(1) [∃p((ms p)∧([(ms p)]∀iΓi)∧∀i((([(ms p)]αi)∧∧j=1,mi(<κ>βij))→[(ms p)]χi))] (DL κ(∀iΓi)αi:βij/χi) 
DL is unfolded giving: [((ms p)∧([(ms p)](∀iΓi))∧∀i((([(ms p)]αi)∧∧j=1,mi<κ>βij)→[(ms p)]χi))] 
                                ∃p(p∧([p]∀iΓi)∧∀i((([p]αi)∧∧j=1,mi<κ>βij)→[p]χi)) 
Instantiating the quantified p in the conclusion to be (ms p) produces a tautology. 
(2) [(DL κ(∀iΓi)αi:βij/χi)] ∃p((ms p)∧([(ms p)]∀iΓi)∧∀i((([(ms p)]αi)∧∧j=1,mi<κ>βij)→[(ms p)]χi)) 
p is assigned to be the set: {s: [(DL κ(∀iΓi)αi:βij/χi)](mg s)}. 
Since p only occurs in (ms p) and since (ms{s: ([(DL κ)](mg s))}) is equivalent to (ss(DL κ)) we get: 
 [(DL κ)]((ss(DL κ))∧([(ss(DL κ))]∀iΓi)∧∀i((([(ss(DL κ))]αi)∧∧j=1,mi<κ>βij)→([(ss(DL κ))]χi))) 
which holds by theorems SS1, MD3, and MD4. QED. 
 
MD6: (ss(DL κ(∀iΓi)αi:βij/χi))≡(DL κ(∀iΓi)αi:βij/χi) 
proof: In view of SS1, it suffices to prove: ([(ss(DL κ))](DL κ)).  Unfolding the second occurrence of DL gives: 
[(ss(DL κ))]∃p(p∧([p](∀iΓi))∧∀i((([p]αi)∧∧j=1,mi<κ>βij)→[p]χi)).  Letting p be (ss(DL κ)) then gives: 
[(ss(DL κ))]((ss(DL κ))∧([(ss(DL κ))](∀iΓi))∧∀i((([(ss(DL κ))]αi)∧∧j=1,mi<κ>βij)→([(ss(DL κ))]χi))) 
which holds by theorems MD3 and MD4. QED. 
 
MD7: (κ≡(DL κ(∀iΓi)αi:βij/χi))→∃s(κ≡(ms s)) 
proof: From the hypothesis and MD6 κ≡(ss(DL κ)) is derived.  Using the hypothesis to replace (DL κ) by κ in 
this result gives: κ≡(ss(DL κ)),  By SS2 this implies the conclusion. QED. 

6.  Conclusion: The Relationship between Default Logic and the Modal Logic 

The relationship between the proof theoretic definition of Default Logic [Reiter 1980] and the modal 
representation is proven in two steps.  First theorem DL1 shows that the meaning of the set dl is the 
proposition DL and then theorem DL2 shows that a set of FOL sentences which contains its FOL theorems is 
a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if 
the meaning (or rather disquotation) of that set of sentences is logically equivalent to DL of the meanings of 
that initial set of sentences and those defaults. 
DL1: (ms(dl(fol 'κ){'Γi} 'αi:'βij/'χi))≡(DL(ms 'κ)(∀iΓi)αi:βij/χi) 
proof: (ms(dl(fol 'κ){'Γi} 'αi:'βij/'χi)) Unfolding the definition of dl gives:  
ms(∩{p: (p⊇(fol p))∧(p⊇{'Γi})∧∀i((('αiεp)∧∧j=1,mi('(¬βij)∉(fol 'κ)))→('χiεp))}).  By FOL6 this is:  
ms{s:∀p((((fol p)⊇{'Γi})∧∀i((('αiε(fol p))∧∧j=1,mi('(¬βij)∉(fol 'κ))) →('χiε(fol p))))  →(sε(fol p)))} 
Using C1 four times, C3, and FOL4 this is equivalent to:  ms{s:∀p((([(ms p)](ms{'Γi}))∧∀i((([(ms p)](mg 
'αi))∧∧j=1,mi¬([(ms 'κ)](mg '¬βij))) →([(ms p)](mg 'χi))))→([(ms p)](mg s)))} 
By the meaning laws M0-M7 this is equivalent to: 
ms{s:∀p((([(ms p)](ms{'Γi})) ∧∀i((([(ms p)]αi)∧∧j=1,mi¬([(ms 'κ)]¬βij))→([(ms p)]χi)))   →([(ms p)](mg s)))} 
By MS2 this is equivalent to: 
ms{s:∀p((([(ms p)](∀iΓi)) ∧∀i((([(ms p)]αi)∧∧j=1,mi¬([(ms 'κ)]¬βij))→([(ms p)]χi)))   →([(ms p)](mg s)))} 
Folding <> gives: ms{s:∀p((([(ms p)](∀iΓi))∧∀i((([(ms p)]αi)∧∧j=1,mi(<(ms 'κ)>βij)) →([(ms p)]χi)))→([(ms 
p)](mg s)))} 
By S5 Modal Quantificational Logic this is equivalent to: 
ms{s: ([∃p((ms p)∧([(ms p)](∀iΓi))∧∀i((([(ms p)]αi)∧∧j=1,mi(<(ms 'κ)>βij))→([(ms p)]χi)))] (mg s))} 
By MD5 this is equivalent to: ms{s: ([(DL(ms 'κ)(∀iΓi)αi:βij/χi)](mg s))} 
Unfolding ms and lambda conversion gives: ∀s(([(DL(ms 'κ)(∀iΓi)αi:βij/χi)](mg s))→(mg s)) 
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Folding ss gives: ss(DL(ms 'κ)(∀iΓi)αi:βij/χi).  By MD6 is equivalent to:(DL(ms 'κ)(∀iΓi)αi:βij/χi) QED. 
 
DL2: ((fol 'κ)=(dl(fol 'κ){'Γi} 'αi:'βij/'χi))↔((ms 'κ)≡(DL(ms 'κ)(∀iΓi)αi:βij/χi)) 
proof:  By FOL8 (fol 'κ)=(dl(fol 'κ){'Γi} 'αi:'βij/'χi) is equivalent to: (fol 'κ)=(fol(dl(fol 'κ){'Γi} 'αi:'βij/'χi)).  
By C4 this is equivalent to: (ms 'κ)≡(ms(dl(fol 'κ){'Γi} 'αi:'βij/'χi)). 
By DL1 this is equivalent to: (ms 'κ)≡(DL(ms 'κ)(∀iΓi)αi:βij/χi) QED. 
 

Theorem DL2 shows that the set of theorems: (fol 'κ) of a set 'κ is a fixed-point of a fixed-point equation of 
Default Logic if and only if the meaning (ms 'κ) of 'κ is a solution to the necessary equivalence.  Furthermore, 
by FOL9 there are no other fixed-points (such as a set not containing all its theorems) and by MD7 there are 
no other solutions (such as a proposition not representable as a sentence in the FOL object language).  
Therefore, the Modal representation of Default Logic (i.e. DL), faithfully represents the set theoretic 
description of Default Logic (i.e. dl).Finally, we note that (∀iΓi) and (ms 'κ) may be generalized to be arbitrary 
propositions Γ and κ giving the more general modal representation:  κ≡(DL κ Γ αi:βij/χi). 
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ON THE RELATIONSHIP BETWEEN QUANTIFIED REFLECTIVE LOGIC AND 
QUANTIFIED DEFAULT LOGIC 

Frank M. Brown 
Abstract: Reflective Logic and Default Logic are both generalized so as to allow universally quantified 
variables to cross modal scopes whereby the Barcan formula and its converse hold.  This is done by 
representing both the fixed-point equation for Reflective Logic and the fixed-point equation for Default both as 
necessary equivalences in the Modal Quantificational Logic Z. and then inserting universal quantifiers before 
the defaults.  The two resulting systems, called Quantified Reflective Logic and Quantified Default Logic, are 
then compared by deriving metatheorems of Z that express their relationships.  The main result is to show that 
every solution to the equivalence for Quantified Default Logic is a strongly grounded solution to the 
equivalence for Quantified Reflective Logic.    It is further shown that Quantified Reflective Logic and 
Quantified Default Logic have exactly the same solutions when no default has an entailment condition. 
Keywords: Quantified Reflective Logic, Quantified Default Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 

Two nonmonotonic logics which inherently deal with entailment conditions in addition to possibility conditions 
in their defaults; are Reflective Logic and Default Logic [Reiter 1980] [Antoniou 1997].  The fixed-point 
solutions to Default Logic are defined by the set theoretic equation κ=(dl κ  Γ αi:βij/χi) where: 
(dl κ Γ αi:βij/χi) =df  ∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i(((αiεp)∧ ∧j=1,mi((¬βij)∉κ))→(χiεp))} 
where αi, βij, and χi are closed sentences of First Order Logic (i.e. FOL) and Γ is a set of closed sentences 
of FOL   ∧j=1,mi  stands for the conjunction of the formula that follows it as j ranges from 1 to mi.  If mi=0 then 
it specifies #t.  ∧i is also a conjunction.  By closed it is meant that no sentence may contain a free variable.  
(fol p) is the set of theorems deducible in FOL from the set p.  The fixed-point solutions for Reflective Logic, 
can be defined by the simpler set theoretic equation κ=(rl κ Γ αi:βij/χi) given in [Brown 1989] where: 
(rl κ Γ αi:βij/χi) =df fol(Γ∪{χi:(αiεκ)∧ ∧j=1,mi((¬βij)∉κ)}) 
where αi, βij, and χi are again closed sentences of FOL and Γ is a set of closed sentences of FOL.  

These two nonmonotonic systems have the basic problem that they do not explicate the case where 
free variables occur in the αi, βij, and χi sentences and which are universally quantified just over the scope of 
those sentences.  To carry out such an explication we want to transform (dl κ Γ αi:βij/χi) into something like: 

∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i∀ξi(((αiεp)∧ ∧j=1,mi((¬βij)∉κ))→(χiεp))} 
and (rl κ Γ αi:βij/χi) into something like:5  fol(Γ∪{Ψ: ∨i∃ξi(Ψ=χi∧(αiεκ)∧ ∧j=1,mi((¬βij)∉κ))}) 
where ξi is a sequence of variables and the universal quantifier really means universal quantification.  That is, 
the Barcan formula and its converse hold [Carnap 1946] so that a property universally holds (in κ) if and only 
if it holds (in κ) for everything: ((∀ξα)εκ)↔(∀ξ(αεκ)).  The problem lies in the fact that αi, βij, and χi are 
necessarily closed sentences of FOL.6 
However,  [Brown 2003a] showed how Reflective Logic can be represented in Modal Logic by the necessary 
equivalence: κ≡(RL κ Γ αi:βij/χi) where: 
 (RL κ Γ αi:βij/χi) =df Γ∧∧i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Likewise  [Brown 2003b] showed how Default Logic can be represented in Modal Logic by the necessary 
equivalence: κ≡(DL κ Γ αi:βij/χi) where: 
 (DL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 

                                                           
5When the set theoretic notation is unravelled the existential quantifiers specified herein are essentially universally quantified over the defaults as can 
be seen in the equivalent equation: k=∩{p:(p⊇(fol p))∧(p⊇Γ)∧ ∧i∀ξi(((αiεk)∧∧j=1,mi((¬βij)∉k))→(χiεp))} 
6Of course one generally gives a meaning to such a sentence by saying that all the free variables are implicitly universally quantified or that all such 
variables are implicitly existentially quantified.  However, neither approach allows a quantifier to refer to the same free variable in αi, βij, and χi. This 
issue is discussed in more detail in section 3.2 in [Antoniou 1997]. 
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The advantage of the modal representations is that quantifiers can be embedded in them wherever we wish 
thus allowing inserted universal quantifiers to capture the free variables in αi, βij, and χi , giving the 
generalizations: 
(QRL κ Γ αi:βij/χi) =df Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
(QDL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Having created two new nonmonotonic systems (i.e. QRL and QDL) the question arises as to how their fixed-
point solutions are related.  Herein we address this question.  Section 2 axiomatizes the Z Modal 
Quantificational Logic. Quantified Reflective Logic (i.e., QRL) is defined in section 3 and some basic theorem 
schemata about it are proven.  Quantified Default Logic (i.e., QDL) is defined in section 4 and some basic 
theorem schemata about it are proven.  The main result is proven in section 5.  Finally, some conclusions are 
drawn in section 6. 
 

2. Axiomatization of Z Modal Logic 

The Modal Quantificational Logic Z [Brown 1987] is a seven tuple: (→, #f, ∀, [], vars, predicates, functions) 
where →, #f, ∀, and [] are logical symbols, vars is a set of variable symbols, predicates is a set of predicate 
symbols each of which has an implicit arity specifying the number of terms associated with that predicate, 
and functions is a set of function symbols each of which has an implicit arity specifying the number of terms  
associated with that function.  The sets of logical symbols, variables, predicate symbols, and function 
symbols are pairwise disjoint.  The set of terms is the smallest set which includes the variables and is closed 
under the process of forming new terms from other terms using the function symbols of the language.  The set 
of sentences is the smallest set which includes #f, the variables, and each of the predicates followed by an 
appropriate number of terms, and is closed under the process of forming new sentences from other 
sentences using the logical symbols of the language, provided that no variable in any subexpression has free 
occurrences both as a sentence and as a term.  Variables that occur only in term positions are called concept 
variables.  Variables which occur only in sentence positions are called propositional variables.  Lower case 
Roman letters possibly indexed with digits are used as variables of Z.  Greek letters are used as syntactic 
metavariables.  γ, γ1,...γn, range over the variables, ξ, ξ1,...ξn range over a sequence of variables of an 
appropriate arity, π,π1...πn,ρ,ρ1...ρn range over the predicate symbols, φ, φ1...φn range over function 
symbols, δ, δ1...δn range over terms, Δ, Δ1...Δn range over a sequence of terms of an appropriate arity, and 
α, α1...αn, β, β1...βn,χ, χ1...χn, Γ, and Ψ range over sentences.  Thus, the terms are of the forms γ and (φ 
δ1...δn), and the sentences are of the forms (α →β), #f, (∀γ α), ([]α), (π δ1...δn), and γ.  A nullary predicate 
π or function φ is written as a sentence or term without parentheses.  The primitive symbols of Z are shown in 
Figure 1. 
 

Symbol Meaning  Symbol Meaning 
α→ β if α then β.  ∀γ α for all γ, α. 
#f falsity  [] α α is logically necessary 

Figure 1: Primitive Symbols of Z 
 

The defined symbols of Z are listed in Figure 2 below with their intuitive interpretations. 
 

Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 
<> α ¬[]¬α α is  logically possible  [β] α  ([](β→α)) β entails α 
α≡ β [](α↔β) α is logically equivalent toβ  <β> α (<>( β∧α)) α is possible with β 
δ1=δ2 (πδ1)≡(π δ1) δ1is logically equal to δ2     

Figure 2: Defined Symbols of Z 
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Z is effectively axiomatized with a recursively enumerable set of theorems as the set of axioms is itself 
recursively enumerable and its inference rules are recursive.  The classical (i.e., non-modal) axioms and 
inference rules of Z include those of Quantificational Logic [Mendelson 1964] given in Figure 3.  The laws 
MR1, MR2, MA1-MA7 are a standard set of axioms and inference rules for First Order Quantificational Logic 
except for the following: point:  Because γ in MR2, MA4, and MA5 may be a propositional variable these laws 
constitute a fragment of Second Order Logic.  Propositional quantifiers in modal logics have been investigated 
in [Fine 1970].  
 
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ ( β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β   where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: ((∀γ (α → β)) →  (α →(∀γ β)))  where γ does not occur in α. 

Figure 3: The Classical Rules and Axioms of Z 
 
The modal inference rule and axioms of Z about logical necessity (i.e., []) are given in Figure 4.  R0, A1, A2, 
and A3 constitute an S5 Modal Logic [Hughes and Cresswell 1968] which, with the nonmodal laws, is an S5 
modal quantificational logic similar to [Carnap 1946], [Carnap 1956], and a First Order Logic version [Parks 
1976] of [Bressan 1972] in which the Barcan formula: (∀γ([]α))→([]∀γα) and its converse hold.  R0 implies 
that all  assertions are logically necessary.  Thus, in any logic with R0, contingent facts Γ holding in a 
knowledgebase κ are specified by asserting ([κ]Γ).  If Γ is all that is in κ then   κ≡Γ is asserted.  The variable 
κ may occur in Γ. 
 
R0: from α infer ([] α)   A4: ([]α) → ([](α{π / λξβ} 
A1: ([]p) → p    A5: ([]α) → ([](α{φ / λξδ} 
A2: ([p]q) → (([]p)→ ([]q))  A6: ¬(∀x∀y(x=y)) 
A3: ([]p) ∨ ([]¬[]p)) 

Figure 4: The Modal Inference Rule and Axioms of Z 
 
A4 is the key axiom schema of Z. It is far stronger than the trivial possibility axioms such as 
∃pq((¬[p]q)∧(¬[p]¬q)) assumed in [Lewis 1936] and ∃p((<>p)∧(<>¬p)) assumed in [Bressan 1972].  It also 
extends certain axiom schemata used in propositional logic, including the PropPosAx schema in [Brown 
1979], S13 [Cocchiarella 1984], and S5c [Hendry and Pokriefka 1985]. 
 

3. Quantified Reflective Logic 

The formula for Quantified Reflective Logic7 (i.e., QRL) [Brown 1989] is defined in Z as follows: 
RL0:   (QRL κ Γ αi:βij/χi) =df Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
where Γ, αi, βij, and χi are sentences of Z and κ does not occur in ξ.  These sentences may contain free 
variables some of which may be captured by the ∀ξi quantifiers.  When the context is obvious Γ αi:βij/χi is 
omitted and instead just (QRL κ) is written.  Interpreted as a doxastic logic, the equivalence: 

κ≡(QRL κ) 
states: 
 

                                                           
7 In the QRL generalization of Reflective Logic the Barcan formula and its converse hold for [k]: 
([k]∀ξα)↔(∀ξ[k]α) since they are inherited from the S5 modal properties of [].   In terms of set theoretic 
fixed-points this amounts to saying that ('(∀ξα)εk)→(∀ξ('αεk)) holds except for the problem that that in the 
set theory  representation 'α is a closed sentence. 
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that which is believed is logically equivalent to 
 Γ and  for each i, for all ξi if αi is believed and for each j, βij is believable then χi 

Here are some simple properties of QRL, namely that (QRL κ) entails Γ and any conclusion χi of a default 
whose conditions hold: 
R1:  [(QRL κ)]Γ 
proof: Unfolding QRL gives: [Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)]Γ  which is a tautology. QED. 
 
R2: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi) 
proof: Unfolding QRL gives: (([κ]αi)∧(∧j=1,mi(<κ>βij)))→([Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)]χi) 
Using the hypotheses on the ith instance and where the quantified ξi is instantiated to ξi gives: 
(([κ]αi)∧(∧j=1,mi(<κ>βij)))→([Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)∧χi]χi) which is a tautology. QED. 

4. Quantified Default Logic 
The formula for Quantified Default Logic (i.e., QDL) [Brown 1989] is defined in Z as follows: 
D0: (QDL κ Γ αi:βij/χi) =df ∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
where Γ, αi, βij, and χi are sentences of Z without any free occurences of p and neither p nor κ occur in ξi.  
These sentences may contain free variables some of which may be captured by the ∀ξi quantifiers.  When 
the context is obvious Γ αi:βij/χi is omitted and just (QDL κ) is written.  Interpreted as a doxastic logic the 
equivalence: 

κ≡(QDL κ) 
states: 
that which is believed is logically equivalent to 
   the disjunction of all potential belief states such that: 
       Γ is potentially believed 
       and for each i, for all ξ 
          if αi is potentially believed and for each j, βij is believable then χi is potentially believed. 

Given below are some simple properties of QDL.  The first two state that QDL entails Γ and any conclusion χi 
of a default whose entailment condition holds in QDL and whose possible conditions are possible with κ. 
D1: [(QDL κ)]Γ 
proof: Unfolding QDL gives: [∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]Γ 
Since p is not free in Γ, pulling ∃p out of the hypothesis of the entailment gives: 
∀p((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) →([p]Γ))   which is a tautology. QED. 
 
D2: (([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij))) →([(QDL κ)]χi) 
proof: Unfolding both occurrences of QDL gives: 
(([∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]αi)∧(∧j=1,mi(<κ>βij))) 
→([∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]χi) 
Since p is not free in αi and χi, pulling ∃p out of the hypotheses of the entailments gives: 
((∀p((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]αi))∧(∧j=1,mi(<κ>βij)))) 
→∀p((([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi)) 
Instantiating the p in the hypothesis to the p in the conclusion gives: 
(((([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]αi)) 
∧(∧j=1,mi(<κ>βij))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi) 
which simplifies to 
just:(([p]αi)∧(∧j=1,mi(<κ>βij))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))→([p]χi) 
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Since p is not in ξ, forward chaining using the first and second hypotheses on the fourth proves the theorem. 
QED. 
 
A slightly stronger version of QDL is defined below: 
D3:  (QDL* κ Γ αi:βij/χi) =df ∃p(p∧([κ]p)∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
 
D4: [(QDL* κ)](QDL κ) 
proof:  Unfolding QDL* and QDL gives: [∃p(p∧([κ]p)∧([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))] 
∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Letting p in the conclusion be the p in the hypothesis results in a tautology. QED. 
 
Theorem D5 shows that QDL and QDL* are logically equivalent whenever κ entails the QDL formula: 
D5: ([κ](QDL κ))→((QDL κ)≡(QDL* κ)) 
proof: From Theorem D4, it suffices to prove: ([κ](QDL κ))→([(QDL κ)](QDL* κ)) 
Unfolding QDL* gives:([κ](QDL κ))→([(QDL 
κ)]∃p(p∧([κ]p)∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))) 
Since p and κ are not in ξ and p is not free in Γ, αi, βij, and χi, letting p be (QDL κ) gives: 
 ([κ](QDL κ))→   
       ([(QDL κ)]((QDL κ)∧([κ](QDL κ))∧([(QDL κ)]Γ)∧∧i∀ξi((([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QDL 
κ)]χi)))) 
which holds by D1, D2,  and the hypothesis. QED 
 
 

5. Relationship between QRL and QDL 

The following theorems characterize the relationship between QDL and QRL: 
 
RD1: (κ≡(QDL κ)) → [κ](QRL κ) 
proof: Unfolding the definition of QRL gives: (κ≡(QDL κ))→ [κ](Γ∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi)) 
Since κ is not in ξ, pushing [κ] to lowest scope using the laws of ΚU45 modal logic on [κ] gives: 
(κ≡(QDL κ))→  (([κ]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi))) 
Since κ is not in ξ, using the hypothesis to replace the first κ in the conclusion by (QDL κ) gives [(QDL κ)]Γ 
which by theorem D1 is true.  It remains only to prove: (κ≡(QDL κ))→ ((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi)) 
Since κ is not in ξi, replacing two occurrences of κ by using the hypothesis  and then dropping the hypothesis 
gives: (([(QDL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QDL κ)]χi) which by theorem D2 is true. QED. 
 
RD2:  (κ≡(QDL κ))→ [(QRL κ)]κ 
proof: Using the hypothesis to replace the entailed κ in the conclusion gives: (κ≡(QDL κ))→ ([(QRL κ)](QDL 
κ)) 
Unfolding QDL in the conclusion gives:  
(κ≡(QDL κ)) → [(QRL κ)]∃p(p∧([p]Γ) ∧∧i∀ξi ((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Since p and κ are not in ξ and p is not free in Γ, αi, βij, and  χi, letting p be (QRL κ) gives: 
(κ≡(QDL κ))→[(QRL κ)]((QRL κ)∧([(QRL κ)]Γ)∧∧i∀ξi((([(QRL κ)]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
The hypothesis κ≡(QDL κ) and RD1 imply ([κ](QRL κ)) which, since κ is not in ξ, allows the above sentence 
to be generalized to: 
(κ≡(QDL κ))→[(QRL κ)]((QRL κ)∧([(QRL κ)]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
which by RL1 and RL2 is true. QED. 



International Journal "Information Theories & Applications" Vol.10 

 

452 

 
From RD1 and RD2 we may infer that every solution of the reflective equivalence of Quantified Default Logic 
is a solution of the equivalence for Quantified Reflective Logic: 
RD3: (κ≡(QDL κ))→ (κ≡(QRL κ)) 
 
It also follows that every solution to Quantified Reflective Logic entails (QDL κ). 
RD4: ([κ](QRL κ))→ [κ](QDL κ) 
proof: Unfolding the definition of QDL gives: 
([κ](QRL κ))→ [κ]∃p(p∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
Since p and κ are not in ξi and p is not free in Γ, αi, βij, and χi, letting p be κ gives: 
([κ](QRL κ))→ [κ](κ∧([κ]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([κ]χi))) 
Since κ is not in ξi, using  the  hypothesis to replace two  occurrences of κ by  (QRL κ) gives the 
generalization: 
([κ](QRL κ))→ [κ](κ∧([(QRL κ)]Γ)∧∧i∀ξi((([κ]αi)∧(∧j=1,mi(<κ>βij)))→([(QRL κ)]χi))) 
which is true by RL1 and RL2. QED 
. 
From RD3 and RD4 we may infer that the solutions to QDL are precisely those solutions to QRL which are 
entailed by (QDL κ):  
RD5: (κ≡(QDL κ)) ↔ ((κ≡(QRL κ))∧([(QDL κ)]κ)) 
 
Likewise since κ≡(QRL κ) in RD5 implies ([κ](QDL κ)) by RD3 and since ([κ](QDL κ)) implies that (QDL κ) is 
logically equivalent to (QDL* κ) by D5, it follows that:  
RD6: (κ≡(QDL κ)) ↔ ((κ≡(QRL κ))∧([(QDL* κ)]κ)) 
 

 RD6 characterizes the relationship between QRL and QDL in terms of [(QDL* κ)]κ.  We now show 
that ([(QDL* κ)]κ) is equivalent to the notion of being constructive, defined as follows: a Reflectivec solution κ 
is constructive iff it is not the case that there exists a proposition which satisfies the following four conditions: 
(1) κ entails that proposition, (2) the proposition does not entail κ, (3) the proposition entails Γ, and (4) for 
each i and for all ξ the proposition entails the conclusion χi of each default whose presupposition αi is 
entailed by that proposition and whose βij formulas are possible with κ. 
RD7: (Constructive κ Γ αi:βij/χi)  

=df¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξ((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
 

RD8: ([(QDL* κ)]κ)↔(Constructive κ) 
proof: Unfolding the (QDL*  κ) in ([(QDL* κ)]κ) gives: 
[∃p(p∧([p]Γ)∧([κ]p)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi)))]κ 
Pulling ∃p out of the hypothesis of the entailment gives: 
∀p((∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))∧([p]Γ)∧([κ]p))→([p]κ)) 
Pushing a negation through the formula gives: 
¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ) ∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which is the definition of being constructive. QED. 
 

Being constructive isequivalent to the notion of being strongly grounded.  A Quantified Reflective 
solution κ is strongly grounded iff it is not the case that there exists a proposition which satisfies the following 
four conditions: (1) κ entails that proposition,  (2) the proposition does not entail κ, (3) the proposition entails 
Γ, and (4) for each i and all ξ the proposition entails the conclusion χi of each default whose βij formulas are 
also possible with κ in addition to being such that the default's presupposition αi is entailed by that 
proposition and the default's βij formulas  are possible with that proposition:8 

                                                           
8  When no variables cross modal scopesthis concept may be defined in set theory as: 
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RD9: (Strongly-grounded κ Γ αi:βij/χi) =df 
  ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ) ∧∧i∀ξ((∧j=1,mi(<κ>βij))→((([p]αi)∧(∧j=1,mi(<p>βij)))→([p]χi)))) 
 

RD10: (Constructive κ)↔(Strongly-grounded κ) 
proof: Unfolding Strongly-grounded gives: 
 ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→((([p]αi)∧(∧j=1,mi(<p>βij)))→([p]χi)))) 
Since ([κ]p), (<κ>βij) implies (<p>βij)).  Since p and κ do not occur in ξ, the above sentence is equivalent to:  
¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→((([p]αi)∧#t)→([p]χi)))) 
or rather: ¬∃p(([κ]p)∧(¬([p]κ))∧([p]Γ)∧∧i∀ξi((([p]αi)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which is the definition of being constructive. QED. 
 

The above theorems give five characterizations of QDL in terms of QRL:9 
RD11: All the following are equivalent: 
(1) κ≡(QDL κ), (2) (κ≡(QRL κ))∧(κ≡(QDL κ)), (3) (κ≡(QRL κ))∧([(QDL κ)]κ), (4) (κ≡(QRL κ))∧([(QDL* 
κ)]κ),  
(5) (κ≡(QRL κ))∧(Constructive κ), (6) (κ≡(QRL κ))∧(Strongly-grounded κ) 
proof: The second formula follows from RD3, the third from RD5, the fourth from RD6, the fifth from RD8 and 
the sixth from RD10. QED. 
 

Having shown that the Quantified Default solutions are the strongly grounded Quantified Reflective solutions, 
it is now shown that being strongly grounded essentially applies only to the defaults with entailment conditions 
since if there are essentially no entailment conditions in the defaults (i.e., αi is #t for every ith default since #t 
is entailed by anything) then the Quantified Default solutions are precisely the Quantified Reflective solutions: 
RD12:  (QDL κ Γ #t:βij/χi) ≡  (QRL κ Γ #t:βij/χi)  
proof: Unfolding (QDL κ Γ #t:βij/χi) gives: ∃p(p∧([p]Γ)∧∧i∀ξi((([p]#t)∧(∧j=1,mi(<κ>βij)))→([p]χi))) 
which simplifies to: ∃p(p∧([p]Γ)∧∧i∀ξi((∧j=1,mi(<κ>βij))→([p]χi))) 
Since p does not occur in ξi, the KU45 modal laws of [p] allow it to be pulled out giving: 
∃p(p∧([p] (Γ∧∧i∀ξ((∧j=1,mi(<κ>βij))→χi)))) which is:  Γ∧∧i∀ξi((∧j=1,mi(<κ>βij))→χi) 
which may be rewritten as:  Γ∧∧i∀ξi((([κ]#t)∧(∧j=1,mi(<κ>βij)))→χi) which is: (QRL κ Γ #t:βij/χi). QED. 

6. Conclusion 

Theorem RD11 shows that the solutions to Quantified Default Logic (i.e., QDL) are precisely the strongly 
grounded solutions to Quantified Reflective Logic (i.e., QRL).  These results apply where variables cross 
modal scopes in any combination of the following two cases: 
(1) where variables are universally quantified precisely over the scope of a default (or equivalently across 

the scope of all defaults and the initial theory Γ since they are connected by conjunction and since the 
universal quantifier commutes with conjunction), 

(2) where variables are not quantified within the scope of the reflective equivalence in which case they are 
free within the scope of the theorem schemata proven herein  and those schemata lie within the scope 
of any universal or existential quantification of such variables. 

This paper does not address the important case where existential quantification occurs precisely over the 
scope of one or more defaults nor more complicated systems whereby quantifiers and modal symbols are 

                                                                                                                                                                                
(strongly-grounded k) =d ¬∃p((k⊇p)∧(¬(p⊇k))∧(p⊇(folth p))∧(p⊇Γ)∧∧i((∧j=1,mi 
((¬βij)∉k))→(((αiεp)∧∧j=1,mi((¬βij)∉p))→(χiεp)))). . 
9[Konolige 1987a 1987b] previously attempted to prove a theorem relating the kernels of the "strongly grounded" fixed-points of Autoepistemic logic to 
the fixed-points of Default Logic (i.e. dl).   A correct version of that attempt is described in [Antoniou 1997].  Since the fixed-points of Reflective Logic 
(i.e. rl) are the kernels of the fixed-points of Autoepistemic Logic that result is related to the result given herein.  However, that result is not as general 
as the result given herein because it does not explain the relationship between Quantified Default Logic (i.e. QDL) and Quantified Reflective Logic (i.e. 
QRL) where variables may occur free in the 'α, 'βij, and 'χi sentences or in the sentences in Γ thereby being quantified across the modal scopes of the 
defaults (which is the subject of this paper). 
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nested in complex ways.  (It is noted, however, that [Brown 1978] showed how an additional modal axiom 
allows modal scopes to be reduced to a depth of one even in the presence of quantifiers.) 
This paper has not addressed automatic deduction systems for QDL and QRL, but there is the obvious point 
that theorems RD11 and RD12 suggest that a good deduction system for one logic may form the basis for a 
deduction system for the other logic.  In particular, a deduction system that produced the QRL solutions could 
be used to produce the QDL solutions by checking which of those solutions satisfied a supporting condition 
(e.g. being strongly grounded) in RD11.  The cost of checking a solution once it is produced would seem to be 
less than the cost of mechanically computing it. 
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REPRESENTING AUTOEPISTEMIC LOGIC IN MODAL LOGIC 
Frank M. Brown 

Abstract: The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic 
Modal Quantificational Logic whose modal laws are stronger than S5.  Specifically, it is proven that a set of 
sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial 
set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to 
a particular modal functor of the meaning of that initial set of sentences.  This result is important because the 
modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the 
original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared 
across the scope of modal expressions thus allowing the derivation of quantified consequences.  Furthermore, 
this generalization properly treats such quantifiers since both the Barcan formula and its converse hold 
Keywords: Autoepistemic Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 

One of the most well known nonmonotonic logics [Antoniou 1997] which inherently deals with entailment 
conditions in addition to possibility conditions in its sentences is the so-called Autoepistemic Logic [Moore 
1985]10.  The basic idea of Autoepistemic Logic is that there is a set of axioms {'Γi} and for every closed 
sentence χ there are two non-logical "inference rules" of the forms: 

 χ:                                     :¬χ 
L'χ                                   ¬L'χ 

where the predicate symbol L intuitively means that its argument names a sentence which is inferable.  The 
first rule suggests that L 'χ may be inferred from χ and the second rule suggests that ¬L'χ may be inferred if 
χ is not inferable.  When L is in Γ such "inference rules" maybe circular in that determining if they are 
applicable depends on the inferability or noninferability of χ which in turn depends on what else was derivable.  
Thus, tentatively applying such inference rules by checking whether χ has been or has not yet been inferred 
produces consequences which may later have to be retracted.  For this reason valid inferences in a 
nonmonotonic logic such as Autoepistemic Logic are essentially carried out not in the original nonmonotonic 
language, but rather in some (monotonic) metatheory in which that nonmonotonic logic is defined.  [Moore 
1985; Konolige 1987; Konolige 1987b] explicated the above intuition by defining Autoepistemic Logic in terms 
of the set theoretic proof theory metalanguage of a First Order Logic (i.e. FOL) object language with the fixed-
point equation: 

'κ=(ael 'κ {'Γi}}) 
where ael is defined as: 
            (ael 'κ {'Γi})=df(fol({'Γi}∪{'(L 'χi):'χiε'κ}∪{'(¬(L 'χi)):'χi∉'κ})) 
where 'χi is the ith sentence of the FOL object language and where 'κ and {'Γi} are sets of closed sentences 
of the FOL object language.  A closed sentence is a sentence without any free variables.  fol is a function 
which produces the set of theorems derivable in FOL from the set of sentences to which it is applied.  The 
quotations appended to the front of these Greek letters indicate references in the metalanguage to the 
sentences of the FOL object language.  Interpreted doxastically this fixed-point equation states: 
 
 
the set of closed sentences which are believed is equal to 
  the set of theorems derivable by the laws of FOL from the union of  
         the set of closed sentences {'Γi}, 
         the set of all closed sentences of the form:  '(L 'χi) for each i such that 'χi is believed, 
         and the set of all closed sentences of the form:  '(¬(L 'χi)) for each i such that 'χi is not believed. 

The purpose of this paper is to show that all this metatheoretic machinery including the formalized syntax of 
FOL, the proof theory of FOL, the axioms of a strong set theory, and the set theoretic fixed-point equation is 

                                                           
10Autoepistemic Logic may be viewed as an improved version of the systems described in [McDermott 1980; McDermott 1982]. 
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not needed and that the essence of Autoepistemic Logic is representable as a necessary equivalence in a 
(monotonic) Modal Quantificational Logic.  Interpreted as a doxastic logic this equivalence states: 
that which is believed is equivalent to:    for all i Γi and for all i (L 'χi) if and only if χi is believed. 

thereby eliminating the metatheoretic machinery.11 
 
The remainder of this paper proves that this modal representation is equivalent to Autoepistemic Logic.  
Section 2 describes a formalized syntax for a FOL object language.  Section 3 describes the part of the proof 
theory of FOL needed herein (i.e. theorems FOL1-FOL4).  Section 4 describes the Intensional Semantics of 
FOL which includes laws giving the meaning of FOL sentences: M0-M8, theorems giving the meaning of sets 
of sentences: MS1, MS2, MS3, and laws specifying the relationship of meaning and modality to the proof 
theory of FOL (i.e. the laws R0, A1, A2, and A3 and the theorems: C1, C2, C3, and C4).  The modal version of 
Autoepistemic Logic is defined in section 5 and explicated with theorems MA1-MA6 and SS1-SS2.  In section 
6, this modal version is shown by theorems AEL1 and AEL2 to be equivalent to the set theoretic fixed-point 
equation for Autoepistemic Logic.  Figure 1 outlines the relationship of all these theorems in producing the 
final theorems AEL2, FOL4, and MA6.   

MS3

MS1

FOL4

C1

C3

M0-M8

AEL2

AEL1

FOL1FOL2

C2FOL3

MA1 MA2

MA3 MA4

MA5

SS1

MA6

SS2
C4

MS2

 
Figure 1: Dependencies among the Theorems 

 

2. Formal Syntax of First Order Logic 

We use a First Order Logic (i.e. FOL) defined as the six tuple: (→, #f, ∀, vars, predicates, functions) where 
→, #f, and ∀ are logical symbols, vars is a set of variable symbols, predicates is a set of predicate symbols 
each of which has an implicit arity specifying the number of associated terms, and functions is a set of 
function symbols each of which has an implicit arity specifying the number of associated terms.  The sets of 
logical symbols, variables, predicate symbols, and function symbols are pairwise disjoint.  Lower case Roman 
letters possibly  indexed with digits are used as variables.  Greek letters possibly indexed with digits are used 
as syntactic metavariables. γ, γ1,...,γn, range over the variables, ξ, ξ1,...,ξn range over sequences of 
variables of an appropriate arity, π,π1...πn range over the predicate symbols, φ, φ1...φn range over function 
symbols, δ, δ1...δn, σ  range over terms, and α, α1,...,αn, β, β1,...,βn,χ, χ1,...,χn, Γ1,...,Γn,ϕ range over 
sentences.  The terms are of the forms γ and (φ δ1...δn), and the sentences are of the forms (α→β), #f, (∀γ 
α), and (π δ1...δn).  A nullary predicate π or function φ is written as a sentence or a term without 
parentheses.  ϕ{π/λξα} represents the replacement of all occurrences of π in ϕ by λξα followed by lambda 
conversion.  The primitive symbols are shown in Figure 2 with their intuitive interpretations. 

Symbol Meaning 
α→ β if α then β. 
#f falsity 
∀γ α for all γ, α. 

Figure 2: Primitive Symbols of First Order Logic 
 
The defined symbols are listed in Figure 3 with their definitions and intuitive interpretations. 
                                                           
11The occurrence of quotation in the argument to L may be replaced by using a new symbol L such that (L �) replaces (L 
'�). 
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Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 

Figure 3: Defined Symbols of First Order Logic 
 
The particular FOL used herein includes the predicate symbol L and a denumerably infinite number of 0-ary 
function symbols representing the names (i.e. '�) of the sentences (i.e. �) of this First Order Logic.  The FOL 
object language expressions are referred in the metalanguage (which also includes a FOL syntax) by inserting 
a quote sign in front of the object language entity thereby making a structural descriptive name of that entity.   
In addition to referring to object language sentences, the formalized metalanguage also needs to refer to sets 
of sentences of FOL.  Generally, a set of sentences is represented as: {'Γi} which is defined as: {'Γi: #t} which 
in turn is defined as: {s: ∃i(s='Γi)} where i ranges over some range of numbers (which may be finite or non-
infinite).  With a slight abuse of  notation we also write 'κ, 'Γ  to refer to such sets. 

3. Proof Theory of First Order Logic 

First Order Logic (i.e. FOL) is axiomatized with a recursively enumerable set of theorems as the set of axioms 
is itself recursively enumerable and its inference rules are recursive.  The axioms and inference rules of FOL 
[Mendelson 1964] are those given in Figure 4.  They form a standard set of axioms and inference rules for 
FOL. 
 
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ ( β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β  where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: ((∀γ(α → β)) →  (α→(∀γ β)))  where γ does not occur in α. 

Figure 4: Inferences Rules and Axioms of FOL 
 
In order to talk about sets of sentences we include in the metatheory set theory symbolism as developed 
along the lines of [Quine 1969].  This set theory includes the symbols ε, ∉, ⊃, =, ∪ as is defined therein. 
The derivation operation (i.e. fol) of any First Order Logic obeys the Inclusion (i.e. FOL1) and Idempotence 
(i.e. FOL2) properties:  
FOL1: (fol 'κ)⊃'κ      Inclusion 
FOL2: (fol 'κ)⊃(fol(fol 'κ))     Idempotence 
From these two properties we prove: 
FOL3:  (ael 'κ 'Γ 'αi:'βij/'χi))=(fol(ael 'κ 'Γ 'αi:'βij/'χi)) 
proof: FOL1 and FOL2 imply that (fol(fol 'κ))=(fol 'κ).  Since ael begins with fol this implies: 'κ=(fol(ael 'κ)) 
QED. 
FOL4: ('κ=(ael 'κ 'Γ 'αi:'βij/'χi))→('κ=(fol 'κ)) 
proof:  From the hypothesis and FOL3: 'κ=(fol(ael 'κ 'Γ 'αi:'βij/'χi)) is derived.  Using the hypothesis to 
replace (ael 'κ 'Γ 'αi:'βij/'χi) by 'κ in this result gives: 'κ=(fol 'κ).  QED. 

4. Intensional Semantics of FOL 
The meaning (i.e. mg) [Brown 1978, Boyer&Moore 1981] or rather disquotation of a sentence of First Order 
Logic (i.e. FOL) is defined to satisfy the laws given in Figure 5 below  mg is defined in terms of mgs which 
maps each FOL object language sentence and an association list into a meaning.  Likewise, mgn maps a FOL 
object language term and an association list into a meaning.  An association list is simply a list of pairs 
consisting of an object language variable and the meaning to which it is bound. 
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M0: (mg 'α) =df (mgs '(∀γ1...γn α)'())  where 'γ1...'γn are all the free variables in 'α 
M1: (mgs '(α → β)a) ↔ ((mgs 'α a)→(mgs 'β a)) 
M2: (mgs '#f a) ↔ #f 
M3: (mgs '(∀ γ α)a) ↔ ∀x(mgs 'α(cons(cons 'γ x)a)) 
M4: (mgs '(π δ1...δn)a) ↔ (π(mgn 'δ1 a)...(mgn 'δn a))  for each predicate symbol 'π. 
M5: (mgn '(φ  δ1...δn)a) = (φ(mgn 'δ1 a)...(mgn 'δn a))   for each function symbol 'φ. 
M6: (mgn 'γ a) = (cdr(assoc 'γ a)) 
M7: (assoc v  L) = (if(eq? v(car(car L))) (car L) (assoc v(cdr L))) 
       where: cons, car, cdr, eq?, if are axiomatized as they are axiomatized in Scheme. 
M8: (mgn ''α a) = 'α 

Figure 5: The Meaning of FOL Sentences 
The meaning of a set of sentences is defined in terms of the meanings of the sentences in the set as: 
 (ms 'κ) =df ∀s((sε'κ)→(mg s)) 
MS1: (ms{'α: Γ}) ↔ ∀ξ(Γ→α)  where ξ is the sequence of all the free variables in 'α and where Γ is any 
sentence of the intensional semantics. 
proof: (ms{'α:Γ})  Unfolding ms and the set pattern abstraction symbol gives: ∀s((sε{s: ∃ξ((s='α)∧Γ)})→(mg 
s)) 
where ξ is a sequence of the free variables in 'a.  This is equivalent to: ∀s((∃ξ((s='α)∧Γ)))→(mg s)) 
which is logically equivalent to: ∀s∀ξ (((s='κ)∧Γ)→(mg s)) which is equivalent to: ∀ξ(Γ→(mg 'α)) 
Unfolding mg using M0-M8 then gives: ∀ξ(Γ→α) QED 

The meaning of the union of two sets of FOL sentences is the conjunction of their meanings (i.e. 
MS3) and the meaning of a set is the meaning of all the sentences in the set (i.e. MS2): 
MS2: (ms{'Γi}) ↔ ∀i∀ξiΓi 
proof:  (ms{'Γi})  Unfolding the set notation gives: (ms{'Γi: #t}) 
By MS1 this is equivalent to: ∀i∀ξi(#t→Γi) which is equivalent to: ∀i∀ξi(Γi QED. 
 
MS3: (ms('κ∪'Γ)) ↔ ((ms 'κ)∧(ms 'Γ)) 
proof: Unfolding ms and union in: (ms('κ∪'Γ)) gives: ∀s((sε{s: (sε'κ)∨(sε'Γ)})→(mg s)) or rather: 
∀s(((sε'κ)∨(sε'Γ))→(mg s)) which is logically equivalent to: (∀α((sε'κ)→(mg s)))∧(∀s((sε'Γ)→(mg s))) 
Folding ms twice then gives:((ms 'κ)∧(ms 'Γ)) QED. 
 
The meaning operation may be used to develop an Intensional Semantics for a FOL object language by 
axiomatizing the modal concept of necessity so that it satisfies the theorem: 
C1:          ('αε(fol 'κ))  ↔  ([] ((ms 'κ)→(mg 'α))) 
for every sentence 'α and every set of sentences 'κ of that FOL object language.  The necessity symbol is 
represented by a box: [].  C1 states that a sentence of FOL is a FOL-theorem (i.e. fol) of a set of sentences of 
FOL if and only if the meaning of that set of sentences necessarily implies the meaning of that sentence. One 
modal logic which satisfies C1 for FOL is the Z Modal Quantificational Logic described in [Brown 1987; Brown 
1989] whose theorems are recursively enumerable and which extends the weaker possibility axioms used in 
[Lewis 1936; Bressan 1972;  Hendry & Pokriefka 1985].  We note that Z includes all the laws of S5 modal 
Logic [Hughes & Cresswell 1968] whose modal axioms and inference rules are given in Figure 6.  Therein, κ 
and Γ represent arbitrary sentences of the intentional semantics. 
R0: from α infer ([] κ)   A2:  ([](κ→ Γ)) → (([]κ)→ ([]Γ)) 
A1: ([]κ) → κ    A3: ([]κ) ∨ ([]¬[]κ) 

Figure 6: The Laws of S5 Modal Logic 
These S5 modal laws and the laws of FOL given in Figure 4 constitute an S5 Modal Quantificational Logic 
similar to [Carnap 1946; Carnap 1956], and a FOL version [Parks 1976] of [Bressan 1972] in which the 
Barcan formula: (∀γ([]κ))→([]∀γκ) and its converse hold.  The R0 inference rule implies that anything 
derivable in the metatheory is necessary.  Thus, in any logic with R0, contingent facts would never be 
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asserted as additional axioms of the metatheory.  For example, we would not assert ([](κ↔Γ)) as an axiom 
and then try to prove ([](κ→α)).  Instead we would try to prove that ([](κ↔Γ))→([](κ→α)). 

The defined Modal symbols used herein are listed in Figure 7 with their definitions and 
interpretations. 
Symbol Definition Meaning  Symbol Definition Meaning 
<>κ ¬ [] ¬κ α is logically possible  [κ] Γ  [] (κ→Γ) β entails α 
κ≡ Γ [] (κ↔Γ) α is logically equivalent to β  <κ> Γ <> (κ∧Γ) α and β is logically possible 

Figure 7: Defined Symbols of Modal Logic 
For example, folding the definition of entailment, C1 may be rewritten more compactly as: 
C1':          ('αε(fol 'κ)) ↔  ([(ms 'κ)](mg 'α)) 
This compact notation for entailment is used hereafter. 

From the laws of the Intensional Semantics we prove that the meaning of the set of FOL 
consequences of a set of sentences is the meaning of that set of sentences (C2), the FOL consequences of a 
set of sentences contain the FOL consequences of another set if and only if the meaning of the first set entails 
the meaning of the second set (C3), and the sets of FOL consequences of two sets of sentences are equal if 
and only if the meanings of the two sets are logically equivalent (C4): 
 
C2: (ms(fol 'κ))≡(ms 'κ) 
proof: The proof divides into two cases: 
(1) [(ms 'κ)](ms(fol 'κ)))  Unfolding the second ms gives: [(ms 'κ)]∀s((sε(fol 'κ))→(mg s)) 
By the soundness part of C1 this is equivalent to:  [(ms 'κ)]∀s(([(ms 'κ)](mg s))→(mg s)) 
By the S5 laws this is equivalent to: ∀s(([(ms 'κ)](mg s))→ [(ms 'κ)](mg s))  which is a tautology. 
(2) [(ms(fol 'κ))](ms 'κ)  Unfolding ms twice gives: [∀s((sε(fol 'κ))→(mg s))]∀s((sε'κ)→(mg s)) 
which is: [∀s((sε(fol 'κ))→(mg s))]((sε'κ)→(mg s))  Backchaining on the hypothesis and then dropping it 
gives: (sε'κ)→(sε(fol 'κ)).  Folding ⊃ gives an instance of FOL1. QED. 
 
C3: (fol 'κ)⊇(fol 'Γ) ↔ ([(ms 'κ)](ms 'Γ)) 
proof: Unfolding ⊇ gives: ∀s((sε(fol 'Γ))→(sε(fol 'κ))) 
By C1 twice this is equivalent to: ∀s(([(ms 'Γ)](mg s))→([(ms 'κ)](mg s))) 
By the laws of S5 modal logic this is equivalent to: ([(ms 'κ)]∀s(([(ms 'Γ)](mg s)))→(mg s))) 
By C1 this is equivalent to: [(ms 'κ)]∀s((sε(fol 'Γ))→(mg s)).  Folding ms then gives: [(ms  'κ)](ms(fol 'Γ)) 
By C2 this is equivalent to:  [(ms  'κ)](ms 'Γ). QED. 
 
C4: ((fol 'κ)=(fol 'Γ)) ↔ ((ms 'κ)≡(ms 'Γ)) 
proof:  This is equivalent to (((fol 'κ)⊇(fol 'Γ))∧((fol 'Γ)⊇(fol 'κ))) ↔ ([(ms 'κ)](ms 'Γ))∧([(ms 'Γ)](ms 'κ)) 
which follows by using C3 twice. 

5. Autoepistemic Logic Represented in Modal Logic 

The fixed-point equation for Autoepistemic Logic may be expressed in S5 Modal Quantificational Logic by the 
necessary equivalence: 

κ≡(AEL κ Γ) 
where AEL is defined as follows: (AEL κ Γ) =df Γ∧∀i((L 'χi)↔([κ]χi)) 
where χi is the ith sentence of the FOL object language.   
 
Given below are some simple properties of AEL used to prove the equivalence of the proof theoretic and 
modal representations of Autoepistemic Logic.  The first two theorems state that AEL entails Γ and that AEL 
entails for all i, (L 'χi) if and only if χi holds in κ. 
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MA1: [(AEL κ Γ)]Γ 
proof: By R0 it suffices to prove: (AEL κ Γ)→Γ.  Unfolding AEL gives: (Γ∧∀i((L 'χi)↔([κ]χi)))→Γ which is a 
tautology. QED. 
 
MA2: [(AEL κ Γ)]∀i((L 'χi)↔([κ]χi)) 
proof: By R0 it suffices to prove: (AEL κ Γ)→∀i((L 'χi)↔([κ]χi)) 
Unfolding AEL gives: [Γ∧∀i((L 'χi)↔([κ]χi)))→∀i((L 'χi)↔([κ]χi))) which is a tautology. QED. 
 
The concept (i.e. ss) of the combined meaning of all the sentences of the FOL object language whose 
meanings are entailed by a proposition is defined as follows: (ss κ) =df ∀s(([κ](mg s))→(mg s)).  SS1 shows 
that a proposition entails the combined meaning of the FOL object language sentences that it entails.  SS2 
shows that if a proposition is necessarily equivalent to the combined meaning of all the FOL object language 
sentences that it entails, then there exists a set of FOL object language sentences whose meaning is 
necessarily equivalent to that proposition: 
SS1: [κ](ss κ) 
proof: By R0 it suffices to prove: κ→(ss κ).  Unfolding ss gives: κ→∀s(([κ](mg s))→(mg s)) 
which is equivalent to:∀s(([κ](mg s))→(κ→(mg s))) which is an instance of A1. QED. 
 
SS2: (κ≡(ss κ))→ ∃s(κ≡(ms s)) 
proof: Letting s be {s: ([κ](mg s)) gives: (κ≡(ss κ))→ (κ≡(ms{s: ([κ](mg s)))) 
Unfolding ms and lambda conversion gives: (κ≡(ss κ))↔ (κ≡∀s(([κ](mg s))→(mg s))) 
Folding ss gives a tautology. QED. 
 
Theorems MA3 and MA4 are analogous to MA1 and MA2 except that AEL is replaced by the combined 
meaning of all of the sentences entailed by AEL. 
MA3: [ss(AEL κ ∀iΓi)]∀iΓi 
proof: By R0 it suffices to prove: (ss(AEL κ ∀iΓi))→∀iΓi 
Unfolding ss gives: (∀s(([(AEL κ ∀iΓi)](mg s))→(mg s)))→∀iΓi 
which is equivalent to: (∀s(([(AEL κ ∀iΓi)](mg s))→(mg s)))→Γi 
which by the meaning laws is equivalent to: (∀s(([(AEL κ ∀iΓi)](mg s))→(mg s)))→(mg 'Γi) 
Backchaining on (mg  'Γi) with s in the hypothesis assigned to be 'Γi in the conclusion shows that it suffices to 
prove:  ([(AEL κ ∀iΓi)](mg 'Γi)) which by the meaning laws is equivalent to: ([(AEL κ ∀iΓi)]Γi) 
which by the laws of S5 Modal Logic is equivalent to: ([(AEL κ ∀iΓi)]∀iΓi) which is an instance of MA1. QED. 
 
MA4: [(ss(AEL κ Γ))]∀i((L 'χi)↔([κ]χi)) 
proof:  By R0 it suffices to prove: (ss(AEL κ Γ))→∀i((L 'χi)↔([κ]χi)) 
which is equivalent to: (ss(AEL κ Γ))→((([κ]χi)→(L 'χi))∧((¬([κ]χi))→(¬(L 'χi)))) 
Unfolding ss gives: (∀s(([(AEL κ Γ)](mg s))→(mg s)))→((([κ]χi)→(L 'χi))∧((¬([κ]χi))→(¬(L 'χi)))) 
Letting the quantified s in the hypothesis have the two instances: '(L 'χi) and '(¬(L 'χi)) and then dropping that 
hypothesis gives: 
((([(AEL κ Γ)](mg '(L 'χi)))→(mg '(L 'χi)))∧(([(AEL κ Γ)](mg '(¬(L 'χi))))→(mg '(¬(L 'χi))))) 
→((([κ]χi)→(L 'χi))∧((¬([κ]χi))→(¬(L 'χi)))) 
By the meaning laws M0-M8 this is equivalent to: 
((([(AEL κ Γ)](L 'χi))→(L 'χi))∧(([(AEL κ Γ)](¬(L 'χi)))→(¬(L 'χi))))→((([κ]χi)→(L 'χi))∧((¬([κ]χi))→(¬(L 
'χi)))) 
Using these instances of the hypothesis to backchain on (L 'χi) and (¬(L 'χi)) in the conclusion, and then 
dropping these instances gives: 



International Journal "Information Theories & Applications" Vol.10 

 

461

((([κ]χi)→([(AEL κ Γ)](L 'χi)))∧((¬([κ]χi)))→([(AEL κ Γ)](¬(L 'χi)))) 
Using the laws of S5 Modal Logic then gives: ([(AEL κ Γ)]((([κ]χi)→(L 'χi))∧((¬([κ]χi))→(¬(L 'χi)))) 
which is equivalent to: [(AEL κ Γ)]((L 'χi)↔([κ]χi)) which holds by MA2. QED. 
 
Finally MA5 and MA6 show that talking about the meanings of sets of FOL sentences in the modal 
representation of Autoepistemic Logic is equivalent to talking about propositions in general. 
 
MA5: (ss(AEL κ ∀iΓi)) ↔ (AEL κ ∀iΓi) 
proof: In view of SS1, it suffices to prove: (ss(AEL κ ∀iΓi))→(AEL κ ∀iΓi) 
Unfolding the second occurrence of AEL gives: (ss(AEL κ ∀iΓi))→(∀iΓi∧∀i((L 'χi)↔([κ]χi))) 
which holds by theorems MA3 and MA4. QED. 
 
MA6: (κ≡(AEL κ ∀iΓi)))→∃s(κ≡(ms s)) 
proof: (κ≡(ss(AEL κ ∀i(mg 'Γi)))) is derived from the hypothesis and MA5.  Using the hypothesis to replace 
(AEL κ ∀i(mg 'Γi))) by κ in this result gives: (κ≡(ss κ)).  By SS2 this implies the conclusion. QED. 

6. Conclusion: Autoepistemic Logic represented in Modal Logic 
The relationship between the proof theoretic definition of Autoepistemic Logic [Moore 1985] and the modal 
representation is proven in two steps.  First theorem AEL1 shows that the meaning of the set ael is the 
proposition AEL and then theorem AEL2  shows that a set of FOL sentences  which contains its FOL 
theorems is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and 
only if the meaning (or rather disquotation) of that set of sentences is logically equivalent to AEL of the 
meanings of that initial set of sentences. 
 
AEL1: (ms(ael(fol 'κ){'Γi}))≡(AEL(ms 'κ)(∀iΓi)) 
proof: By R0 it suffices to prove: (ms(ael(fol 'κ){'Γi}))↔(AEL(ms 'κ)Γ).  The left side is: ms(ael(fol 'κ){'Γi}) 
Unfolding the definition of ael gives: ms(fol({'Γi}∪{'(L 'χi): 'χiε(fol 'κ)}∪{'(¬(L 'χi)): 'χi∉(fol 'κ)})) 
By C2 this is equivalent to:  ms({'Γi}∪{'(L 'χi): 'χiε(fol 'κ)}∪{'(¬(L 'χi)): 'χi∉(fol 'κ)}) 
Using C1 twice gives: ms({'Γi}∪{'(L 'χi): ([ms 'κ]χi)}∪{'(¬(L 'χi)): ¬([ms 'κ]χi)}) 
Using MS3 twice gives: (ms{'Γi})∧(ms{'(L 'χi): ([ms 'κ]χi)})∧(ms{'(¬(L 'χi)): ¬([ms 'κ]χi)}) 
Using MS2 gives: (∀iΓi)∧(ms{'(L 'χi): ([ms 'κ]χi)})∧(ms{'(¬(L 'χi)): ¬([ms 'κ]χi)}) 
Applying MS1 twice gives: (∀iΓi)∧∀i(([ms 'κ]χi)→(L 'χi))∧∀i((¬([ms 'κ]χi))→(¬(L 'χi))) 
which is logically equivalent to: (∀iΓi)∧∀i((L 'χi)↔([ms 'κ]χi)) 
Folding the definition of AEL gives: (AEL(ms 'κ)(∀iΓi)) QED. 
 
AEL2: ((fol 'κ)=(ael(fol 'κ){'Γi}))↔((ms 'κ)≡(AEL(ms 'κ)(∀iΓi))) 
proof: (fol 'κ)=(ael(fol 'κ){'Γi}).  By FOL3 this is equivalent to: (fol 'κ)=(fol(ael(fol 'κ){'Γi})) 
By C4 this is equivalent to: (ms 'κ)≡(ms(ael(fol 'κ){'Γi})).  
By AEL1 this is equivalent to:(ms 'κ)≡(AEL(ms 'κ)(∀iΓi)) QED. 
 
Theorem AEL2 shows that the set of theorems: (fol 'κ) of a set 'κ is a fixed-point of Autoepistemic Logic if and 
only if the meaning (ms 'κ) of 'κ is a solution to the necessary equivalence.  Furthermore, by FOL4 there are 
no other fixed-points (such as a set not containing all its theorems)  and by MA6 there are no other solutions 
(such as a proposition not representable as a sentence in the First Order Logic object language).  Therefore 
the Modal representation of Autoepistemic Logic (i.e. AEL), faithfully represents the original set theoretic 
description of Autoepistemic Logic (i.e. ael).  Finally, we note that (ms 'κ) and ∀iΓi may be generalized to be 
arbitrary propositions κ and Γ giving the more general modal representation: κ≡(AEL κ Γ). 
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ONE APPROACH FOR THE OPTIMIZATION  
OF ESTIMATES CALCULATING ALGORITHMS 

A.A. Dokukin 
 

Abstract: In this article the new approach for optimization of estimations calculating algorithms is suggested. 
It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for 
pattern recognition 
Keywords: Pattern recognition, estimates calculating algorithms. 
 

Introduction 
This work is made in the context of algebraic approach [1] (in what follows, we use the notation and definitions 
from [1,2]) for pattern recognition. The task of recognition is considered. We have a set M of possible objects. 
It is presumed that nMMM ××= ...1 , there iM  are sets of possible values of i-th feature, and some 
semi-metrics are defined on each of them. The set M is divided into l classes lKK ,...,1 . The task of 
recognition is defined by the conventional learning information )}(),...,(,,...,{ 110 mm SSSSI αα= , and the 
finite sample, ( )ili

iS βββ ,...,)( 1=  of test objects. Here mSS ,...,1  are descriptions of training sequence 

objects ( ) ,,,...,, 21 jijiniii MaaaaS ∈=  njmi ,1,,1 == , and ( )iliiS ααα ,...,)( 1=  are information 

vectors of objects iS , with respect to the properties ( ) ljKSSP jj ,1},{ =∈≡ . Correspondently 

( )ili
jS βββ ,...,)( 1=  are information vectors of jS . 

The task is to find algorithm in the algebraic closure of some set of recognition operators that calculates 
information vector for each qi SS ~

∈ . As such system the defined below class of ECA (estimates calculating 
algorithm) is considered.  
Yu.I. Zhuravlev have proved [1] that there exixts a correct polynomial in the algebraic closure of ECA, i.e. 
polynomial that provides no errors on the control information )}(),...,({,~ 1 qq SSS ββ . 

Estimates calculating algorithm A  is defined as CBA ⋅= , where 
lq

i
jlqij

q SSIB
××

Γ=Γ= )()~,( 0  is 

recognition operator, 
lqijlqijC

××
=Γ β)(  is solving rule. 
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Following notation is used: 

• The j-th class and its addition are denoted as },...,{~
1 mjj SSKK ∩=  and 

jmj KSSKC ~\},...,{~
1= . 
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• Let }{Ω  is the set of all subsets of },...,1{ n . Some subset AΩ  of Ω  is attributed to an algorithm. Its 
elements }{},...,{ 1 Akt t

ii Ω∈=ω  are called support sets and tikit ppp ++= ...)( 1ω  are their 
weights, 0)( ≥tp ω . 

• 0)( ≥iSγ  are weights of training objects. 

• ),( SSB i ωω  is proximity function. We use proximity functions only of the following type. Let 

nεε ,...,1  are non-negative numbers, let also },...,{ 1 iki aaS =ω , },...,{ 1 iki bbS =′ω then 

⎩
⎨
⎧ ≤≤

=′
otherwise

baba
SSB iikikikiiii
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),( 1111 εερερ
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),(1),( SSBSSB ii ωωωω −= . 
 

Denote a set of recognition operators by }~{B . Let }~{, BBB ∈′′′ , 
lq

ij
qSIB

×

′Γ=′ )~,( 0 , 

lq
ij

qSIB
×

″Γ=′′ )~,( 0 , b is a scalar. Following operations Bb ′ , BB ′′+′ , BB ′′⋅′  can be defined on this 

set as shown below. 
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The closure })~({BM  with respect to operations (4)-(6) is associative algebra with commutative 

multiplication. Operators from })~({BM  can be presented as polynomials of operators from }~{B . If 

})~({BMB∈  then 
tiii BBBB ⋅⋅⋅= ∑ ...

21
. The maximum number of multipliers in its items is called the 

degree of recognition operator. 
The family })({AM  of algorithms CBA ⋅=  such that })~({BMB∈  is called algebraic closure of }{A . 

Finally we will need some more terms from [3] to continue the statement. The informational matrix 
lqji ×,β  is 

considered. Suppose )},{( jiM = , qi ,...,1= , lj ,...,1= , }|),{( , αβα == jijiM , }1,0{∈α .  

Operator })~({BMB∈  is called admissible if there exists at least one pair 1),( Mji ∈  such that for all 
pairs 0),( Mvu ∈  )()( u

v
i

j SS Γ>Γ . This pair is called marked. It is proved also [3] that the greater value 

))()((min),,(
0),(

u
v

i
jMvu

SSBjid Γ−Γ=
∈

 is the smaller degree of item will be needed to construct the correct 

polynomial. 
Thus in order to construct a correct algorithm of minimal complexity or to make inductive procedure of 
constructing it (like for example one in [4]), we need to find the algorithm of maximum ),,( Bjid  in some 
family of algorithms. This article is devoted to solving of maximization task in two particular subsets of ECA. 
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γ-optimization 

First, denote by γ}{B  the subset of ECA with the following parameters: 

• 1,0 10 == xx , 

• AΩ  consists of all support sets of  equal fixed power k. nikpi ,...,1,1 == , 

• m]1,0[~ ∈γ , 

• nεε ,...,1  are fixed. 

Let we have 1),( Mji ∈ . The task is to find m]1,0[~* ∈γ  such that 

*
00
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SSSS .   (7) 
As shown in [1], in case of this special format of support vectors, the estimations (1)-(3) can be transformed 
into simple view: 
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Here niSS }1,0{),( ∈δ is the characteristic vector 
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So in the γ}{B family of ECA, the estimation )()( u
v

i
j SS Γ−Γ  is linear function on m]1,0[~ ∈γ , that is 
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transformed into t tasks of linear programming, there || 0Mt =  (we enumerate all those linear combinations 
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These tasks can be solved with, for example, simplex method. So the precise solution of the initial task can be 
found. 



International Journal "Information Theories & Applications" Vol.10 

 

466 

γ,ε-optimization 

The second task is more complex. As in previous chapter we choose parametrical subset εγ ,}{B  of ECA first: 
• 1,0 10 == xx , 
• AΩ  consists of the single support set (the method can be simply generalized to include cases of 

small number of support sets), 
• m]1,0[~ ∈γ , 
• 0,...,1 ≥nεε . 

 

The task is the same as in previous section, i.e. to find in εγ ,}{B  the algorithm with the maximum value of 
),,( Bjid . 

The algorithm for solving of this task consists of two parts. First one is the construction of auxiliary finite 
system of parallelepipeds P: 

1. Build new sequence of objects },...,{ 1 tSS ′′ : for all jKS ~∈ add differences SS i −  to the 
sequence. 

2. Find the minimal system P of parallelepipeds ],[...],[ 11 nn εεεε −××−  containing all different 
combinations of objects from },...,{ 1 tSS ′′ . 

To construct the system P we must for all subsets },...,{ 1 tSSS ′′⊂  find out if its combination is possible, i.e. 
if there exists any parallelepiped ],[...],[ 11 nnE εεεε −××−=  such that SS ∈′  if and only if ES ∈′ , 
and for all possible combinations add the minimal parallelepiped spanning it to the system. In practice there is 
no need to enumerate all different subsets of },...,{ 1 tSS ′′ . If we have found any impossible one, every 
combination containing it is impossible too. 
The following theorem can be proved: 
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],[...],[ 11 nn εεεε −××−  the maximum one from P containing in it will give not more estimations. 
The second part is to calculate estimations themselves and solve the task. From (1)-(3) we have 
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Indeed for any n]1,0[~ ∈γ , difference (8) is smaller than 
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 and the precise solution can be found too. 

Though the solution is precise the necessity to construct system P makes the task extremely difficult with 
multidimensional data. In order to make calculation faster we suggest proximate method for the same task. 
The method starts with the parallelepiped spanning the whole sequence },...,{ 1 tSS ′′ . Then on every step we 
enumerate all admissible combinations of t-1 objects and leave the best one for next step, there we consider 
neighborhood spanning those best combination. Here t is the number of objects in current parallelepiped. The 
best combination is one that maximizes the value of ),,( Bjid . 
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The following diagram shows results of hands-on testing of this method in comparison with the precise one. 
The table of descriptions of forty-eight patients was considered. It consists of three classes of correspondingly 
seventeen, twenty and twelve objects and thirty-three features. As the 1M  in turns every object was 
considered. All other objects from its class were considered as the training sequence. All objects from other 
classes formed 0M . For example the twentieth object generated the following (20-th) test: 

)}2,20{(1 =M  
)}2,48(),...,2,39(),2,38(),2,17(),...,2,2(),2,1{(0 =M  

},...,,,,{},...,{ 37222119181 SSSSSSS t =′′ . 
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,B
)

Difference
Proximate

It’s easy to see that in most cases the precise solution or solution of acceptable precision has been found. 
And while the precise solution takes about two minutes to find (in case of twenty training objects and the 
difficulty extremely grows with increasing of their number), the proximate algorithm performs all forty-eight 
tests within about ten seconds. 

Conclusion 
In this article we have suggested the new approach for optimization of estimations calculating algorithms. It 
can be used for finding of the correct algorithm of the minimal complexity in the context of the algebraic 
approach for the pattern recognition. 
Also we have considered two parametrical subsets of ECA and have found precise algorithms for solving 
optimization task for them. 
Finally the fast proximate method with acceptable precision has been suggested. 
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WEB-BASED SIMULTANEOUS EQUATION SOLVER12 
A. Iliev, N. Kyurkchiev, T. Todorov 

 
Abstract: In this paper we present methods, theoretical basis of algorithms, and computer tools, which we 
have used for constructing our Web-based equation solver. 
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methods, parallel processors, algebraic equations 
2000 Mathematics Subject Classification: 68Q22, 65Y05 
 

Introduction 

Many industrial and optimization tasks lead to the problem of finding all roots of (1) or arbitrary their part. One 
of branches for solving polynomial equations is parallel methods for simultaneous determination of all roots. 
With our solver automatically we can search simultaneously all or only one part of all roots of (1) (real, 
complex, lying in given area).  
 

Iteration methods 

Let us consider algebraic polynomial 
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The approximations of the k th iteration to zeroes x x xw1 2, , ... ,  of (1) are denoted by x x xk k
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1 2
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Classical methods for individual searching of multiple roots of (1) can be written in this general way 
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Other approach is given by methods for simultaneous extraction of all multiple roots and we can write them as  
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Methods (3) are steadier and also they have a larger domain of convergence with comparison with methods 
(2). This is the main reason because these methods are object of detailed investigations in last twenty years. 
For natural reasons we want to find simultaneously only one part of all roots of (1). Namely, we want to find 
simultaneously ( )p w≤  different roots with multiplicities p21 α,...,α,α  

                                                           
12 This work has been supported by NIMP, University of Plovdiv under contract No MU-1. 
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( )p,1j,1α1pmn,mnα...αα jp21 =≥≥+−−−=+++ . In our Web-based equation solver we use 
[Iliev, Kyurkchiev, 2002a, 2002b, 2003], [Kyurkchiev, Iliev, 2002] type methods, which in common can be 
written as 

( )x x F x x x a a a
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 (4) 

 

Theoretical basis of our methods 

Polynomial (1) can be presented in this way 
( )A x Q x T xn n m m= − ( ) ( ) , (5) 

where Q xn m− ( )  is polynomial, whose zeroes we seek and ( )T xm  is polynomial, whose zeroes we ignore. 
Respectively 
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Between the coefficients of polynomial (1) and the coefficients of polynomials (5) there exist the following 
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We want to find simultaneously ( )p w≤  different roots with multiplicities  
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From (6) it follows 
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Combinative algorithms can be used for finding coefficientsb b bk k
n m
k

1 2
[ ] [ ] [ ], ,... , − . 

We define c j mj
k[ ] , ,= 1  using formulae 
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For simultaneous searching of roots of Q xn m− ( )  from (5) we give the following iteration algorithm 
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When m n= − 1 and α α α1 2 1= = = =... n  method (7) coincides with the classical Obreshkoff’s method 
[Obreshkoff, 1963] for individual searching of one simple zero and if p w=  (7) is method for finding all roots 
of (1). 

Theorem. Let d x x
i j i j

def
min

≠
− , c > 0  and 1 0> >q  be real numbers such that 
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where P P G g1 2 1, , ,  and y  are appropriate positive constants. If initial approximations x x xp1
0

2
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the real roots of (1) satisfy inequalities x x cq i pi i
[ ] , ,0 1− < =  then for every k N∈  the inequalities 

  x x cq i pi
k

i

k[ ] , ,− < =3 1  
are satisfied. 
From this theorem [Iliev, Kyurkchiev, 2003] it follows that iteration method (7) holds cubic convergence. 
 

Localization technique for automatic determination of multiplicity of the roots and their initial 
approximations 

For applying in practice in Obreshkoff’s monograph [Obreshkoff, 1963] is given that Fujiwara prove that the 

circle with centre origin and radius R a a
p n n p n

p
=

≤ ≤ −2
1

1
max /

/
 in the complex plane contains all zeroes of 

polynomial (1). 
We will use presentation 
  ( ) ( )( ) ( )A x x x x x x x e e en n n

i i i n= − − − =1 2 1 2
1 2... ... ...ρ ρ ρ ϕ ϕ ϕ , 

where ρp  are modulo of complex numbers x x p np− =, ,1  and ϕp p n, ,= 1  are their arguments.  
After one pass of contour with appropriate step in counter-clockwise direction every arguments of the roots in 
domain will be changed with 2π  and every arguments out of contour will not be changed. Using Cauchy 
approach [Obreshkoff, 1963] if the argument change of ( )z A xn= , where x  with appropriate step in 
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counter-clockwise direction are different points from passed contour, is 2πs , [ ]s n∈ 1, , it follows that in 
explored domain there are exactly s  roots.  
After first pass of localization of the roots with presented here algorithm in different domains we explore these 
domains, which have more than one root. For every such area arises the question whether or not in it there 
are localized one or several roots, which are sufficiently close. Confirmation or rejection of found multiplicity in 
"near" neighborhood could be made with Schröder’s method [Schröder, 1870]. It will have quadratic 
convergence only when the multiplicity of the root is exact. Exactly we have in mind ε  discernible roots 
(zeroes). If the roots are not multiple we will repeat Cauchy algorithm procedure. This is because we need fine 
localization of roots only in these areas, which contain more than one different roots. 
 

Program description 

The main modules are realized on Pascal program language [Krushkov, Iliev, 2002], using Delphi 5 
environment. We realized specialized program units for complex numbers, multiple precision, input polynomial 
analyzer, specialized methods for finding a part of all roots [Iliev, Kyurkchiev, 2002a, 2002b, 2003], 
[Kyurkchiev, Iliev, 2002]. Also we have used dynamic structures for the economy of memory and for faster 
program code optimization. For Web-based input-output form interface for users is developed. 
 

Conclusion 

With this equation solver we try to give practical cover of theoretical improvements from classic, advanced 
techniques and iteration algorithms from last several years. It can be used simultaneously from many users 
with Internet connection without influence of distance. 
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VIRTUAL INSTRUMENTS – FUNCTIONAL MODEL, ORGANIZATION AND 
PROGRAMMING ARCHITECTURE 

G.S.Georgiev, G.T.Georgiev, S.L.Stefanova 
 

Abstract: This paper presents functional model, organization, a programming architecture and an 
implementation of Virtual Instruments as an essential part of educational laboratory tools. The Virtual 
Instruments are designed in event- driven programming environment and are capable of performing 
instrumental functions in local or remote level. The possibility of realization of real time operations from signal 
information point of view is discussed.   
Key words: Local Virtual Instrument, Remote Virtual Instrument, Events, Messages, DAQ System, DLL, 
Sockets, Java RMI 

Introduction 

Modern measurement systems for data acquisition and processing in engineering and research combine 
three basic functions: 

- DATA ACQUISITION. Usually this comprises a number of measured quantities, characterising the 
behaviour of the object of measurement; they are sampled simultaneously or sequentially, in most 
cases multiplexing the measured signals through several analogue channels (8, 16, 32 or more) for 
further conversion by a common analogue to digital converter. This function is implemented in 
hardware by DAQ-systems (DATA ACQUISITION SYSTEMS); 

- DATA ANALYSIS by means of algorithms for processing the results from multiple, aggregate or 
combined measurements and specific procedures for measurement and calculation which eliminate 
systematic errors, depending on the measured quantity and the environment within which it is 
monitored. Usually this function requires performing a large amount of computational and logical 
operations for reducing the initial indetermination of the quantity under measurement by comparing it 
with what is called best value and interval of residual indetermination - standard deviation; 

- DATA PRESENTATION. Most often this comprises visual relations among measured data in 
graphical or table form. Their suitable visualisation has a certain (often decisive) impact on the 
quality of the carried out measurement process. Usually when conducting engineering or scientific 
research one has to "experiment" with scaling of graphs, approximation of the processed signals and 
visualisation of the functional relations. 

The implementation of general informational and specific measurement procedures determine the efficiency of 
the means for carrying out a measurement process and the opportunity for achieving its goals. Virtual 
instruments [1], as a combination of (quick) hardware and (flexible) software can be part of a well defined 
teaching hierarchical structure for: 

 generation of asynchronous data streams for physical phenomena and properties in the object of 
measurement; 

 classification, discovering of interrelations among them and merging them into a common data base; 
 processing of the merged data in order to represent it in accordance with the objectives of the 

knowledge extraction process and to allow for interaction with the consumer of knowledge. 
Building the measuring instruments into a suitable computer environment can carry out efficient 
accomplishment of these functions. In such a structure, which is new in a qualitative aspect, the computer 
environment controls the conversion process for efficient performance of analysis and visualisation. So 
developed computer based instruments can be helpful in advancing of teaching process [1]. In order to 
promote not only the theoretical but also the practical work of learners in contemporary computer based 
laboratories there is a trend to integrate the basic theoretical material with simulation, animation, quizzes and 
practical experiments. Such an approach, in which the experimenting work of learners brings to virtual 
instruments, is realized in [7]. The applications developed by Asymetrix Toolbook, Microsoft Visual C++ in 
Microsoft Windows operational environment enable a simulation of measuring procedures. The connections 
with the laboratory objects – copies of the real circuits, devices and systems the learner is working with in his 
future professional аrea are missing. A step forward is the expansion of the standard computer configuration 
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with an instrumental hardware. In this direction an application for investigating microprocessor control of a 
step motor is described in [8]. A disadvantage is the object dependant hardware and controlling primitives that 
make the expansion of the system impossible. More effective from technical and technological point of view is 
the approach, proposed by Ponta in [9,10]. The main idea is the separation and standardization of the 
input/output operation in order to simplify the operations fulfilled by the computer. The hierarchical software 
structure is more flexible in its adaptation to the different laboratory experiments. Unfortunately the possibility 
for the user to change the functions of the instruments is missing. The user functions and advantages of 
Virtual instruments, being come to light in [1], are shown how to be realized through standard ways in [2]. First 
of all the described approaches concern their local realization, that is not enough for the purposes of a 
Remote Virtual Laboratory building. 
This paper aims to discuss the organization of and approaches for implementing virtual instruments for 
educational purposes in the structure of a remote teaching virtual laboratory. The presented approaches are 
generic enough to be used in other areas, too. 

Generic organization and functional model 

The nature of a measurement process is consistent with generation of messages within the measuring 
environment, caused by events, reflecting changes in the object of measurement [4]. This makes it natural for 
the measurement process to be embedded in event-driven software environments, such as Windows, where 
influences upon the computer environment are caused by events through generation of messages. They can 
be caused by the user via his/her interactions with graphical elements of the user interface by means of 

keyboard or mouse. The interactions between events coming from the measurement environment and the 
operator, by means of messages raised by them, make them "equal in rights" thus making the operator an active 
participant in the measurement process (Fig. 1). 
The hardware resources of the virtual instrument are defined by the signals for interaction between the DAQ-
system and the object of measurement. They can be divided into the following categories: analogue inputs; 
analogue outputs; digital inputs; digital outputs; timer/counter inputs/outputs. 
One essential advantage of virtual instruments is the generalization of their structure by means of a common 
model for representing the signals. Since the environment, processing the signals as defined by the computer 
which manages events interaction, is discrete, the relation between the analogue input and output signals and 
the model for their discrete representation is of decisive importance. 
The continuous signal is converted into discrete form, processed in the latter and then, if necessary, 
converted back to a continuous signal (Fig. 2). In this case the processing of the discrete signal can be done 
by a general purpose computer, varying the signal processing algorithms while maintaining the general 
technical structure [2]. Under certain conditions the heterogeneous combination of continuous with discrete 

 
 

Fig. 1. Functional Model of the Virtual Instrument 
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signals can be equivalent to a common continuous, time invariant system with frequency response Hc(ω ), 
despite the non-time invariants  of the pulse modulator [3].  

Clarifying the conditions for equivalence is of a crucial importance for correct from an informational point of 
view carrying out of the measurement process in virtual measurement systems. Modulating the analogue 
signal xc(t) with a pulse train p(t)  with sample period Т and sample rate sω , sT ωπ /2= , is the most 
frequently used conversion method:  

)()()( tptxtx cp = , ∑
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The signal xp(t) is a pulse sequence with pulse amplitudes, equaling the samples from xc(t), in moments 
displaced by T from each other, and frequency equivalent, determined by the convolution of )(ωcX  and 

)(ωP : 

∑
+∞

−∞=

−==
k

sccp kX
T

PXX )(1)](*)([
2
1)( ωωωω
π

ω  (2) 
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Equation (4) shows that the analogue signal, defined by samples with frequency sf , can be restored by 
passing the spectrum of the discrete signal through an ideal low-pass filter with cutting frequency cω and 
adhering to the more generic limiting conditions: 

MscМ ωωωω −<< , Ms ωω 2>   (5) 
Failing to observe (5) leads to low-level noise from overlapping of displaced copies' spectrums, also known as 
aliasing noise. This is why incorrect choice of sample frequency leads to unavoidable degradation of the 
restored signal. Fighting aliasing noise should be carried out by precursory limitation of the informative 
signal's spectrum. For finite in time signals this inevitably leads to the advent of error, which must carefully be 
considered in preliminary analysis and accounted for in the total balance of errors. 
Real-time measurement and preserving of the full information of signals across conversions can be achieved 
through implementation of local virtual instruments by combining hardware with suitable parameters in the 
technical part of the measurement system and well considered organization of algorithmical and software 
resources. In implementing remote virtual instruments, the possibilities for scaling of time are sharply reduced 
by the time it takes to carry out the routed Internet access, and consequently reduced are the possibilities for 
carrying out experiments in real-time for most processes under investigation. This is the reason why 
precursory processing of initially measured data is needed in "immediate proximity" to the object of 
measurement and integrated forms of estimations should be sent to the client, which, due to generalization, 
have lost some of the information contained in the measured signals, but have a considerably slower rate of 

Fig.2 Generic diagram for processing of a continuous signal in a Virtual 
Instrument 
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change. They however can be transmitted with suitable for the Internet medium informational frequencies. It is 
desirable that remote experiments in remotely accessed labs be described by such integrated ratings, so that 
the trainee, instead of being a passive observer and recorder can turn to a participant in an interactive 
monitoring, requiring his or her active share in the experiment, consequently better achieving educational 
goals. 

Software implementation 

One possible architecture of a virtual instrument is presented on Fig.3.  
The system is expected to run under Windows, due to the well-documented methods for accessing the 
hardware in this operating system. Windows imposes the need for a specific module, kernel mode driver, 
which is the only module that can access hardware directly, e.g. read from / write to IO ports, react to interrupt 
requests, etc. In this case it incorporates a number of functions, which are used to read data from ADCs, set 
values for DACs, start timers, etc. The DLL is in fact a wrapper, which makes the functions, implemented by 
the kernel mode driver available for use by applications. Additionally, as illustrated on Fig. 3, the DLL can also 
provide: 

• a server socket, implementing the server side of a socket based client-server protocol; 
• function(s) that can be called via Java RMI; 
• Windows-specific synchronization mechanisms for eliminating conflicts if more than one 

application tries to access the hardware in any one moment. 
The former two allow for remote access to the instrument, while the latter allows multiuser access.  
This architecture is based on the event-driven paradigm used by Windows and other graphical user interface 
systems. The system reacts to events by forming messages, which are then placed in affected applications' 
message queues. These messages are dispatched by a system call, finally reaching a window function - 
WndProc on Fig. 3. Control is then passed to specific code, processing any message of interest. As 
mentioned above, events can enter the system as a result of user interaction (from the keyboard, mouse, 
etc.). The same message-based approach can be used for asynchronous data exchange with the hardware. 
This allows a remote user to get integrated forms of estimations, discussed in the previous section. If the 

hardware allows it, the user 
can request a series of 
samples to be taken at a given 
rate. This request is processed 
in its entirety locally, even 
strictly at the hardware level. 
When the required number of 
samples has been collected, 
the hardware generates an 
interrupt request. This is 
detected by the kernel mode 
driver, which sends a specific 
message to the Windows 
kernel. This message is then 
dispatched to any application, 
which cares to process it. Thus 
the application receives the 
whole set of samples, taken in 
real time, and can visualize 
them locally, or send them to a 
remote user via RMI or 

sockets.  
Another important feature of this architecture is that all requests for hardware access, whether local or remote, 
rely on one module, the DLL, for fullfilment of these requests. This makes it very easy to implement 
synchronization, using standard Windows synchronization objects, such as critical sections or semaphores. 
Furthermore, if the hardware allows it, the different devices within it (such as DACs, ADCs, etc.)  can be 
virtualised seperately and allow concurrent access of more than one user to different devices. The only 

Fig. 3 Software architecture of a virtual instrument 
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requirement to the hardware for achieving such functionality is that it generates IRQ for each individual device 
and has means to identify which device caused it. 

Realization and conclusion 

Using above discussed technology a local test Virtual instrument (fig.4a) for functions control of a DAQ 
system and a Remote Virtual instrument for analysis of input/output characteristics of Instrumentation 
amplifiers (fig 4b) are developed. Both of them are implemented as powerful tools in the structure of the 
Remote Virtual Lab in Rousse University (http://tie.ru.acad.bg) [5]. The first is used by teaching staff for 
verification of the physical part of the virtual experiments - DAQ system KSI 10 [6]. The latter is granted to the 

students for a remote training 
in the field of Electrical 
Measurement.   
This Remote Virtual 
Laboratory is being 
constructed in the frame of 
THEIERE∗ Project as the 
main purpose was the efforts 
of the “Virtual Lab” group 
participants to be integrated 
in order to obtain a 
didactically structured 
distributed lab among the 

collaborative universities. The authors consider such an approach of teaching process organization as а 
possibility to make it more intensive and overcoming some constrains of the traditional teaching process 
concerning time and space limits in practical subjects as Electronics and Electrical Measurement in which 
practical experiments cannot be replaced by program simulators. 

Bibliography 
1. Spoedler H.J.W Virtual Instrumentation and Virtual Environments, IEEE Instrumentation & Measurement Magazine, 

1999, pp. 14-19. 
2. Spoedler H.J.W, Ulings Virtual Instrumentation: A survey of Standards and their Interrelation, IEEE Technology 

Conference Ottawa, Canada, May 19-21, 1997, pp. 676-681. 
3. Oppenheim A.V., A. Willsky, I. Young Signals and Systems, Prentice- Hall, Inc., 1983 
4. Zheliazkova I., G. Georgiev, Organization of Measurement Systems in an Event Programming Environment, 

Automatica and Informatics Journal, N6,1999, pp.44-49. 
5. Georgiev G., E.Stoyanov, S. Stefanova, D.Stoykov, H.Roth, Step by step towards the Virtual Lab organization, Int. 

Journal "Information Theories&Applications", 2002, vol.9, pp.153-159 
6. DAQ system KSI 10, BSA, ITCR, Sofia, 1988 
7. Pisani U., F.Cambiotti, N.Sala, F.Sanpriero, A Hypermedia solution for electronic instrumentation measurements 

practice, Proceedings of the 3rd International Conference on Computer Aided Engineering Education, 13-15 
September, 1995, Bratislava, Slovaki, pp.144-149. 

8. Majumdar S., C.Mazidar, D.Ray, On line CAI on Microprcessor Interfacing, Proceedings of the 3-rd International 
Conference on Computer Aided Engineering Eduvation, 1995, Bratislava, Slovakia,pp.144-149. 

9. Ponta D., G.Donzellini and G.Parodi, "Practical electronics taught by hypertext: the WORKBENCH project", 
Int.J.Computers & Education 16(1), 1998, 127-132. 

10. Ponta D., G.Donzellini, "Learning electronics with hypermedia and computer tools", Proceedings of the International 
Conference on Computer Aided Learning and Instruction in Science and Engineering, August 31, September 1-
2,1997, Paris, France, pp.7-23. 

Author information 
G.S.Georgiev, G.T.Georgiev, S.L.Stefanova - Rousse University, 7017 Rousse, 8 Studentska Str. e-mail: 
gsg@ru.acad.bg 

                                                           
∗  Thematic Harmonisation in Electrical and Information EngineeRing in Europe,Project Nr. 10063-CP-1-
2000-1-PT-ERASMUS-ETNE 

a) b) 
Fig. 4. Virtual instruments as tools of a Remote Virtual Lab 



International Journal "Information Theories & Applications" Vol.10 

 

477

AUTHOR INDEX OF THE IJ ITA VOL.10 / 2003 
Volume 10 / 2003 of the IJ ITA is separated in 4 numbers: 

Number 1: p.p.1-120; Number 2: p.p.121-240; Number 3: p.p.241-360; Number 4: p.p.361-480. 
 
 
 
Artemjeva I.L. 126
Aslanyan L. 279, 363
Baioletti M. 211
Balkanski P. 113
Bodrin A.V. 336
Bolshakov I. A. 198
Bolshakova E. I. 204
Bondarenko M. 132
Brijs T. 370
Brown F.M. 431, 439,

447, 455
Castellanos J. 279
Cheremisinova L. 106
Dimitrov B.  283, 408
Dobrov B. 98
Dokukin A.A. 463
Donchenko V.S. 376
Drobot E. 243
Eremeev A.P. 248
Farag M.H. 414
Filatova N.N. 336
Galinskaya A. 173
Ganchev I. 348
Gariachevskaja I.V. 293
Gattiker G. 330
Gavrilova T. 61
Gelbukh A. 198
Genova K. 266
Georgiev G.S. 472
Georgiev G.T. 472
Gladun V. 10, 123
Gnatienko G. 243
Gopych P.M. 189
Grabelkovsky A. 326
Green D. Jr. 283, 408
Gribova V. 87
Grigorieva O.M. 336
Grzywacz W. 230
Gui A.E. 256
Iliev A. 468
Ivanova K. 5
Jotsov V. 399
Kaler K. V.I.S. 330
Kalugniy M.V. 336
Kleshchev A. 87
Knyazeva M.A. 126
Koit M. 80
Kolomeyko V. 94
 
 

Kovacheva T. 311
Koval V. 15
Krissilov A.D. 179
Krissilov V.A. 179
Kryvyy S. 230, 423
Kuk Yu. 15
Kupnevich O.A. 126
Kussul N. 184
Kuziomin A.Ya. 293
Kyurkchiev N. 468
LaFrenz J. 330
Levchenko N. 184
Lopatina M. 423
Loukachevitch N. 98
Lozovskiy V. 29
Lukiyanova L.M. 380
Lyaletski A.V. 388
Marcugini S. 36
Markman A.B. 139
Markov K. 5
Marques N. 159
Matorin S. 132
Matorin V. 132
Matvyeyeva L. 423
Milani A. 36, 211
Mingo F. 279
Mintchev M.P. 330
Misuno I.S. 139
Mitov I. 5
Mostovoi S.V. 256
Mostovoi V.S. 256
Murygin K. 288
Nachev A. 348
Narula S. 266
Nevzorova O. 98
Nikitenko A. 147
Noncheva V. 159
Oleshko D.N. 179
Osadchuk A.E. 256
Panchenko M.V. 261
Panishev A.V.,  355
Pasechnik V. 184
Pechenizkiy M. 271
Plechystyy D.D. 355
Poggioni V. 211
Puuronen S. 271
Rabinovich Z.L. 23
Rachkovskij D.A. 139, 341
 
 

Radenski A. 394
Revunova E.G. 139
Reznik A. 173
Romanenko N. 226
Ryazanov V. 279
Rybin V. 66
Rybina G. 66
Rykov V. 408
Sahakyan H. 279, 363
Shelestov A 184
Sidorenko A. 184
Sirota S.V. 153
Skakun S. 184
Slipchenko N. 132
Sokolov A.M. 341
Solovyova E. 132
Somova E. 218
Sotskov Yu.N. 321
Sotskova N.Yu. 321
Stanchev P.L. 283, 408
Stefanova S.L. 472
Strelnikov I.N. 336
Syrtsev A.V. 167
Taran T.A. 153
Timofeev A.V. 54, 167
Tkachev A. 123
Todorov T. 468
Totkov G. 218
Tsymbal A. 271
Ulieru M. 326
Vagin V.N. 248
Vanhoof K. 370
Varbanova-Dencheva K. 237
Vashchenko N. 123
Vasilyeva E. 61
Vassilev V. 266
Vassileva M. 266
Velichko V. 123
Velikova-Bandova E. 5
Veremeyenko Y. 184
Voloshin A.F. 243, 261
Voronkov G.S. 23
Wets G. 370
Yakovetc D.A. 72
Yashchenko V. 299
Yermolenko T. 306
Zainutdinova L.H. 72
Zakrevskij A.D. 44
 



International Journal "Information Theories & Applications" Vol.10 

 

478 

TABLE OF CONTENTS OF IJ ITA VOL.10 
Number 1 

ABOUT …    IJ  ITA ................................................................................................................................................................................... 3 
THE INFORMATION 

K. Markov, K. Ivanova, I. Mitov, E. Velikova-Bandova.......................................................................................................................... 5 
INTELLIGENT SYSTEMS MEMORY STRUCTURING 

V. Gladun ............................................................................................................................................................................................ 10 
DISTANCES BETWEEN PREDICATES IN BY-ANALOGY REASONING SYSTEMS 

V. Koval, Yu. Kuk ................................................................................................................................................................................ 15 
ON NEURON MECHANISMS USED TO RESOLVE MENTAL PROBLEMS OF IDENTIFICATION AND LEARNING IN SENSORIUM 

G.S. Voronkov, Z.L. Rabinovich.......................................................................................................................................................... 23 
TOWARDS THE SEMIOTICS OF NOOSPHERE 

V.Lozovskiy ......................................................................................................................................................................................... 29 
PLANNING TECHNOLOGIES FOR THE WEB ENVIRONMENT: PERSPECTIVES AND RESEARCH ISSUES      

A. Milani, S. Marcugini ........................................................................................................................................................................ 36 
THE KNOWLEDGE: ITS PRESENTATION AND ROLE IN RECOGNITION SYSTEMS 

A. D. Zakrevskij ................................................................................................................................................................................... 44 
MULTI-AGENT INFORMATION PROCESSING AND ADAPTIVE CONTROL  IN GLOBAL TELECOMMUNICATION AND 
COMPUTER NETWORKS 

A.V.Timofeev....................................................................................................................................................................................... 54 
INTERFACE ENGINEERING AND DESIGN: ADAPTIBILITY PROBLEMS 

T. Gavrilova, E. Vasilyeva ................................................................................................................................................................... 61 
USING THE SIMULATION MODELING METHODS FOR THE DESIGNING REAL-TIME INTEGRATED EXPERT SYSTEMS 

G. Rybina, V. Rybin............................................................................................................................................................................. 66 
EXPERIMENTAL ESTIMATION OF ERGONOMIC PARAMETERS OF THE COMPUTER TRAINING PROGRAMS ON 
ELECTROTECHNICAL DISCIPLINES 

D.A. Yakovetc, L.H. Zainutdinova ....................................................................................................................................................... 72 
THE STRUCTURE OF INFORMATION DIALOGUES: A CASE STUDY 

M. Koit ................................................................................................................................................................................................. 80 
FROM AN ONTOLOGY-ORIENTED APPROACH CONCEPTION TO USER INTERFACE DEVELOPMENT  

Kleshchev Alexander, Gribova Valeriya.............................................................................................................................................. 87 
MUTUAL ADAPTATION OF THE COMPUTER ENVIRONMENT AND INDIVIDUAL 

V. Kolomeyko ...................................................................................................................................................................................... 94 
AN APPROACH TO NEW ONTOLOGIES DEVELOPMENT: MAIN IDEAS AND SIMULATION RESULTS 

B. Dobrov, N. Loukachevitch, O. Nevzorova ...................................................................................................................................... 98 
AN ALGORITHM FOR OPTIMAL BIPARTITE PLA FOLDING 

Liudmila Cheremisinova.................................................................................................................................................................... 106 
QUALITY ASSURANCE IN EXTREME PROGRAMMING 

Plamen Balkanski.............................................................................................................................................................................. 113 
ABOUT … THE JOURNAL OF RUSSIAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE ”NEWS OF ARTIFICIAL 
INTELLIGENCE” ................................................................................................................................................................................... 118 
ABOUT MANUSCRIPTS FOR IJ ITA .................................................................................................................................................... 119 
TABLE OF CONTENTS OF NUMBER 1 ............................................................................................................................................... 120 

 

Number 2 
 

SELECTION OF THEMATIC NL-KNOWLEDGE  FROM THE INTERNET 
V.Gladun, A.Tkachev, V.Velichko, N.Vashchenko............................................................................................................................ 123 

PROCESSING OF KNOWLEDGE ABOUT OPTIMIZATION OF CLASSICAL OPTIMIZING TRANSFORMATIONS 
Irene L. Artemjeva, Margarita A. Knyazeva, Oleg A. Kupnevich ....................................................................................................... 126 

A KNOWLEDGE-ORIENTED TECHNOLOGY OF SYSTEM-OBJECTIVE ANALYSIS AND MODELLING OF BUSINESS-SYSTEMS 
M. Bondarenko, V. Matorin, S. Matorin, N. Slipchenko, E. Solovyova ............................................................................................. 132 

ANALOGICAL REASONING TECHNIQUES IN INTELLIGENT COUNTERTERRORISM SYSTEMS 
A.B. Markman, D.A. Rachkovskij, I.S. Misuno, E.G. Revunova ....................................................................................................... 139 

A PROPOSED STRUCTURE OF KNOWLEDGE BASED HYBRID INTELLIGENT SYSTEMS FOR SOPHISTICATED 
ENVIRNOMENTS 

Agris Nikitenko .................................................................................................................................................................................. 147 
KNOWLEDGE LEARNING TECHNOLOGY FOR INTELLIGENT TUTORING SYSTEMS 

Taran T.A., Sirota S.V. ...................................................................................................................................................................... 153 
KNOWLEDGE PRESENTATION AND REASONING WITH LOGLINEAR MODELS 

Veska Noncheva, Nuno Marques ..................................................................................................................................................... 159 
NEURAL APPROACH IN MULTI-AGENT ROUTING FOR STATIC TELECOMMUNICATION NETWORKS 

Timofeev A.V., Syrtsev A.V............................................................................................................................................................... 167 
INTELLECT SENSING OF NEURAL NETWORK THAT TRAINED TO CLASSIFY COMPLEX SIGNALS 

Reznik A. Galinskaya A..................................................................................................................................................................... 173 
APPLICATION OF THE SUFFICIENCY PRINCIPLE IN ACCELERATION OF NEURAL NETWORKS TRAINING 

Krissilov V.A., Krissilov A.D., Oleshko D.N. ...................................................................................................................................... 179 



International Journal "Information Theories & Applications" Vol.10 

 

479

MULTI-AGENT SECURITY SYSTEM BASED ON NEURAL  NETWORK MODEL OF USER'S BEHAVIOR 
N. Kussul, A. Shelestov, A. Sidorenko, V. Pasechnik,  S. Skakun, Y. Veremeyenko, N. Levchenko .............................................. 184 

ROC CURVES WITHIN THE FRAMEWORK OF NEURAL NETWORK ASSEMBLY MEMORY MODEL: SOME ANALYTIC 
RESULTS 

P.M. Gopych ..................................................................................................................................................................................... 189 
PARONYMS FOR ACCELERATED CORRECTION OF SEMANTIC ERRORS  

I. A. Bolshakov, A. Gelbukh .............................................................................................................................................................. 198 
TOWARDS COMPUTER-AIDED EDITING OF SCIENTIFIC AND TECHNICAL TEXTS 

E. I. Bolshakova ................................................................................................................................................................................ 204 
MANAGING INTERVAL RESOURCES IN AUTOMATED PLANNING 

V.Poggioni, A.Milani, M.Baioletti ....................................................................................................................................................... 211 
А PLANNING MODEL WITH RESOURCES IN E-LEARNING 

G. Totkov, E. Somova....................................................................................................................................................................... 218 
PLANNING OF INTELLECTUAL ROBOT ACTIONS IN REAL TIME 

N. Romanenko .................................................................................................................................................................................. 226 
ON OBDD TRANSFORMATIONS REPRESENTING FINITE STATE AUTOMATA 

S.Kryvyy,  W.Grzywacz..................................................................................................................................................................... 230 
INTELLECTUAL COMMUNICATIONS  AND CONTEMPORARLY TECHNOLOGIES ALTERNATIVES OF THE SCIENCE 
LIBRARIES 

Varbanova-Dencheva, K. .................................................................................................................................................................. 237 
TABLE OF CONTENTS OF NUMBER 2 .............................................................................................................................................. .240 

 

Number 3 
 

FUZZY MEMBERSHIP FUNCTIONS IN A FUZZY DECISION MAKING PROBLEM 
A.Voloshyn, G. Gnatienko, E. Drobot ............................................................................................................................................... 243 

A REAL-TIME DECISION SUPPORT SYSTEM PROTOTYPE FOR MANAGEMENT OF A POWER BLOCK 
A.P. Eremeev, V.N. Vagin................................................................................................................................................................. 248 

MODEL OF ACTIVE STRUCTURAL MONITORING AND DECISION-MAKING FOR DYNAMIC IDENTIFICATION OF BUILDINGS, 
MONUMENTS AND ENGINEERING FACILITIES 

S. V. Mostovoi, A.E. Gui, V. S. Mostovoi and A. E. Osadchuk ......................................................................................................... 256 
THE SYSTEM OF QUALITY PREDICTION ON THE BASIS OF A FUZZY DATA AND PSYCHOGRAPHY OF THE EXPERTS 

Voloshin O.F., Panchenko M.V......................................................................................................................................................... 261 
CLASSIFICATION-BASED METHOD OF LINEAR MULTICRITERIA OPTIMIZATION 

V. Vassilev, K. Genova, M. Vassileva, S. Narula.............................................................................................................................. 266 
FEATURE EXTRACTION FOR CLASSIFICATION IN THE DATA MINING PROCESS 

M. Pechenizkiy, S. Puuronen, A. Tsymbal........................................................................................................................................ 271 
ALGORITHMS FOR DATA FLOWS 

L. Aslanyan, J. Castellanos, F. Mingo, H. Sahakyan, V. Ryazanov ................................................................................................. 279 
HIGH LEVEL COLOR SIMILARITY RETRIEVAL 

Peter L. Stanchev, David Green Jr., Boyan Dimitrov........................................................................................................................ 283 
OPTIMIZATION OF GABOR WAVELETS FOR FACE RECOGNITION 

K.Murygin .......................................................................................................................................................................................... 288 
METHODS OF COLOR IMAGES PROCESSION  FOR FURTHER IDENTIFICATION OF THE OBJECT 

Gariachevskaja I.V., Kuziomin A.Ya. ................................................................................................................................................ 293 
NEURAL-LIKE GROWING NETWORKS IN INTELLIGENT SYSTEM OF RECOGNITION OF IMAGES 

Vitaliy Yashchenko............................................................................................................................................................................ 299 
SEGMENTATION OF A SPEECH SIGNAL WITH APPLICATION OF FAST WAVELET TRANSFORMATION 

T. Yermolenko................................................................................................................................................................................... 306 
CLUSTER ANALYSIS OF SOME CLASSES OF OBJECTS  BY APPLICATION OF THE TEST RECOGNITION ALGORITHMS 

Tsvetanka Kovacheva....................................................................................................................................................................... 311 
STABILITY OF AN OPTIMAL SCHEDULE FOR A JOB-SHOP PROBLEM WITH TWO JOBS 

Yu. N. Sotskov, N. Yu. Sotskova ...................................................................................................................................................... 321 
TELEHEALTH APPROACH FOR GLAUCOMA PROGRESSION MONITORING 

Mihaela Ulieru, Alexander Grabelkovsky .......................................................................................................................................... 326 
STARTING FROM SCRATCH: CREATING AN INFORMATION TECHNOLOGY INFRASTRUCTURE FOR MEMS-RELATED 
RESEARCH AND DEVELOPMENT 

Jeff LaFrenz, Giorgio Gattiker, Karan V.I.S. Kaler, Martin P. Mintchev ............................................................................................ 330 
THE INTELLIGENT SYSTEM OF THE HEARING INVESTIGATION 

Filatova N.N., Strelnikov I.N., Grigorieva O.M., Bodrin A.V., Kalugniy M.V...................................................................................... 336 
ON HANDLING REPLAY ATTACKS IN INTRUSION DETECTION SYSTEMS 

A. M. Sokolov, D. A. Rachkovskij...................................................................................................................................................... 341 
DATA MINING FOR BROWSING PATTERNS  IN WEBLOG DATA BY ART2 NEURAL NETWORKS 

A. Nachev, I. Ganchev ...................................................................................................................................................................... 348 
AN EFFECTIVE EXACT ALGORITHM FOR ONE PARTICULAR CASE OF THE TRAVELING-SALESMAN PROBLEM 

Panishev A.V., Plechystyy D.D. ........................................................................................................................................................ 355 
TABLE OF CONTENTS OF NUMBER 3 .............................................................................................................................................. .360 



International Journal "Information Theories & Applications" Vol.10 

 

480 

TABLE OF CONTENTS OF IJ ITA VOL.10, NUMBER 4 
 
DIFFERENTIAL BALANCED TREES AND (0,1) MATRICES 

H. Sahakyan, L. Aslanyan ......................................................................................................................... 363 
DEFINING INTERESTINGNESS FOR ASSOCIATION RULES 

T. Brijs, K. Vanhoof, G. Wets..................................................................................................................... 370 
THE HOUGH TRANSFORM AND UNCERTAINTY 

V.S.Donchenko ......................................................................................................................................... 376 
SYSTEMS ANALYSIS: THE STRUCTURE-AND-PURPOSE APPROACH  BASED ON LOGIC-LINGUISTIC 
FORMALYZATION 

Lyudmila M. Lukiyanova ............................................................................................................................ 380 
ADMISSIBLE SUBSTITUTIONS IN SEQUENT CALCULI 

A. V. Lyaletski............................................................................................................................................ 388 
THE SUBCLASSING ANOMALY IN COMPILER EVOLUTION 

Atanas Radenski ....................................................................................................................................... 394 
FRONTAL SOLUTIONS:  AN INFORMATION TECHNOLOGY TRANSFER TO ABSTRACT 
MATHEMATICS 

V. Jotsov.................................................................................................................................................... 399 
ON STATISTICAL HYPOTHESIS TESTING VIA SIMULATION METHOD 

B. Dimitrov, D. Green, Jr., V.Rykov, P. Stanchev...................................................................................... 408 
A GRADIENT-TYPE OPTIMIZATION TECHNIQUE FOR THE OPTIMAL CONTROL FOR SCHRODINGER 
EQUATIONS 

M. H. FARAG ............................................................................................................................................ 414 
AUTOMATIC TRANSLATION OF MSC DIAGRAMS INTO PETRI NETS 

S. Kryvyy, L. Matvyeyeva, M. Lopatina ..................................................................................................... 423 
REPRESENTING REFLECTIVE LOGIC IN MODAL LOGIC 

Frank M. Brown ......................................................................................................................................... 431 
REPRESENTING DEFAULT LOGIC IN MODAL LOGIC 

Frank M. Brown ......................................................................................................................................... 439 
ON THE RELATIONSHIP BETWEEN QUANTIFIED REFLECTIVE LOGIC AND QUANTIFIED DEFAULT 
LOGIC 

Frank M. Brown ......................................................................................................................................... 447 
REPRESENTING AUTOEPISTEMIC LOGIC IN MODAL LOGIC 

Frank M. Brown ......................................................................................................................................... 455 
ONE APPROACH FOR THE OPTIMIZATION  OF ESTIMATES CALCULATING ALGORITHMS 

A.A. Dokukin.............................................................................................................................................. 463 
WEB-BASED SIMULTANEOUS EQUATION SOLVER 

A. Iliev, N. Kyurkchiev, T. Todorov ............................................................................................................ 468 
VIRTUAL INSTRUMENTS – FUNCTIONAL MODEL, ORGANIZATION AND PROGRAMMING 
ARCHITECTURE 

G.S.Georgiev, G.T.Georgiev, S.L.Stefanova............................................................................................. 472 
AUTHOR INDEX OF THE IJ ITA VOL.10 / 2003........................................................................................... 477 
TABLE OF CONTENTS OF IJ ITA VOL.10 .................................................................................................. 478 
TABLE OF CONTENTS OF IJ ITA VOL.10, NUMBER 4 ............................................................................. 480 
 


