
International Journal "Information Theories & Applications" Vol.11

141

AN OPTIMAL DISTRIBUTED ALGORITHM FOR ALL-PAIRS SHORTEST-PATH

Saroja Kanchi and David Vineyard

Abstract: In this paper the network problem of determining all-pairs shortest-path is examined. A distributed
algorithm which runs in O(n) time on a network of n nodes is presented. The number of messages of the
algorithm is O(e+n log n) where e is the number of communication links of the network. We prove that this
algorithm is time optimal.

Keywords: distributed algorithm, all-pairs shortest-path, computer network.

Introduction
In this paper we examine the distributed all-pairs shortest-path problem. The all-pairs shortest-path problem is the
problem in which the shortest path between every pair of nodes in a network is determined. In the distributed
version of the problem, a distributed algorithm is sought such that at the termination of the algorithm, every node
knows the shortest path between any two nodes of the network. Floyd published a centralized algorithm [Floyd,
1962], which has been converted into a distributed algorithm by Toueg [Toueg, 1980]. The time complexity of this
algorithm is O(n2) [Toueg, 1980].
The distributed shortest path problem and its variations have been studied because of its many applications. A
decentralized algorithm for finding shortest paths in a network was presented by Abraham and Rhodes [Abram,
1978]. A distributed algorithm for finding shortest distances in an undirected graph was presented by
Ravichandran, et. al. [Ravichandran, 1986] in which at the termination of the algorithm, each node contains the
shortest path between itself and all other nodes. The algorithm described by Chandry and Misra [Chandry, 1982]
finds shortest path from a node i to node j in a directed graph.
Determining topological properties of a network by distributed computation have received considerable attention.
A number of papers have covered the topic of finding a minimum weight spanning tree [Awerbuch, 1987],
[Korach, 1984], [Garay, 1998]. The problems of leader election, counting, and related problems [Awerbuch,
1987], [Singh, 1995], [Korach, 1984], [Kutten, 1998], [Kanchi, 1993] have also been studied.
In this paper we use the solution for finding a minimum weight spanning tree for finding a time optimal algorithm
for the distributed all-pairs shortest-path problem.
There has been no previous distributed algorithm to find the all-pairs shortest-path in a general graph, other than
the distributed version of a centralized algorithm given by Floyd [Floyd, 1962]. Therefore the idea of using a
spanning tree and the center of the tree to find all-pairs shortest paths is a new element in this algorithm.

Model
The distributed network is considered to be an undirected weighted communications graph G=(V,E), with
processors forming the nodes, V, and bidirectional weighted communication links between processors forming
the edges, E of the graph. No processor knows the topology of the network. No common memory is shared
between processors and there is no global clock. All processors have unique identities from a totally ordered set.
No processor knows the identity of any other processor. Each processor knows the links incident to it. For the
duration of the algorithm, the network is assumed to be reliable, i.e., there will be no failures of the nodes or links
for the duration of the algorithm.
The local computation at any node is assumed to take negligible time compared to the time required to transmit a
message along a link. The asynchronous nature of the network permits undetermined communication delays in
the delivery of a message. However, for the purpose of determining the time complexity, we assume that each
message is delivered in O(1) time along a link, irrespective of the size of the message. The correctness of the
algorithm does not depend on this assumption.

International Journal "Information Theories & Applications" Vol.11

142

The algorithm we present does not depend on any initiator node(s). At any time, one or more nodes may wake up
and begin the execution of the algorithm. At the end of the algorithm, all nodes know the shortest path between
any two nodes of the network. This data is stored in a square matrix, D, where entry (i,j) contains the shortest
path between the nodes i and j.
Given any spanning tree T of a graph G, the edges that are not in T are called the co-tree edges with respect to T.
The size of the set V is denoted by n. The size of the set E is denoted by e.

Informal Description of the Algorithm
In this section we describe the algorithm at a high level. The algorithm consists of four steps as described below.

Step I: Finding a spanning tree, T, of the weighted graph, G:

Initially, all nodes are inactive. The first major part of the algorithm is to find a spanning tree, T, of the underlying
unweighted graph. This can be accomplished by any one of the spanning tree finding algorithms, and we use the
algorithm given by Awerbuch [Awerbuch, 1987], which takes time O(n).

The spanning tree algorithm ensures every node can identify the links incident on it as either an edge in the tree
T or a co-tree edge with respect to T.

Step II: Each node determines the identities of its neighbors in the graph G:

Each node must determine the identities of its neighbors in graph G. This can be accomplished by each node
sending its identity along each link incident to it. The time complexity of this step is O(1). Since each link carries
exactly two messages, one from each of the incident nodes to the link, the number of messages is 2e.

Step III: Determination of the All-Pairs Shortest-Distance matrix D:

This step of the algorithm deals with the transmission of distance information in G along the tree edges of T.
Initially, each vertex constructs a local distance matrix that has row and column labels corresponding to the vertex
and its neighbors.

Starting at each leaf node, partial distance information is transmitted along the tree edges of T. Whenever the
partial distance matrix of a neighbor is received at a non-leaf node, new columns and rows are added to the
partial distance matrix of that node and existing distance data is updated. When a non-leaf node receives partial
distance matrix information from all but one of its neighbors, it becomes a transmitting node and sends its partial
distance matrix to the neighbor from which it did not receive a partial distance matrix message.

At the end of this step, exactly one or two nodes, called the saturated node(s) of the tree, would contain Shortest-
Distance matrix, D, of the entire graph G. We will show that the time complexity of this step is O(n).

Step IV: Communicating the All-Pairs Shortest-Distance matrix D to every node:

This communication originates at the one or two nodes that are described in Step 3, and messages travel using
only tree edges of T. This step has complexities of O(n) time and O(n) number of messages.

Notation Used in the Algorithm
Messages transmitted in this algorithm are of the following three types:

IDENTIFICATION: This type of message is used in Step II, where each node transmits its unique identity to each of
its neighbors in the graph G.

PARTIAL DISTANCE MATRIX: This type of message in used in Step III, where the partial distance matrix calculated
locally at a given node is sent along a single tree edge.

International Journal "Information Theories & Applications" Vol.11

143

FINAL DISTANCE MATRIX: This type of message is used in Step IV, where the final distance matrix is sent to all the
tree neighbors.

The nodes are in one of four states throughout the execution of the algorithm.

INACTIVE: Nodes are in Inactive state prior to the start of the algorithm. Initially all nodes are Inactive.

RECEIVING: Any non-leaf node that is receiving and processing partial distance matrices from other nodes is said
to be in Receiving state. A node in Receiving state has not yet transmitted its partial distance matrix.

TRANSMITTING: A node is in Transmitting state if it has received partial distance matrices from all but one of its
neighbors (this is trivially true for a leaf node). A node in Transmitting state sends its updated partial distance
matrix to one other node from which it did not receive a partial distance matrix.

SATURATED: A node is in Saturated state if has received partial distance matrices from all its neighbors in the tree T.

Algorithm
In this section we describe the distributed algorithm for finding the all-pairs shortest-distance matrix.

ALGORITHM (ALL-PAIRS SHORTEST-PATH ALGORITHM)
1. Every node sets its state to Inactive.
2. Construct a spanning tree, T of the underlying unweighted graph. Any good asynchronous spanning tree

algorithm can be used. The only modification to the spanning tree algorithm, which is required for our
algorithm, is that any node with a single neighbor in the tree (a leaf node) must change its state to
Transmitting at the end of the spanning tree algorithm. Similarly, any node with more than one neighbor
in the tree (an interior node) must change its state to Receiving.

3. Each node i determines the identities of its neighbors in G and stores identity and distance data in a
matrix PDi. For instance, a node i that is adjacent to nodes j and k, creates entries (i,j), (j,k) and (i,k) in
PDi. The value of PDi[i,j], PDi[i,k] would be the weights of the edges (i,j) and (i,k) respectively, and the
value of PDi[j,k] would be the sum of weights of the edges (i,j) and (i,k). See
INITIALIZE_PARTIAL_DISTANCE_MATRIX subroutine below.

4. Determine All-Pairs Shortest Distance Matrix D of the graph G. Each node's behavior is determined by
its state.
 For each node i ∈ V
 If the state of i is Receiving
 Run the subroutine RECEIVING_NODE_PROCESSING(i);
 If the state of i is Transmitting
 Run the subroutine TRANSMITTING_NODE_PROCESSING(i)
As a result, at most 2 transmitting nodes will receive a message from all neighbors and are marked
Saturated.

5. Transmit the final All-Pairs Shortest-Distance matrix to every node from a Saturated node. Any
Saturated node contains the final all pairs shortest distance matrix D. The Saturated node(s) will create
a final message consisting of D and send this message to all its neighbors in the spanning tree T. Any
node in the spanning tree that receives D will store D locally and send D to all its tree neighbors except
the tree neighbor from which it received D.

International Journal "Information Theories & Applications" Vol.11

144

SUBROUTINE (INITIALIZE_PARTIAL_DISTANCE_MATRIX)
1. For each node i ∈ V
2. i transmits an Identification message containing its identity along each edge incident at i in G
3. i, upon receiving the identities of its m neighbors, creates a distance matrix, PDi, of size

(m+1)×(m+1) and assigns the values to PDi[j,k] as given below.
3.1. For each j, k ∈ indexes of PDi
3.2. If j == k then PDi[j,k] ← 0.
3.3. If j == i or k == i then PDi[j,k] ← weight of the edge between j and k.
3.4. Else PDi[j,k] ← PDi [j,i] + PDi [i, k].
3.5. EndFor

SUBROUTINE (RECEIVING_NODE_PROCESSING(i))

1. Let Tnbri be the set of neighbors of node i in Tree T created in Step 2 of the all-pairs shortest-path
algorithm.

2. Let count be the number of the partial distance matrices that i has received since it changed state to
Receiving. Initially count is set to 0.

3. Let Links_Used be a vector of size | Tnbri| of type boolean in which all entries are initialized to False.

4. While count < | Tnbri| – 1
5. Receive message PDj from neighbor j
6. count++
7. Link_Used[j] ←True
8. Call ProcessMessage(PDj)
9. EndWhile

10. Set the state of node i to Transmitting.

SUBROUTINE (PROCESSMESSAGE(PDj))

1. For each index k in PDj
2. if k is not an index of PDi
3. extend PDi by one row and one column corresponding to k
4. For all indexes m in PDi
5. Set PDi [k, m] ← PDi [m, k] ← ∞
6. EndFor
7. Set PDi [k, k] ← 0
8. EndIf
9. EndFor

10. For each k, m ∈ indexes of PDj
11. if PDi[k,m] > PDj[k,m]
12. PDi[k,m] ← PDj[k,m]
13. EndFor

14. For each k, m, n ∈ indexes of PDi
15. if PDi[k,m] > PDi[k,n] + PDi[n,m]
16. PDi[k,m] ← PDi[k,n] + PDi[n,m]
17. EndFor

SUBROUTINE (TRANSMITTING_NODE_PROCESSING(i))

1. Node i transmits PDi to its only neighbor in T from which it has not received a partial distance matrix.
2. If i receives another partial distance message, say from j, then i calls ProcessMessage(PDj) and marks

itself as Saturated.

International Journal "Information Theories & Applications" Vol.11

145

Correctness
In this section we show that the All-Pairs Shortest-Path algorithm produces the correct result.

Lemma 1 There are at most two Saturated nodes.
PROOF: The algorithm starts at leaf nodes of the tree, and matrices are transmitted to internal nodes. Each
internal node, in turn chooses the one node from which it has not received any partial distance matrix as its
parent and transmits the partial distance matrix to that node. In this manner eventually the matrices reach the one
or two centers of the tree. These centers become the Saturated nodes.

Lemma 2 The shortest distance between any two nodes is known to a Saturated node.
PROOF: We will prove this using induction on the number of edges in the shortest path. Any shortest path
consisting of a single edge is known to the Saturated node(s), since every node, by Step 3, creates a partial
distance matrix and all these matrices are transmitted eventually to the Saturated node(s).

Assume that if there are fewer than k edges in the shortest path between two nodes, then that path is known to
the Saturated node(s). Consider two nodes x and y such that the shortest path P between x and y has k edges.
Let P = (x = v0, v1, v2, ...,vk–1, vk = y). Assume that the Saturated node(s) contains a ``path'' P' between x and y,
but that the sum of the edge weights of P' is greater than the sum of the edge weights of P. Then the two paths
must differ in at least one edge. Let (vi, vi+1) be the first edge in P that is not in P'. Note that vi could be the same
as x or vi+1 could be same as y. But since P is the shortest path from x to y, the path (x, v1, v2, … , vi) is a shortest
path from x to vi. Similarly, the path (vi+1, vi+2, …,vk-1, y) is a shortest path from vi+1 to y. Note that these paths must
contain fewer than k edges, since P has k edges. But by the induction hypotheses the Saturated node contains
the shortest path from x to vi and from vi+1 to y since the number of edges in each of these shortest paths is less
than k. Also, by Step 4 of the all-pairs shortest-path algorithm, Process_Message combines these two shortest
paths to obtain the shortest path between x and y. Therefore the Saturated node must have the path P.

Theorem 1 The All-Pairs Shortest-Path Algorithm guarantees that all nodes in G know the all-pairs
shortest-paths.
PROOF: By Lemma 1, there are exactly one or two Saturated nodes. By Lemma 2, a Saturated node knows the
all-pairs shortest-path matrix D. Step 5 of the algorithm is a broadcast of this information to all nodes in the
spanning tree, hence in the graph.

Complexity
In this section, we show that Algorithm 1 takes O(n) time and O(e + n log n) number of messages. Note that the
subroutines Initialize_Partial_Distance_Matrix, Receiving_Node_Processing(i), ProcessMessage, and
Transmitting_Node_Processing each perform local processing and are thus considered to take O(1) time.

Theorem 2 The all-pairs shortest-path algorithm terminates in O(n) time.
PROOF: Step 1 of the algorithm takes O(1) time. Step 2 of the algorithm, i.e., constructing the spanning tree, takes
O(n) time. [Awerbuch, 1987]. Step 3 of the algorithm takes O(1) time, since each node sends one message on
each tree link. Step 4 of the algorithm takes time proportional to the height of the tree with a Saturated node as a
root. This is at most O(n). Step 5 takes the same time as Step 4 since the messages travel from the root to the
leaves of the tree. The time complexity of the algorithm is dominated by Step 2, and is thus O(n).

Theorem 3 The all-pairs shortest-path algorithm has O(e + n log n) bound on the number of messages.
PROOF: The number of messages in Step 2 of the algorithm is O(e + n log n) [Awerbuch, 1987]. The number of
messages in Step 3 of the algorithm is 2e since each edge is used for exactly two IDENTIFICATION messages. The
number of messages in Step 4 of the algorithm is O(n) because the partial distance matrices are transmitted from
leaf nodes to the root of the tree (Saturated node) using only edges of T. The spanning tree has n-1 edges and

International Journal "Information Theories & Applications" Vol.11

146

exactly one message is sent along each tree edge, thus the number of messages is O(n). Note that if there are
two Saturated nodes, the edge between them is used twice. Similarly, the number of messages in Step 5 of the
algorithm is O(n). Therefore the number of messages generated by the algorithm is bounded by
O(e +n log n).

Optimality
We claim that our distributed algorithm is time optimal for finding all-pairs shortest-path. This follows since a
solution to the leader election problem can be obtained from a solution to the all-pairs shortest-path problem with
no additional communication time. For instance, each node can locally elect the node with the highest identity as
the leader. Since the time optimal leader election algorithm [Awerbuch, 1987] takes O(n) time, our O(n) time
algorithm for all-pairs shortest-path is also time optimal.

Conclusion
We have developed a distributed algorithm for the all-pairs shortest-path problem which is optimal in time and
number of messages. The optimal time is O(n). The optimal number of messages is O(e + n log n).

Bibliography
[Abram, 1978] J.M. Abram and I.B. Rhodes, A decentralized shortest path algorithm in Proc. of the 16th Allerton Conf. on

Communication, Control, and Computing (Monticello, Ill.), pp. 271-277, 1978
[Awerbuch, 1987] B. Awerbuch, Optimal distributed algorithms for minimum-weight spanning tree, counting, leader election

and related problems, in Proc. 19th ACM Symp. on Theory of Computing, ACM, New York, pp. 230-240, 1987
[Chandry, 1982] K.M. Chandry and J. Misra, Distributed computation on graphs: shortest path algorithms, Comm. ACM 25,

pp. 833-837, Nov. 1982
[Floyd, 1962] R. Floyd, Algorithm 97: shortest path, Comm. ACM 5, 1962
[Garay, 1998] J. Garay, S. Kutten, and D. Peleg, A sublinear time distributed algorithm for minimum-weight spanning trees,

SIAM J. Comput., Vol. 27, No. 1, pp. 302-316, February 1998
[Kanchi 1993] S.P. Kanchi and J.L. Kim, Alternate algorithms for leader election on reliable and unreliable complete

networks, Proc. of the sixth international conf. on parallel and distributed computing and systems p.118-121,
October 1993

[Korach, 1984] E. Korach, S. Moran, and S. Zaks, Tight lower and upper bounds for some distributed algorithms for a
complete network of processors, Proc. of 1985 PODC Conf., Vancouver, BC, pp. 199-207, August 1984

[Kutten, 1998] S. Kutten and D. Peleg, Fast distributed construction of small k-dominating sets and applications, Journal of
Algorithms 28, pp. 40-66, 1998

[Ravichandran, 1986] A. Ravichandran, S.G. Menon, and R.K. Shyamasundar, A distributed algorithm for finding the shortest
paths in an undirected graph, Technical Report CS-86-13, Department of Computer Science, Pennsylvania State
University, May 1986

[Singh, 1995] G. Singh and A. Bernstein, A highly asynchronous minimum spanning tree protocol, Distrib. Comput.,
pp 151-161, 1995

[Toueg, 1980] S. Toueg, An all-pairs shortest-path distributed algorithm, Res. Rep. RC-8327, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y., 1980

Authors' Information
Saroja Kanchi – Department of Science and Mathematics, Kettering University, 1700 West Third Avenue, Flint,
Michigan 48504-4898, USA: skanchi@kettering.edu
David Vineyard – Department of Science and Mathematics, Kettering University, 1700 West Third Avenue, Flint,
Michigan 48504-4898, USA: dvineyar@kettering.edu

