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SENSITIVITY AND BIAS WITHIN THE BINARY SIGNAL DETECTION THEORY, BSDT 

Petro Gopych 
Abstract: Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory 
(BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce 
Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and 
neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially different. 
In present work BSDT/NNAMM optimal likelihood and posterior probabilities are analytically analyzed and used to 
generate ROCs and modified (posterior) mROCs, optimal overall likelihood and posterior. It is shown that for the 
description of basic discrimination experiments in psychophysics within the BSDT a ‘neural space’ can be 
introduced where sensory stimuli as neural codes are represented and decision processes are defined, the 
BSDT’s isobias curves can simultaneously be interpreted as universal psychometric functions satisfying the 
Neyman-Pearson objective, the just noticeable difference (jnd) can be defined and interpreted as an atom of 
experience, and near-neutral values of biases are observers’ natural choice. The uniformity or no-priming 
hypotheses, concerning the ‘in-mind’ distribution of false-alarm probabilities during ROC or overall probability 
estimations, is introduced. The BSDT’s and classic SDT’s sensitivity, bias, their ROC and decision spaces are 
compared.  

Keywords: binary signal detection theory, sensitivity, bias, ROC, mROC, overall likelihood and posterior, neural 
space, psychometric function, just noticeable difference (jnd), uniformity or no-priming hypotheses. 

1. Introduction 
Since D.Green & J.Swets’ pioneering book [1], classic Signal Detection Theory (SDT) is widely used in 
psychology for describing different discrimination experiments concerning the study of human/animal sensory and 
memory abilities. Further developments were summarized by N.A.Macmillan & C.D.Creelman whose monograph 
[2] reviews the state of the art in this field. Since 1960th the SDT’s productivity was successfully demonstrated in 
numerous experiments performed using different experimental paradigms and for this reason it became 
extremely popular as a tool for analysis and interpretation of data in sensory and cognitive psychology.  
Of course, not all SDT’s applications are equally successful and this fact plays the role of an impetus for further 
SDT development and for designing its new, sometimes technically sophisticated although not always perfect, 
versions. But, perhaps, the main SDT’s disadvantage is conceptual rather than technical: its decision rules act in 
a so called psychological decision space – the hypothetical space, quite separate from the world of stimuli and 
having unclear relations to it; decision space is deliberately introduced to define internal (mental) stimulus 
representations, objects of the SDT. Moreover, it is unclear whether specific relations between stimulus space 
(world) and the SDT’s decision space can be one day discovered even in principle. 
In present work using complete numerical examples basic notions and parameters of the optimal Binary 
(Binomial) SDT (BSDT) [3] are investigated and compared with corresponding notions and parameters of classic 
SDT [2]. The main two distinctions between BSDT and SDT approaches are emphasized. The first is technical: in 
contrast to the SDT’s continues (Gaussian) probability distributions, BSDT operates with discrete (binomial) 
probability distributions and for this reason all its predictions are discrete. The second is conceptual: in contrast to 
the SDT’s two separate spaces (the stimulus space and psychological decision space), BSDT defines for stimuli 
and decisions their common ‘neural space’ where stimuli are represented as unified neural codes (N-dimensional 
binary vectors) and decisions as operations over these codes. Furthermore, it may be expected that in the future 
all objects in the neural space could be related to sensory stimuli using the methods of neuroscience.  

2. About the BSDT 

As it has already been demonstrated [3], for a binary data coding initially proposed in ref. [4] there exist three data 
decoding algorithms (neural network, convolutional, and Hamming distance) which have equivalent, and the best 
in the sense of statistical patterns recognition quality, performance. For such a decoding algorithm that is 
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equivalent to an intact two-layer neural network (NN) operating with a neuron threshold θ, its quality performance 
were derived [3] as analytical expressions for exact calculation of the probability (likelihood) L(d,θ) of the best 
correct decoding N-dimensional binary vectors x = x(d) with components ±1 and a given intensity of cue q = 1 – 
d, d = m/N, where m is the number of noise components of x and N – m is the number of intact components of x0 
among the components of x [reference vector x0 contains the information stored or that should be stored in the 
NN and, consequently, L(d,θ) is also the probability of correct recognition of x0 in x(d)] [3]. It is important that 
BSDT and recent Neural Network Assembly Memory Model (NNAMM) are mathematically similar (NNAMM is in 
fact a direct implementation of the BSDT for solving the problem of memory storing/retrieval) and some their 
basic parameters are the same [5]. The similarity between the BSDT and NNAMM (between their mathematical 
tools) is important as in many cases it allows do not watch for distinctions between patterns’ coding/decoding and 
storing/retrieving and consider these processes using their common, BSDT/NNAMM, point of view.  
We refer to ref. 3 and 5 for some BSDT/NNAMM details and pay here the main attention only to those BSDT’s 
parameters which are needed to derive the BSDT’s counterparts to sensitivity and bias of the classic SDT. For 
simplicity, to exclude the consideration of splitting the probability functions L(d,θ) [3], in this work we shall discuss 
only the case of odd N, i.e. the case of an odd number of the NN’s entrance- or exit-layer neurons. Now we only 
rewrite the expression for the probability of correct decoding L(d,θ) = L(m,N,θ) [3] using a new parameter, the 
threshold interval index Θ, introduced in Section 3 and compared with other BSDT’s parameters in Table 1: 
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where if kmax ≤ kmax0 then kmax = m else kmax = kmax0; for odd N kmax0 = (N – Θ – 1)/2 where Θ is even, –(N 
+ 1) ≤ Θ ≤ N – 1, and ΔΘ = 2 with a special case if Θ = N + 1 then L(m,N,Θ) = L(d, θ) = 0.  

3. Relations between Some BSDT Parameters 

For the case of odd N Table 1 and Figures 1 and 2 illustrate relations between some BSDT’s parameters (rather 
large amount of them is in particular caused by the fact that the decoding algorithm has three different forms). 
 

Table 1 
Relations between some BSDT parameters for the case N = 9, as in our works [3,6]*) 

 
i a) Δθi b) Qi c) Di d) ρi e) Θi f) Fi g) ΔFi  h) 

 
–1 [9, +∞) 9 0 9/9  10 0/512 = 0.00000 – 
0 [7, 9) 7, 8 1 7/9, 8/9 8 1/512 = 0.00195 1/512 = 0.00195 
1 [5, 7) 5, 6 2 5/9, 6/9 6 10/512 = 0.01953               9/512 = 0.01758 
2 [3, 5) 3, 4 3 3/9, 4/9 4 46/512 = 0.08984             36/512 = 0.07031 
3 [1, 3) 1, 2 4 1/9, 2/9 2 130/512 = 0.25391 84/512 = 0.16406 
4 [–1, 1) –1, 0 5 –1/9, 0/9 0 256/512 = 0.50000 126/512 = 0.24606 
5 [–3, –1) –3, –2 6 –3/9, –2/9  –2 382/512 = 0.74609 126/512 = 0.24606 
6 [–5, –3) –5, –4 7 –5/9, –4/9 –4 466/512 = 0.91016 84/512 = 0.16406 
7 [–7, –5) –7, –6 8 –7/9, –6/9 –6 502/512 = 0.98047 36/512 = 0.07031 
8 [–9, –7) –9, –8 9 –9/9, –8/9 –8 511/512 = 0.99805 9/512 = 0.01758 
9 (–∞, –9) – – – –10 512/512 = 1.00000 1/512 = 0.00195 
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*) N is simultaneously the dimension of binary vectors x = x(d), the number of the NN’s entrance- and exit-layer 
neurons, maximal amount of bits of information may be conveyed by vectors x, the NN’s information capacity in 
bits, and the length of convolutional interval for the NN convolutional decoding algorithm [6].  
a) The number of a neuron threshold interval Δθi, false alarm Fi, and  etc, i = –1,0,1,2,…,N.  
b) The ith neuron threshold interval Δθi = [N – 2(i + 1), N – 2(i + 1) + 2), i = 0,1,2,…,N – 1; Δθ–1 = [N, +∞), ΔθN = (–
∞, –N); [θleft, θright) means θleft ≤ θ < θright , (θleft, θright) means θleft < θ < θright (θleft and θright are left-most and right-
most points of an interval Δθ); magnitudes of neuron thresholds are continuos, –∞ < θ < +∞; each Δθi is so 
defined that for all θ ∈  Δθi probabilities L(d,θ) are constant, L(d,θ) = L(q,Θi).  
c) The convolution, Qi, between x(d) and x0 for the ith neuron threshold interval Δθi, i =  –1,0,1,2,…,N – 1, –N ≤ Qi  
≤ N; Q and all other parameters in the table, except θ, are discrete variables; within their common range Q and θ 
are equivalent, θ = Q. 
d) The ith Hamming distance, Di = (N – Qi)/2; as Di is integer, for each Δθi it may be defined unambiguously.  
e) The ith correlation coefficient, ρi = Qi/N; in the neuron threshold interval Δθ–1 parameters ρi, Di, and Qi exist only 
in a single point (θ = N = 9), in ΔθN  they are not defined at all. 
f) The ith neuron threshold interval index (for short, threshold interval index), Θi = N – 2i – 1, i = –1,0,1,2,…,N; the 
distance between any two neighbor values of Θi is ΔΘi = 2; depending on the parity of N and taking into account 
that for each Δθi its Qi and Qi + 1 values produce the same value of L(d,Qi) = L(d,Θi), the series of indices Θi is 
defined in such a way that Θi = 0 is always among its items; indices Θi provide also a possibility to calculate the 
probability L(d,θ) in neuron threshold interval Δθ–1 where Q, D, and ρ are defined only in one point θ = N, in ΔθN 
where they are not defined at all and show L(d,θ = 0) explicitly.  
g) The ith false-alarm probability Fi  = ∑CNk /2N  where k = 0,1,…,i, CNk = N!/(N – k)!/k!, i = 0,1,2,…,N, F–1 = 0; the 
value FN  = 1 is assigned for θ ∈  ΔθN where Q, D, and ρ are not defined.  
h) The ith false-alarm probability interval ΔFi  = Fi – Fi – 1 = CNi/2N, CNi = N!/(N – i)!/i!, i = 0,1,2,…,N. 
 

Figure 1. a) Correct decoding probability of 
vectors x = x(d) (the probability of correct 
decoding of x under condition that it is x0 
damaged) or the likelihood L(d,θ) = P(A|H1) 
(the probability of the event A under 
condition that hypotheses H1 is valid, see 
Section 4) vs. the neuron threshold θ (lower 
scale) and index i, the number of Fi, Θi, or 
Δθi (upper scale). All values of Ld(θ) = L(d,θ) 
were calculated according to Equation 1: 
crosses denote false-alarm probabilities 
(values of F–1, F3, F4, and F5 are marked), 
open circles denote Ld(θ) for near-zero 
neuron thresholds θ ∈  Δθ4 = [–1,1), Θ4 = 0 
[designation Ld(θ) means that in L(d,θ) 
parameter d is fixed]. Probabilities Ld(θ) 
specified by a constant value of d are 
connected in straight lines. Here and in all 
next Figures values Ld(θ), d = 6/9, are 
connected in dashed lines. b) The same in 
more details (see text) but only for the 
function representing false-alarm probability, 
F(θ); crosses denote Fi = F(Θi), all Fi are 
marked; ΔF6 = F6 – F5 is the interval between 
two neighbors, F5 and F6; vertical lines 
designate indices Θ3 = 2 and Θ4 = 0. 
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To calculate F(θ) for different θ, we should posit in Equation 1 m = N, i.e. d = 1. In Figures 1a and 1b crosses are 
the same but from the panel b) it is seen that they correspond to the middles of neuron threshold intervals Δθi (i = 
0, 1,…, N – 1) where for all θ ∈  Δθi Equation 1 gives the same magnitude of the likelihood probability Ld(θ). As 
Figure 1b shows, F(θ) is a stepwise discontinues function where its horizontal line segments denote the constant 
value of F(θ) for θ belonging to corresponding threshold interval Δθi, θ∈Δθi. Triangles at the right-most points of 
all, except Δθ–1 = [9,+∞), segments mean that the values of F(θ) in these points are not defined. On the number 
axis, F(θ) is a discontinuous single-valued total function; its unambiguity is provided by the fact that in each point 
of discontinuity for each of two neighbor F(θ) line segments its left frontier point is defined while its right frontier 
point is not (see also Table 1). Since all θ ∈  Δθi produce only a single value of the probability L(d,θ), it is 
convenient to assign to the ith Δθi its neuron threshold interval index Θi which produces the same L(d,θ) = L(d,Θi). 
We define the series of even Θi  with ΔΘ = 2 in such a way that without fail it contains its zero-element, e.g., Θ4 = 
0 in Figure 1.  
Figure 2 illustrates the way in which all probability values in Figure 1 were calculated under Equation 1. We see 
that this Equation may be written as a sum of probabilities shown in Figure 2, L(m,N,Θ) = ∑pb(i,m), with 
appropriate summation rules. Summation results obtained equal probabilities shown in Figure 1 (e.g., to calculate 
F(θ) the distribution m = 9 from Figure 2 should be adopted). We also specially emphasize that the expansion of 
the standard binomial distribution is needed to calculate L(d,θ) at θ < –9 and θ > 9 (they provide probabilities 1 
and 0).  
 

 
Figure 2. Probability densities 
pb(i,m) of Hamming distances 
between vectors x(d) and x0 
under condition that x(d), d = 
m/N, contains m its noise 
components ±1  chosen 
randomly with uniform 
probability, ½; pb is a binomial 
distribution expanded at the 
ranges i > m and i < 0 where we 
posit that pb = 0. For each m, 0 < 
m ≤ N, exact values of pb are 
connected in straight lines 
bounding corresponding areas, 
dashed or not. The case m = 0 is 
special as contains only one 
point pb = 1 which is on the apex 

of a separate vertical line.  
 

4. Bayes Inferences within the BSDT  
Let us define the event A = ‘identification of x0 in x(d), d = m/N, by an NN with the neuron threshold θ’ (or A = 
‘decoding vectors x(d), d = m/N, by an NN with the neuron threshold θ’) and two alternative hypothesis: H0 
implying that x(d) is a sample of pure binary noise and H1 implying that x(d) is x0 damaged to the damage degree 
d by such a noise. Using these designations and famous Bayes formula we can write 
 

P(A)P(H0|A) = P(H0)P(A|H0),  P(A)P(H1|A) = P(H1)P(A|H1),  (2) 
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where P(A), P(H0), and P(H1) are prior probabilities of the event A, hypothesis H0, and H1; P(A|H1) = L(d,θ) and 
P(A|H0) = L(d = 1,θ) = F(θ) are conditional likelihood probabilities of correct and false decoding; Equation 3 
reflects the obvious fact that if the event A occurs then H0 and H1 are valid with probabilities P(H0) and P(H1), 
respectively. Combining Equations 2 and 3 we have  
 

PFD(d,θ) = [1 + κ(d)L(d,θ)/F(θ)]–1,  PCD(d,θ) = {1 + 1/[κ(d)L(d,θ)/F(θ)]}–1,  (4) 
 

where PFD(d,θ) = P(H0|A) and PCD(d,θ) = P(H1|A) are conditional posterior probabilities respectively of false and 
correct decoding (cf. ref. 3),  
 

κ(d) = P(H1)/P(H0) = (1 – d)/d  (5) 
 

is the ratio of prior probabilities of H0 and H1 defined within the BSDT explicitly, P(H0) = d and P(H1) = q = 1 – d. 
As at d = 0 (the case x(d) = x0) κ(d) does not exist and at d = 1 (the case of pure noise) 1/κ(d) does not exist, in 
these special cases we posit that at d = 0 PCD = 1, PFD = 0 and at d = 1 PCD = 0, PFD = 1 in accordance with our 
expectations. Hence, now using Equations 1, 4 and 5 PCD(d,θ) and PFD(d,θ) can analytically be calculated for any 
possible values of d and θ. Since PCD(d,θ) + PFD(d,θ) = 1, it is enough to consider only one of these two 
posteriors. Below we shall discuss PCD(d,θ) writing it without its subscripts, P(d,θ). Also we emphasize that in 
contrast to ref. 3 within this work likelihood and posterior are always designated respectively as ‘L’ and ‘P,’ 
regardless of lists of their subscripts or arguments; such designations directly point to distinctions between 
conditional probabilities of two types, likelihood and posterior, and are convenient when they are considered 
together.  
In a 3D orthogonal space with axes d, θ, and L (or d, θ, and P) likelihood L(d,θ) [or posterior P(d,θ)] produces a 
lattice of discrete points representing a complete set of all possible values of L(d,θ) [or P(d,θ)]. For short, here we 
do not display corresponding 3D figures although in Figure 1a one can see a projection of the L(d,θ)-lattice on the 
coordinate plane (L,θ); projections of L(q,Θ)- and P(q,Θ)-lattices on coordinate planes (L,q) and (P,q) see in 
Figure 5 (q  = 1 – d , for relations between θ and Θ see Table 1).  

5. ROC, mROC, Overall Likelihood and Posterior  
As the values of L(d,θ), F(θ), P(d,θ) and relations between BSDT parameters are known (Equations 1, 4, 5 and 
Table 1), for different values of d (or more ‘physical’ parameter q = 1 – d meaning the intensity of cue) it is 
possible to calculate likelihood, Lq(F), and posterior, Pq(F), as functions of false-alarm probability, F. The 
dependence Lq(F) is called Receiver Operating Characteristic (ROC) curve; by analogy we refer to the 
corresponding dependence Pq(F) as modified or posterior ROC curve, mROC; for all q, 0 ≤ q ≤ 1, they are shown 
in Figures 3a and 4a, respectively. In addition to ROCs and mROCs, we can also define overall, do not 
depending on F, likelihood and posterior. For this purpose in ref. 3 a simple averaging of probabilities related to 
particular mROC was used. But taking into account that all ΔFi are known and constitute a complete binomial 
probability distribution ΔFi = CNi/2N, ΣΔFi  = 1, i = 0,1,…,N (see Table 1), it is natural to define overall likelihood, 
L0(q), and overall posterior, P0(q), as binomial averaging of corresponding sets of likelihoods, Lq(Fi), and 
posteriors, Pq(Fi): 
 

L0(q) = ∑Lq(Fi)ΔFi = ∑Lq(Fi)CNi/2N,  (6) 
 

P0(q) = ∑Pq(Fi)ΔFi = ∑Pq(Fi)CNi/2N  (7) 
 

where all summations are made over i = 0,1,…,N [above Lq(Fi)ΔFi and Pq(Fi)ΔFi are areas of rectangles with the 
base ΔFi and heights Lq(Fi) and Pq(Fi); L0(q) and P0(q) are areas under stepwise curves connected discrete ROC 
and mROC values, respectively]. The choice of values of ΔFi as weights in Equations 6 and 7 means that if any 
value of F, e.g. Fx, is randomly chosen with uniform probability within the range 0 ≤ Fx ≤1 then the probability (fre- 
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Figure 3. a) ROCs, Lq(Fi), and b) weighted likelihoods, Lq(Fi)ΔFi; values Lq(Fi) were calculated under Equation 1. 
In panel a) straight lines connect signs related to a specific value of the intensity of cue, q = 1 – d, and constitute 
a specific ROC; dashed lines designate ROC with q = 3/9 (d = 6/9); open circles reflect values of Lq(F4) = Lq(1/2) 
corresponding to the threshold interval index Θ = Θ4 = 0; ΔF6 is the interval between two neighbors, F5 and F6; 
vertical arrows represent schematically a fraction of values of F belonging to ΔF6, Fx ∈  ΔF6. In panel b) vertical 
arrow points to maximum items of sums ∑Lq(Fi)ΔFi, they correspond to i = 5 and θ ∈  Δθ5.       
quency) of the event Fx ∈  ΔFi equals ΔFi and the probability of the emerging values of Lq(Fi) and Pq(Fi) also 
equals ΔFi [the same may relate to Lq(Fi – 1) and Pq(Fi – 1) although this case will not be considered in this work]. 
Hence, if our assumption that values of F are randomly chosen within the range 0 ≤ F ≤1 with uniform probability 
is valid (we shall call this assumption the uniformity or no-priming hypotheses) then overall probabilities L0(q) and 
P0(q) are optimal, i.e. the best among other ones calculated according to other possible averaging rules. 
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Figure 4. a) mROCs, Pq(Fi), and b) weighted posteriors, Pq(Fi)ΔFi; posteriors Pq(Fi) were calculated under 
Equations 1, 4, and 5 [Pq(F-1) in panel a) and Pq(F-1)ΔF-1 in panel b) are not shown]. In panel a) straight lines 
connect signs related to a specific value of the intensity of cue, q = 1 – d, and constitute a specific mROC; dashed 
lines designate mROC with q = 3/9 (d = 6/9); open circles reflect values of Pq(F4) = Pq(1/2) corresponding to the 
threshold interval index Θ = Θ4 = 0; ΔF4 is the interval between two neighbors, F3 and F4; F0 and F9 are also 
marked;  vertical arrows represent schematically a fraction of values of F belonging to ΔF4, Fx ∈  ΔF4. In panel b) 
vertical arrow points to maximum items of sums ∑Pq(Fi)ΔFi, they correspond to i = 4 and θ ∈  Δθ4. 
 
For all q, 0 ≤ q ≤ 1, in Figures 3b and 4b components of sums L0(q) = ∑Lq(Fi)ΔFi and P0(q) = ∑Pq(Fi)ΔFi are 
shown as functions of their summation index, i. It is remarkable that all corresponding curves have a common 
maximum, for weighted likelihoods at i = 5 and for weighted posteriors at i = 4. Hence, if our uniformity 
hypotheses concerning the choice of F for ROC and mROC values estimation is valid then an observer/computer 
code, who/that does not use any prior information about probabilities of hypothesis H0 and H1, naturally (most 
probably) choices values of the neuron threshold θ which are slightly smaller than zero, θ ∈  Δθ5 = [–3, –1); 
another observer, who in contrast uses completely the prior information mentioned, naturally choices for θ its 
near-zero values, θ ∈  Δθ4 = [–1,1). The same Figures demonstrate also that during the estimation of overall 
probabilities, L0(q) and P0(q), in right-hand sums of Equations 6 and 7 their items with their numbers i near to 0 
and near to N (them correspond ‘small’ ΔFi) are not so essential as their ‘central’ items (them correspond ‘large’ 
ΔFi). Moreover, L0(q) and P0(q) are defined without the use of probabilities Lq(F-1) = 0 and Pq(F-1) = 1 in 
corresponding sums of Equations 6 and 7 and, consequently, these probabilities are at all not requested for 
estimating particular values of overall probabilities (in other words, left-most points of ROCs and mROCs may in 
practice be not claimed). 

6. BDPs, mBDPs, and Psychometric Functions 

Each of probability functions L(d,θ) = L(d,Θ) = L(d,F) and P(d,θ) = P(d,Θ) = P(d,F) has two arguments (for 
relations between θ, Θ, F, and etc see Table 1; d = 1 – q). If for the likelihood L(d,F) one of them, e.g. d, is fixed 
then we obtain ROC curves, Ld(F) or Lq(F); if for the posterior P(d,F) the same parameter is fixed then we obtain 
mROC curves, Pd(F) or Pq(F). Similarly, if in L(d,F) or L(q,F) the argument F is fixed then we obtain the function 
LF(q) or LΘ(q) which we shall call Basic Decoding Performance (BDP) curve; if in P(d,F) or P(q,F) the same 
argument is fixed then we obtain a modified (posterior) BDP or mBDP curve, PF(q) or PΘ(q). Examples of BDP 
and mBDP curves are shown in Figures 5a and 5b, respectively.  
Intensity of cue q = 1 – d defines a fraction of undamaged signal components among m noise components of N-
dimensional vectors x(d), d = m/N, or the quality of data analyzed: the more the q the better the quality is. 
Functions describing the signal’s detection probability against the quality of data analyzed (e.g., the signal’s 
intensity, amplitude, or area) are called psychometric functions [2, chapter 8], PMFs. Consequently, BDF and 
mBDP curves may respectively be interpreted as PMFs (Figure 5a) and modified or posterior PMFs, mPMFs 
(Figure 5b). 
In the classic SDT arguments of PMFs are continuos and ranged from zero to positive infinity [2] while within the 
BSDT q is discrete, with the discreteness degree Δq = 1/N, and changes in the limited range, 0 ≤ q ≤ 1. As in 
practice magnitudes of all variables are always limited and measurement results are usually discrete, the 
finiteness and discreteness of q are not its disadvantages as the PMF’s or mPMF’s argument. Indeed, if discrete 
values of a variable V are from the range 0 ≤ V ≤ Vmax then V = (k/N)Vmax (k  = 0,1, …,N) and by changing N 
arbitrary small discreteness of V, ΔV = Vmax/N, may be achieved. Hence, for any Vmax such signal detection 
experiment may be designed that the psychometric function (PMF) measured [6] will have the form as one of 
curves shown in Figure 5a. To confirm this claim it is simply enough to transform the variable V into a new 
dimensionless variable V/Vmax = k/N and assume that k/N = q, i.e. V/Vmax = q = (N – m)/N where N – m  = k is the 
number of undamaged signal components of a vector x(d). Consequently, discrete PMFs as in Figure 5a may be 
considered as a universal (dimensionless) PMFs, UPMFs, matching to any positive variable V with its arbitrary 
large maximum value Vmax (the number of points along particular UPMF defines its fit parameter N may be 
chosen arbitrary large). Finally, let us pay an attention to a corollary arising: all points along a UPMF or PMF are 
equidistant (Δq = 1/N, ΔV = Vmax/N) and ΔV may be considered as a just noticeable difference (jnd) [2, p.25], the 
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minimal difference between two stimuli, Vk = kVmax/N and Vk + 1 = (k + 1)Vmax/N, that leads to a change in 
experience, ΔL0(Vk + 1) = L0(Vk + 1) – L0(Vk), k  = 0,1,…, N – 1. For likelihood and posterior PMFs their jnd’s values 
are the same although the values of  ΔL0(Vk) depend essentially on Vk and for this reason in different experiments 
different ‘seeming’ values of the jnd can be observed. The jnd (i.e. ΔV) could be an atom of experience and this 
atom-of-experience hypotheses still proposed by Gustav Fechner [2, p. 26] is consistent with our model of an 
atom of consciousness [5].  
 

Figure 5. a) BDPs or universal psychometric functions, UPMFs, and b) mBDPs or modified (posterior) UPMFs, 
mUPMFs. FΘ = LΘ(q = 0) is the value of F for a UPMF specified by the parameter Θ. Consequently, for each 
UPMF the Neyman-Pearson objective is achieved; the same concerns to mUPMFs in spite of the fact that for 
them PΘ(q = 0) = 0 at all Θ. For the special case L10(q) = F10 = 0 posteriors P10(q) cannot be calculated (Equations 
4) and for this reason for all q it is needed to posit: P10(q) = 1. Other designations were explained previously. 

7. Sensitivity and Bias, a Comparison between the SDT and BSDT 

For psychophysics experiments, where likelihoods are measured, within the SDT sensitivity and bias are defined 
using ROCs [2]. Within the BSDT not only ROCs, Lq(F), but also mROCs, Pq(F),  exist  and,  consequently,  using 
 

Table 2 
Discrimination experiment descriptions within the SDT and BSDT, a comparison 

 

Classic SDT approach [2] 
 

BSDT approach [3,5] Noti
on 

Definition Comments Definition Comments 
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One-dimensionala), its 
psychological decision 
variable is a single stimulus 
attribute called familiarity x,   
–∞ < x < +∞; its objects are 
underlying familiarity 
distributions or probability 
densities f(x|Si)b)  related to 
samples of trials  Si; Mi is the 
mean for the ith f(x|Si), –∞ < 
Mi < +∞. 

Familiarity x is continuous, 
values of x define criterion 
locations or biases c, 
differences of x define 
perception distances or 
sensitivities d′; the world of 
stimuli and psychological 
decision space are 
separate with unclear 
relations between them. 

Two-dimensional, its 
variables are cue index 
(intensity of cue) q = 1 – 
m/N and neuron threshold 
θ, 0 ≤ q ≤ 1, –∞ < θ < +∞;  
its objects are N-
dimensional binary (±1) 
vectors x = x(d) with m 
uniformly distributed noise 
components, 0 ≤ m ≤ N, d 
= m/N.  

q is discrete, θ is 
continuous and both 
are statistically 
independent; a 
‘neural space’ 
where stimuli are 
represented as 
neural codes 
(binary vectors x) c) 
is also the decision 
space. 
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RO
C 

sp
ac

e 
Two-dimensional, its 
variables (measured or 
calculated) are hit rate H = 
Φ(d′/2 – c) and false-alarm 
rate F = Φ(–d′/2 – c), 0 ≤ H ≤ 
1, 0 ≤ F ≤ 1d); for transformed 
ROC space its variables, z(H) 
and z(F), are H and F 
transformed into a z-score (z 
is the inverse of the normal 
distribution function), –∞ < 
z(H) < +∞,  –∞ < z(F) < +∞. 

H and F  are continuous 
and statistically 
independent e); to generate 
an ROC, d′ should be 
stable while c changeable; 
in H,F-coordinates ROCs 
are curvilinear with 
changing shape across d′ 
values; in z-scores ROCs 
have a straight-line form. 

Two-dimensional, its 
variables (measured or 
calculated) are hit rate H = 
L(q,θ) and false-alarm rate 
F = L(q = 0,θ), 0 ≤ H ≤ 1, 
0 ≤ F ≤ 1, F ≤ H d); as 
each stimulus is 
represented by its vector x 
whose binomial probability 
density is specific for each 
m, a transformed common 
z-ROC space cannot be 
defined. 

F and H are 
discrete and 
functionally related; 
to generate an 
ROC, probabilities 
H = L(q,θ) = Lq(F) 
are calculated at a 
fixed q with 
changing θ (or with 
changing F as θ, Θ, 
F, Q, ρ, and D are 
related, see Table 
1). 

Se
ns

itiv
ity

 

Perception distance,  
d′ = z(H) – z(F) or  
d′ = M2 – M1, 0 ≤ d′ < +∞ f); 
proportion correct, p(c) = 
p(S2)H + p(S1)(1 – F) where 
p(Si) is the probability that Si 
is presented; area under the 
ROC, A′, Ag, or Az g). 

d′ is continuous; a fixed d′ 
and changing c define an 
isosensitivity or ROC 
curve, if d′ = 0 then ROC 
provides chance-level 
performance; for unbiased 
(c = 0) observers p(c) is a 
nonparametric overall 
sensitivity. 

Cue index q; proportion 
correct, p(q,θ), may also 
be definedh) and its 
definition is valid for any 
possible values of q and θ; 
overall likelihood, L0(q), an 
‘area’ estimation under the 
discrete ROC. 

q is discrete; a fixed 
q and changing θ 
define an 
isosensitivity or 
ROC curve, if q = 0 
then ROC provides 
chance level 
performance. 

Bi
as

 

Criterion location,  
c = –[z(H) + z(F)]/2,  
–∞ < c < +∞; 
relative criterion location,   c′ 
= c/d′; 
likelihood ratio or the slope of 
transformed ROC for a given 
c, βG = f(c|S2)/f(c|S1) = 
H(c)/F(c) = exp(cd′); log(βG) = 
[z(H)2 – z(F)2]/2i). 

d′ and c are independent 
and constitute a pair of 
variables alternative to the 
pair H and F; a fixed c (c′ 
or βG) and changing d′ 
define an isobias curve; on 
isobias curves (c = 0) as F 
increases H must decrease 
j); observers do not 
naturally use a neutral 
value of the bias 
(confidence level). 

Neuron threshold θ, –∞ < 
θ  < +∞ (or convolution Q, 
threshold interval index Θ, 
correlation coefficient ρ, 
false-alarm probability F, 
or Hamming distance D as 
θ, Q, Θ, ρ, F, and D are 
related; see Table 1). 

θ is continuous; a 
fixed θ (F, Q, Θ, ρ, 
or D) and changing 
q define an isobais 
curve, H = LΘ(q), 
which is a UPMF 
(see Figure 5a); 
observes naturally 
use near-neutral 
values of the bias, 
θ.  

 
a) There exist experimental paradigms for which two- and many-dimensional versions of the SDT were developed 
[2, chapter 10]; recently, a new original two-dimensional version of the SDT has also been proposed [7] but here 
it is not discussed as only classic SDT [1,2] is the comparison subject in this work. 
b) Here and below only normal densities are considered and for this reason f(x|Si) is always a Gaussian. 
c) Within the BSDT a set of neural codes x(d) representing particular stimuli (a ‘neural space’) is simultaneously a 
decision space where operations over these codes are defined. The world of stimuli and psychological space 
within the BSDT are directly not requested but it is supposed that rules for transformation of external/internal 
sensory stimuli (the world of stimuli or stimuli space) into their corresponding neural representations (the neural 
space) may be discovered by methods of neuroscience. 
d)  If an ROC curve passes through the points (F,H) = (0, 0) and (1,1) then it is called a regular ROC curve. 
e) Formally, H and F are defined as statistically independent but while d′ ≥ 0 they can take independently only 
values F ≤ H which are on and upper the ROC’s main diagonal, H = F. If additionally values d′ < 0 are admitted 
then H and F may be independent in all ROC space but in this case events H < F become possible.  
f) d′ is defined under condition that underlying distributions for samples of trials S1 and S2 have common standard 
deviation; if that is not the case then for S1 and S2 their distinct standard deviations d′1 and d′2 are introduced as 
well as their root-mean-square average, da.  
g) A′ = 0.5 + (H – F)(1 + H – F)/[4H(1 – F)] gives an area estimation under the one-point ROC; Ag = 0.5∑(Fi + 1 – 
Fi)(Hi + 1 + Hi) provides area under the multipoint ROC (the summation is made over all ROC points numbered 
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from the left lower corner), within the BSDT the counterpart of Ag is overall likelihood L0(q); Az = Φ(DYN) = 
Φ(da/√2) gives area under the non-regular ROC curve (DYN is the distance between the origin and the non-unit-
slope z-ROC, Φ(x) is a cumulative distribution function or the integral of a Gaussian f(x) taken from –∞ to x).  
h) By analogy to proportion correct, p(c), p(q,θ) = p(S2) L(q,θ) + p(S1)[1 – L(q = 0,θ)] where L(q,θ) = H(q,θ) = H, L(q 
= 0,θ) = F(θ) = F and p(Si) is the probability that Si is presented; for intact NN, odd N, and θ = 0 p(q,0) = 
p(S2)L(q,0) + p(S1)½ as here F = ½ [3].  
i) Within the singe high-threshold theory [2, chapter 4], an SDT’s alternative, false alarm F is introduced as natural 
bias (confidence level) index but such bias definition cannot be accepted as it leads to isobias curves with 
constant value of F, in contradiction to the SDT’s so called monotonically condition demanding that along isobias 
curves as F increases H must decrease and vice versa [2, p.93].  
j) Such definition of isobias curves does not satisfy to the Neyman-Pearson objective as F and H are changing 
simultaneously (due to the monotonically condition); within the SDT to generate an isobias curve satisfying this 
objective, c and M1 should be constant while M2 changeable. 
 

mROCs a possibility arises to define similar parameters as well for posteriors, Pq(F). In Table 2 sensitivity, bias, 
their decision and ROC spaces defined using the ROCs within the SDT and BSDT are compared. For examples 
of experiments where posterior probabilities could be measured and mROCs derived see ref. 3, corresponding 
posterior sensitivity and bias should be discussed separately as till now they have no the SDT’s counterparts. 

 
Figure 6. The overall likelihood L0(q) 
(open circles, curve 1) and overall 
posterior P0(q) (crosses, curve 2) 
calculated under Equations 6 and 7 
as functions of the intensity of cue, q. 
To each circle on curve 1 
corresponds a curve in Figure 3b 
specified by the same q, to each 
cross on curve 2 corresponds a 
curve in Figure 4b specified by the 
same q. 
  
Finally, Figure 6 demonstrates 
overall probabilities L0(q) and P0(q) 
for subjects (computer codes) do not 
using prior information about 
probabilities of hypothesis H0 and H1 

and for subjects (computer codes) having and completely using this prior information (in both cases it is supposed 
that our no-priming hypotheses about ‘in-mind’ distribution of F is valid). We see that curve 1 begins in a point 
above the chance-level line while curve 2 in the origin; both curves end in the point (1,1). Overall likelihoods L0(q) 
(circles on curve 1) may be compared with areas A(d΄) ranged from ½ at d΄= 0 to 1 at d΄→ ∞ [A(d΄) is area under 
the SDT’s particular regular ROCs]. Hence, L0(q = 0) > ½ while A(d΄= 0) = ½ and L0(q = 1) = A(d΄→ ∞) = 1 [d΄ 
and q are sensitivities of the SDT and BSDT, respectively; Ag(d΄) → A(d΄) if the number of points measured on 
the SDT’s regular ROC goes to infinity, see Table 2 and its footnote g)].  
 

8. Conclusions 

Above for a simple example, the BSDT’s decoding algorithm has been studied using its exact quality performance 
functions analytically calculated. In this way an attempt was made to reveal some similarities and distinctions 
between the classic SDT [1,2] and recent BSDT [3,5]. We saw that the main similarity consists in the fact that 
SDT and BSDT can produce the same functions for the description their decoding algorithms’ quality 
performance, ROCs and psychometric functions (PMFs), and the same basic parameters, sensitivity and bias. 
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Hence, using the BSDT those measurement results can in principle be described that the SDT describes. The 
source of distinctions between them is, in our opinion, in the BSDT’s original binary data coding [3,4] and its 
corresponding decoding algorithm existing simultaneously in NN, convolutional, and Hamming distance forms 
having equivalent and the best (in the sense of statistical patterns recognition quality) performance. For this 
reason in contrast to the classic SDT, BSDT is based on discrete final (binomial) probability distributions and all 
its predictions and parameters (except the neuron threshold θ) are discrete. In summary: essential features and 
inferences of the BSDT follow in fact directly from analyzes of the original mathematical form of its performance 
functions. For example, the notion of a neural space introduced is a direct consequence of the BSDT/NNAMM’s 
binary coding/decoding approach though here it is also implied implicitly that vectors x(d) represent neural codes 
of sensory stimuli in the brain; psychometric functions satisfying the Neyman-Pearson objective are simply 
projections of likelihood probability function L(q,θ) on the coordinate plane (L,q); the just noticeable difference 
(jnd) is a counterpart to the discreteness, Δq, of the cue index, q (and due to its discreteness Δq can be naturally 
related to an atom of experience); our new uniformity or no-priming hypotheses is simply a requirement needed to 
define optimally ROCs, mROCs, and overall probabilities; and, finally, our conclusion that subjects (computer 
codes) naturally (most probably) choice near-zero thresholds follows from the existence of a maximum among 
items of weighted sums of particular likelihoods and posteriors.  
Our computations of likelihood, L(q,θ), posterior, P(q,θ), overall likelihood, L0(q), and overall posterior, P0(q), 
probabilities of correct decoding confirm that the BSDT’s two basic parameters (sensitivity or intensity of cue, q, 
and bias or neuron threshold, θ) are sufficient to parametrize the decoding algorithm’s quality performance 
functions, traditional (ROCs and PMFs) as well newly introduced [mROCs, mPMFs, L0(q), and P0(q)]. The only 
limitation consists in use of the decoding algorithm in the form of an intact NN and that is why only regular ROCs 
and their related functions were discussed so far. This limitation can be evaded yet even now it does not hinder to 
begin to reinterpret some psychophysics results in terms and notions of the BSDT which, we believe, in many 
cases are more natural and attractive than terms and notions of the classic SDT.  
I am grateful to my family and my friends for their help and  support. 
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