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REPRESENTING "RECURSIVE" DEFAULT LOGIC IN MODAL LOGIC 

Frank Brown 
Abstract: The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal 
Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of 
First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of 
axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal 
functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important 
because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and 
because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where 
quantified variables may be shared across the scope of the components of the defaults. 

Keywords: Recursive Definition of Default Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 
One of the most well known nonmonotonic logics [Antoniou 1997] which deals with entailment conditions in 
addition to possibility conditions in it's defaults is the so-called Default Logic [Reiter 1980]. The basic idea of 
Default Logic is that there is a set of axioms Γ and some non-logical default "inference rules" of the form: 

α : β1...βm 
χ 

which is intended to suggest that χ may be inferred from α whenever each β1,...,βm is consistent with everything 
that is inferable. Such "inference rules" are not recursive and are circular in that the determination as to whether 
χ is derivable depends on whether βi is consistent which in turn depends on what was derivable from this and 
other defaults. Thus, tentatively applying such inference rules by checking the consistency of β1,...,βm with only 
the current set of inferences produces a χ result which may later have to be retracted. For this reason inferences 
in a nonmonotonic logic such as Default Logic are essentially carried out not in the original nonmonotonic logic, 
but rather in some (monotonic) metatheory in which that nonmonotonic logic is monotonically defined. [Reiter 
1980] explicated the above intuition by defining Default Logic "recursively" in terms of the set theoretic proof 
theory metalanguage of First Order Logic (i.e. FOL) with (more or less) the following fixed-point expression1: 

'κ=(dr 'κ 'Γ 'αi:'βij/'χi) 
where dr is defined as: 
(dr 'κ 'Γ 'αi:'βij/'χi) =df ∪t=1,ω(r t 'κ 'Γ 'αi:'βij/'χi) 
(r 0 'κ 'Γ 'αi:'βij/'χi) =df (fol 'Γ) 
(r t+1 'k 'αi:'βij/'χi) =df (fol((r t 'κ 'Γ 'αi:'βij/'χi)∪{'χi: ('αiε(r t 'κ 'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) 
where 'αi, 'βij, and 'χi are the closed sentences of FOL occurring in the ith "inference rule" and 'Γ is a set of 
closed sentences of FOL. A closed sentence is a sentence without any free variables. fol is a function which 
produces the set of theorems derivable in FOL from the set of sentences to which it is applied. The quotations 
                                                           
1  [Reiter 1980] actually used a recursive definition whereby the r sets do not necessarily contain all their FOL consequences: 
(dr 'κ 'Γ 'αi:'βij/'χi) =df ∪t=1,ω(r  t 'κ  'Γ 'αi:'βij/'χi) 
(r 0  'κ  'Γ 'αi:'βij/'χi) =df 'Γ 
(r t+1 'κ  'Γ 'αi:'βij/'χi) =df (fol(r t  'κ 'Γ 'αi:'βij/'χi))∪{'χi:('αiε(r t 'κ  'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)} 
If this definition were used then all the theorems in this paper should have (r  t 'κ 'Γ 'αi:'βij/'χi) replaced by (fol(r t 'κ 'Γ 
'αi:'βij/'χi)) and (dr  'κ 'Γ 'αi:'βij/'χi) replaced by (fol(dr 'κ 'Γ 'αi:'βij/'χi)). 
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appended to the front of these Greek letters indicate references in the metalanguage to the sentences of the FOL 
object language. Interpreted doxastically this fixed-point equation states: 
The set of closed sentences which are believed is equal to 
               the union of all sets of closed sentences which are believed at any time. 
That which is believed at time 0 is the set of closed sentences derived by the laws of FOL from 'Γ. 
That which is believed at time t+1 is the set of closed sentences derived by the laws of FOL 
 from the union of both 
       the set of beliefs at time t 
       and the set of all 'χi  for each i such that 
               the closed sentence 'αi is believed at time t and for each j, the closed sentence 'βij is believable. 

The purpose of this paper is to show that all this metatheoretic machinery including the formalized syntax of FOL, 
the proof theory of FOL, the axioms of set theory, and the set theoretic fixed-point equation is not needed and 
that the essence of the "recursive" definition of Default Logic in representable as a necessary equivalence in a 
simple (monotonic) Modal Quantificational Logic. Interpreted as a doxastic logic this necessary equivalence 
states: 
That which is believed is logically equivalent to what is believed at any time. 
That which is believed at time 0 is Γ. 
That which is believed at time t+1 is  
  that which is believed at time t and for each i,  if αi is believed at time t and for each j, βij is believable then χi. 

thereby eliminating all mention of any metatheoretic machinery. 
The remainder of this paper proves that this modal representation is equivalent to the "recursive" definition of 
Default Logic. Section 2 describes a formalized syntax for a FOL object language. Section 3 describes the part of 
the proof theory of FOL needed herein (i.e. theorems FOL1-FOL10). Section 4 describes the Intensional 
Semantics of FOL which includes laws for meaning of FOL sentences: M0-M7, theorems giving the meaning of 
sets of FOL sentences: MS1, MS2, MS3, and laws specifying the relationship of meaning and modality to the 
proof theory of FOL (i.e. the laws R0, A1, A2 and A3 and the theorems C1, C2, C3, and C4). The modal version 
of the "Recursive" definition of Default Logic, called DR, is defined in section 5 and explicated with theorems 
MD1-MD8 and SS1-SS2. In section 6, this modal version is shown by theorems R1, DR1 and DR2 to be 
equivalent to the set theoretic fixed-point equation for Default Logic. Figure 1 outlines the relationship of all these 
theorems in producing the final theorems DR2, FOL10, and MD8. 
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Figure 1: Dependencies among the Theorems 

2. Formal Syntax of First Order Logic 
We use a First Order Logic (i.e. FOL) defined as the six tuple: (→, #f, ∀, vars, predicates, functions) where →, 
#f, and ∀ are logical symbols, vars is a set of variable symbols, predicates is a set of predicate symbols each of 
which has an implicit arity specifying the number of associated terms, and functions is a set of function symbols 
each of which has an implicit arity specifying the number of associated terms. The sets of logical symbols, 
variables, predicate symbols, and function symbols  are pairwise disjoint. Lower case Roman letters 
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possibly  indexed with digits are used as variables.  Greek letters possibly  indexed with digits are used as 
syntactic metavariables. γ, γ1,...γn, range over the variables, ξ, ξ1...ξn range over sequences of variables of an 
appropriate arity, π,π1...πn range over the predicate symbols, φ, φ1...φn range over function symbols, δ, 
δ1...δn, σ   range over terms, and α, α1...αn, β, β1...βn,χ, χ1...χn, Γ1,...Γn,ϕ range over sentences. 
The terms are of the forms γ and (φ δ1...δn), and the sentences are of the forms (α→β), #f, (∀γ α), and (π 
δ1...δn). A nullary predicate π or function φ is written as a sentence or a term without parentheses. ϕ{π/λξα} 
represents the replacement of all occurrences of π in ϕ by λξα followed by lambda conversion. The primitive 
symbols are shown in Figure 2 with their intuitive interpretations. 

Symbol Meaning 
α → β if α then β. 
#f falsity 
∀γ α for all γ, α. 

Figure 2: Primitive Symbols of First Order Logic 
The defined symbols are listed in Figure 3 with their definitions and intuitive interpretations. 
Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 

Figure 3: Defined Symbols of First Order Logic 
The FOL object language expressions are referred in the metalanguage (which also includes a FOL syntax) by 
inserting a quote sign in front of the object language entity thereby making a structural descriptive name of that 
entity. Generally, a set of sentences is represented as: {'Γi} which is defined as: {'Γi: #t} which in turn is defined 
as: {s: ∃i(s='Γi)} where i ranges over some range of numbers (which may be finite or infinite). With a slight abuse 
of notation we also write 'κ, 'Γ  to refer to such sets. 

3. Proof Theory of First Order Logic 
FOL is axiomatized with a recursively enumerable set of theorems as its axioms are recursively enumerable and 
its inference rules are recursive. The axioms and inference rules of FOL [Mendelson 1964] are given in Figure 4.  
MA1: α → (β→ α)     MR1: from α and (α→ β) infer β 
MA2: (α→ ( β→ ρ)) → ((α→ β)→ (α→ ρ))  MR2: from α infer (∀γ α) 
MA3: ((¬ α)→ (¬ β))→ (((¬ α)→ β)→α) 
MA4: (∀γ α)→ β  where β is the result of substituting an expression (which is free for the free positions 
        of γ  in α) for  all the free occurrences of γ  in α. 
MA5: ((∀γ(α → β)) →  (α→(∀γ β)))  where γ does not occur in α. 

Figure 4: Inferences Rules and Axioms of FOL 
In order to talk about sets of sentences we include in the metatheory set theory symbolism as developed along 
the lines of [Quine 1969]. This set theory includes the symbols ε, ∉, ⊃, =, ∪  as is defined therein. The 
derivation operation (i.e. fol) of any First Order Logic obeys the Inclusion (i.e. FOL1), Idempotence (i.e. FOL2), 
Monotonic (i.e. FOL3) and Union (i.e. FOL4) properties: 
FOL1: (fol 'Γ)⊇'Γ          Inclusion 
FOL2: (fol 'κ)⊃(fol(fol 'κ))         Idempotence 
FOL3: ('κ⊃'Γ) → ((fol 'κ)⊃ (fol 'Γ))        Monotonicity 
FOL4: For any set ψ, if ∀t((ψ t)=(fol(ψ t))) and ∀t((ψ t+1)⊇(ψ t)) then (∪t=0,ω(ψ t))=(fol(∪t=0,ω(ψ t))) Union 
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From these four properties we prove the following theorems of the proof theory of First Order Logic: 
FOL5: (fol 'κ)=(fol(fol 'κ)) proof: By FOL1 and FOL2. 
FOL6: (r t 'κ 'Γ 'αi:'βij/'χi)=(fol(r t 'κ 'Γ 'αi:'βij/'χi)) proof: By induction on t it suffices to prove: 
(1) (r 0 'κ 'Γ 'αi:'βij/'χi)=(fol(r 0 'κ 'Γ 'αi:'βij/'χi)) Unfolding r twice gives: (fol 'Γ)=(fol(fol 'Γ)) which is FOL5. 
(2) (r t+1 'κ 'Γ 'αi:'βij/'χi)=(fol(r t+1 'κ 'Γ 'αi:'βij/'χi)) 
Unfolding r twice gives:   (fol((r t 'κ 'Γ 'αi:'βij/'χi)∪{'χi: ('αiε(r t 'κ 'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) 
                                     = fol(fol((r t 'κ 'Γ 'αi:'βij/'χi) ∪{'χi: ('αiε(r t 'κ 'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) 
which likewise is an instance of FOL5. QED. 
FOL7: (r t+1 'κ 'Γ 'αi:'βij/'χi)⊇(r t 'κ 'Γ 'αi:'βij/'χi) 
proof: By FOL6 this is equivalent to: (r t+1 'κ 'Γ 'αi:'βij/'χi)⊇(fol(r t 'κ 'Γ 'αi:'βij/'χi)). Unfolding r of t+1 gives:  
(fol((r t 'κ 'Γ 'αi:'βij/'χi) ∪{'χi: ('αiε(r t 'κ 'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) ⊇(fol(r t 'κ 'Γ 'αi:'βij/'χi)) 
By FOL3 it suffices to prove: ((r t 'κ 'Γ 'αi:'βij/'χi)∪{'χi: ('αiε(r t 'κ 'Γ 'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})⊇(r t 'κ 'Γ 
'αi:'βij/'χi)  which holds in set theory.  QED. 
FOL8: (∪t=0,ω(r t 'κ 'Γ 'αi:'βij/'χi)) =(fol(∪t=0,ω(r t 'κ 'Γ 'αi:'βij/'χi))) 
proof: ∀t((r t 'κ 'Γ 'αi:'βij/'χi)=(fol(r t 'κ 'Γ 'αi:'βij/'χi))) holds by FOL6. ∀t((r t+1 'κ 'Γ 'αi:'βij/'χi)⊇(r t 'κ 'Γ 
'αi:'βij/'χi)) holds by FOL7. Instantiating the hypotheses in FOL4 to these theorems proves this theorem. QED. 
FOL9: (dr 'κ 'Γ 'αi:'βij/'χi)=(fol(dr 'κ 'Γ 'αi:'βij/'χi))  proof: Unfolding dr twice gives: ∪t=1,ω(r t 'κ 'Γ 'αi:'βij/'χi)= 
fol(∪t=1,ω(r t 'κ 'Γ 'αi:'βij/'χi)) which holds by  FOL8. QED. 
FOL10: ('k=(dr 'κ 'Γ 'αi:'βij/'χi))→('κ=(fol 'κ))  proof: From the hypothesis and FOL9  'k=(fol(dr 'κ)) is derived.  
Using the hypothesis to replace (dr 'κ) by 'κ in this result gives: ('κ=(fol 'κ))  QED. 

4. Intensional Semantics of FOL 
The meaning (i.e. mg) [Brown 1978, Boyer & Moore 1981] or rather disquotation of a sentence of FOL is defined 
in Figure 5 below1.  mg is defined in terms of mgs which maps each FOL object language sentence and an 
association list into a meaning. mgn maps each FOL object language term and an association list into a meaning. 
An association list is a list of pairs consisting of an object language variable and the meaning to which it is bound. 
M0: (mg 'α) =df (mgs '(∀γ1...γn α)'())  where 'γ1...'γn are all the free variables in 'α 
M1: (mgs '(α → β)a) ↔ ((mgs 'α a)→(mgs 'β a)) 
M2: (mgs '#f a) ↔ #f 
M3: (mgs '(∀ γ α)a) ↔ ∀x(mgs 'α(cons(cons 'γ x)a)) 
M4: (mgs '(π δ1...δn)a) ↔ (π(mgn 'δ1 a)...(mgn 'δn a))  for each predicate symbol 'π. 
M5: (mgn '(φ  δ1...δn)a) = (φ(mgn 'δ1 a)...(mgn 'δn a))   for each function symbol 'φ. 
M6: (mgn 'γ a) = (cdr(assoc 'γ a)) 
M7: (assoc v  L)= (if(eq? v(car(car L)))(car L)(assoc v(cdr L))) where: cons, car, cdr, eq?, and if are as in Scheme. 

Figure 5: The Meaning of FOL Sentences 
The meaning of a set of sentences is defined in terms of the meanings of the sentences in the set as: 
 (ms 'κ) =df ∀s((sε'κ)→(mg s)). 

                                                           
1 The laws M0-M7 are analogous to Tarski's definition of truth except that finite association lists are used to bind variables to 
values rather than infinite sequences.  M4 is different since mg is interpreted as being meaning rather than truth. 
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MS1: (ms{'α: Γ}) ↔ ∀ξ((Γ{s/'α})→α)  where ξ is the sequence of all the free variables in 'α and where Γ is any 
sentence of the intensional semantics.  proof: (ms{'α:Γ})  Unfolding ms and the set pattern abstraction symbol 
gives: ∀s((sε{s: ∃ξ((s='α)∧Γ)})→(mg s)) where ξ is a sequence of the free variables in 'a. This is equivalent to: 
∀s((∃ξ((s='α)∧Γ))→(mg s)) which is: ∀s∀ξ (((s='α)∧Γ)→(mg s)) which is: ∀ξ(Γ{s/'α}→(mg 'α)). Unfolding 
mg using M0-M7 then gives: ∀ξ((Γ{s/'α})→α) QED 

The meaning of a set is the meaning of all the sentences in the set (i.e. MS2): 
MS2: (ms{'Γi}) ↔ ∀i∀ξiΓi  proof: (ms{'Γi}) Unfolding the set notation gives: (ms{'Γi: #t}). By MS1 this is 
equivalent to: ∀i∀ξi((#t{s/'α})→Γi) which is equivalent to: ∀i∀ξiΓi QED. 

The meaning of the union of two sets of FOL sentences is the conjunction of their meanings (i.e. MS3): 
MS3: (ms('κ∪'Γ)) ↔ ((ms 'κ)∧(ms 'Γ))  proof: Unfolding ms and union in: (ms('κ∪'Γ)) gives: 
 ∀s((sε{s: (sε'κ)∨(sε'Γ)})→(mg s)) or rather: ∀s(((sε'κ)∨(sε'Γ))→(mg s)) which is logically equivalent to: 
(∀s((sε'κ)→(mg s)))∧(∀s((sε'Γ)→(mg s))).  Folding ms twice then gives:((ms 'κ)∧(ms 'Γ)) QED. 
 
The meaning operation may be used to develop an Intensional Semantics for a FOL object language by 
axiomatizing the modal concept of necessity so that it satisfies the theorem: 
C1:          ('αε(fol 'κ))  ↔  ([] ((ms 'κ)→(mg 'α))) 
for every sentence 'α and every set of sentences 'κ of that FOL object language. The necessity symbol is 
represented by a box: [].  C1 states that a sentence of FOL is a FOL-theorem (i.e. fol) of a set of sentences of 
FOL if and only if the meaning of that set of sentences necessarily implies the meaning of that sentence.  One 
modal logic which satisfies C1 for FOL is the Z Modal Quantificational Logic described in [Brown 1987; Brown 
1989] whose theorems are recursively enumerable.  Z has the metatheorem: (<>Γ){π/λξα}→ (<>Γ) where Γ is 
a sentence of FOL and includes all the laws of S5 Modal Logic [Hughes & Cresswell 1968] whose modal axioms 
and inference rules are in Figure 6.  Therein, κ and Γ are arbitrary sentences of the intentional semantics. 
R0: from κ infer ([] κ)   A2:  ([](κ→ Γ)) → (([]κ)→ ([]Γ)) 
A1: ([]κ) → κ    A3: ([]κ) ∨ ([]¬[]κ) 

Figure 6: The Laws of S5 Modal Logic 
These S5 modal laws and the laws of FOL given in Figure 6 constitute an S5 Modal Quantificational Logic similar 
to [Carnap 1946; Carnap 1956], and a FOL version [Parks 1976] of [Bressan 1972] in which the Barcan formula: 
(∀γ([]κ))→([]∀γκ) and its converse hold.  The R0 inference rule implies that anything derivable in the 
metatheory is necessary.  Thus, in any logic with R0, contingent facts would never be asserted as additional 
axioms of the metatheory. The defined Modal symbols are in Figure 7 with their definitions and interpretations. 
Symbol Definition Meaning  Symbol Definition Meaning 
<>κ ¬ [] ¬κ α is logically possible  [κ] Γ  [] (κ→Γ) β entails α 
κ≡ Γ [] (κ↔Γ) α is logically equivalent to β  <κ> Γ <> (κ∧Γ) α and β is logically possible 

Figure 7: Defined Symbols of Modal Logic 
From the laws of the Intensional Semantics we prove that the meaning of the set of FOL consequences of a set 
of sentences is the meaning of that set of sentences (C2), the FOL consequences of a set of sentences contain 
the FOL consequences of another set if and only if the meaning of the first set entails the meaning of the second 
set (C3), and the sets of FOL consequences of two sets of sentences are equal if and only if the meanings of the 
two sets are logically equivalent (C4): 
C2: (ms(fol 'κ))≡(ms 'κ)  proof: The proof divides into two cases: 
(1) [(ms 'κ)](ms(fol 'κ))  Unfolding the second ms gives: [(ms 'κ)]∀s((sε(fol 'κ))→(mg s)) 
By the soundness part of C1 this is equivalent to:  [(ms 'κ)]∀s(([(ms 'κ)](mg s))→(mg s)) 
By the S5 laws this is equivalent to: ∀s(([(ms 'κ)](mg s))→ [(ms 'κ)](mg s))  which is a tautology. 
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(2) [(ms(fol 'κ))](ms 'κ)  Unfolding ms twice gives: [∀s((sε(fol 'κ))→(mg s))]∀s((sε'κ)→(mg s)) 
which is: [∀s((sε(fol 'κ))→(mg s))]((sε'κ)→(mg s))  Backchaining on the hypothesis and then dropping it gives: 
(sε'κ)→(sε(fol 'κ)).  Folding ⊃ gives an instance of FOL1. QED. 
C3: (fol 'κ)⊇(fol 'Γ) ↔ ([(ms 'κ)](ms 'Γ))  proof: Unfolding ⊇ gives: ∀s((sε(fol 'Γ))→(sε(fol 'κ))) 
By C1 twice this is equivalent to: ∀s(([(ms 'Γ)](mg s))→([(ms 'κ)](mg s))) 
By the laws of S5 modal logic this is equivalent to: ([(ms 'κ)]∀s(([(ms 'Γ)](mg s))→(mg s))) 
By C1 this is equivalent to: [(ms 'κ)]∀s((sε(fol 'Γ))→(mg s)).  Folding ms then gives: [(ms  'κ)](ms(fol 'Γ)) 
By C2 this is equivalent to:  [(ms  'κ)](ms 'Γ). QED. 
C4: ((fol 'κ)=(fol 'Γ)) ↔ ((ms 'κ)≡(ms 'Γ))  proof:  This is equivalent to (((fol 'κ)⊇(fol 'Γ))∧((fol 'Γ)⊇(fol 'κ))) ↔ 
([(ms 'κ)](ms 'Γ))∧([(ms 'Γ)](ms 'κ))  which follows by using C3 twice. 

5. "Recursive" Default Logic Represented in Modal Logic 

The fixed-point equation for Default Logic may be expressed as a necessary equivalence in an S5 Modal 
Quantificational Logic  using a recursive definition, as follows: 

κ≡(DR κ Γ αi:βij/χi) 
where DR is defined as: 
(DR κ Γ αi:βij/χi) =df ∀t(R t k Γ αi:βij/χi) 
(R 0 k Γ αi:βij/χi) =df Γ 
(R t+1 k Γ αi:βij/χi) =df (R t k Γ αi:βij/χi) ∧∀i((([(R t k Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→χi) 
When the context is obvious Γ αi:βij/χi is omitted and just (DR κ) and (R t κ) are written. Given below are some 
properties of DR. The first two theorems state that DR entails Γ and any conclusion χi of a default whose 
entailment condition holds in DL and whose possible conditions are possible with κ. 
MD1: [(DR κ Γ αi:βij/χi)]Γ   proof: Unfolding DR gives:[∀t(R t k Γ αi:βij/χi)]Γ 

Letting t be 0 shows that it suffices to prove: [(R 0 k Γ αi:βij/χi)]Γ.  Unfolding R gives a tautology.  QED. 
MD2:([(DR κ Γ αi:βij/χi)] (([(R t κ Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→ χi) 
proof: By R0 it suffices to prove:  (DR κ Γ αi:βij/χi)→ ((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Unfolding DR gives: ∀t(R t κ Γ αi:βij/ χi)→((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Letting the quantified t be t+1, it suffices to prove: 
 (R t+1 κ Γ αi:βij/ χi)→((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi).  Unfolding R t+1 gives: 
((R t κ Γ αi:βij/χi)∧(∀i((([(R t κ Γ αi:βij/ χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi)) 
∧([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi 
Letting the quantified i be i gives a tautology.  QED. 
 
The concept (i.e. ss) of the combined meaning of all the sentences of the FOL object language whose meanings 
are entailed by a proposition is defined as follows: 

(ss κ) =df ∀s(([κ](mg s))→(mg s)) 
SS1 shows that a proposition entails the combined meaning of the FOL object language sentences that it entails.  
SS2 shows that if a proposition is necessarily equivalent to the combined meaning of the FOL object language 
sentences that it entails, then there exists a set of FOL object language sentences whose meaning is necessarily 
equivalent to that proposition: 
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SS1: [κ](ss κ)  proof: By R0 it suffices to prove: κ→(ss κ).  Unfolding ss gives: κ→∀s(([κ](mg s))→(mg s)) 
which is equivalent to:∀s(([κ](mg s))→(κ→(mg s)))  which is an instance of A1. QED. 
SS2: (κ≡(ss κ))→ ∃s(κ≡(ms s))  proof: Letting s be {s: ([κ](mg s))} gives: (κ≡(ss κ))→ (κ≡(ms{s: ([κ](mg s))})).  
Unfolding ms and lambda conversion gives: (κ≡(ss κ))↔ (κ≡∀s(([κ](mg s))→(mg s))).  Folding ss gives a 
tautology. QED. 

The theorems MD3 and MD4 are analogous to MD1 and MD2 except that DR is replaced by the 
combined meanings of the sentences entailed by DR. 
MD3: [ss(DR κ(∀iΓi)αi:βij/χi)]∀iΓi proof: By R0 it suffices to prove: (ss(DR κ(∀iΓi)αi:βij/χi))→∀iΓi which is 
equivalent to: (ss(DR κ(∀iΓi)αi:βij/χi))→Γi. Unfolding ss gives: (∀s(([(DR κ(∀iΓi)αi:βij/χi)](mg s))→(mg s)))  
→ Γi  which by the laws M0-M7 is equivalent to: (∀s(([(DR κ(∀iΓi)αi:βij/χi)](mg s))→(mg s)))→(mg 'Γi).  
Backchaining on (mg  'Γi) with s in the hypothesis being 'Γi in the conclusion shows that it suffices to prove: ([(DR 
κ(∀iΓi)αi:βij/χi)](mg 'Γi) which by the meaning laws: M0-M7 is equivalent to: [(DR κ(∀iΓi)αi:βij/χi)]Γi)  which by 
S5 Modal Logic is equivalent to:([(DR κ(∀iΓi)αi:βij/χi)]∀iΓi)  which is an instance of theorem MD1. QED. 
MD4:[ss(DR κ Γ αi:βij/χi)] ((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
proof: By R0 it suffices to prove: (ss(DR κ Γ αi:βij/χi))→ ((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Unfolding ss: (∀s(([(DR κ Γ αi:βij/χi)](mg s))→(mg s)))→ ((([(R t κ Γ αi:βij/ χi)]αi)∧(∧j=1,mi(<κ>βij))) →χi) 
Instantiating s in the hypothesis to 'χi and then dropping the hypothesis gives: 
(([(DR κ Γ αi:βij/χi)](mg  'χi))→(mg 'χi))→((([(R t κ Γ αi:βij/ χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Using the meaning laws M0-M7 gives: 
     (([(DR κ Γ αi:βij/χi)]χi)→χi)→((([(R t κ Γ αi:βij/ χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
Backchaining on χi shows that it suffices to prove: 
(([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij))) →([(DR κ Γ αi:βij/(mg 'χi))]χi) 
By the laws of S5 modal logic this is equivalent to: 
[(DR κ Γ αi:βij/χi)] ((([(R t κ Γ αi:βij/χi)]αi)∧(∧j=1,mi(<κ>βij)))→χi) which is MD2. QED. 
 
Theorems MD5 and MD6 show that R is entailed by the meanings of the sentences entailed by DR:  
MD5: [ss(DR κ(∀iΓi)αi:βij/χi)](R 0 k(∀iΓi)αi:βij/χi)) 
proof: Unfolding R 0 gives: (ss(DR κ(∀iΓi)αi:βij/χi))→(∀iΓi)  which holds by MD3. QED. 
MD6: ([ss(DR κ Γ αi:βij/χi)](R t k Γ αi:βij/χi)) →([ss(DR κ αi:βij/χi)](R t+1 k Γ αi:βij/χi)) 
proof: Unfolding R t+1 in the conclusion gives: 
([ss(DR κ Γ αi:βij/χi)]((R t k Γ αi:βij/χi)∧∀i((([(R t k Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→χi))) 
Using the hypothesis gives:  [ss(DR κ αi:βij/χi)] ∀i((([(R t k Γ αi:βij/χi)]αi)∧∧j=1,mi(<κ>βij))→χi) 
which holds by MD4. QED. 
 
Finally MD7 and MD8 show that talking about the meanings of sets of FOL sentences in the modal representation 
of Default Logic is equivalent to talking about propositions in general. 
MD7: (ss(DR κ(∀iΓi)αi:βij/χi))≡(DR κ(∀iΓi) αi:βij/χi) 
proof: In view of SS1, it suffices to prove: [ss(DR κ(∀iΓi)αi:βij/χi)](DR κ(∀iΓi)αi:βij/χi) 
Unfolding the second occurrence of DR gives: [ss(DR κ(∀iΓi)αi:βij/χi)]∀t(R t k Γ αi:βij/χi) 
which is equivalent to: ∀t([ss(DR κ(∀iΓi)αi:βij/χi)](R t k Γ αi:βij/χi)) 
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By induction on t the proof divides into a base case and an induction step: 
(1)Base Case: ([ss(DR κ(∀iΓi)αi:βij/χi)](R 0 k Γ αi:βij/χi))  which holds by theorem MD5. 
(2)Induction Step:   ([ss(DR κ(∀iΓi)αi:βij/χi)](R t k Γ αi:βij/χi)) →([ss(DR κ(∀iΓi)αi:βij/χi)](R t+1 k Γ αi:βij/χi)) 
which holds by theorem MD6. QED. 
MD8: (κ≡(DR κ(∀iΓi)αi:βij/χi))→∃s(κ≡(ms s))  proof: From the hypothesis and MD7 
 κ≡(ss(DR κ(∀iΓi)αi:βij/χi)) is derived.  Using the hypothesis to replace (DR κ(∀iΓi)αi:βij/χi) by κ in this result 
gives: κ≡(ss κ)  By SS2 this implies the conclusion. QED. 

6. Conclusion: The Relationship between "Recursive" Default Logic and the Modal Logic 
The relationship between the "recursive" set theoretic definition of Default Logic [Reiter 1980] and the modal 
representation of it is proven in two steps.  First theorem R1 shows that the meaning of the set r is the proposition 
R.  Theorem DR1 shows that the meaning of the set dr is the proposition DR.  DL2 shows that a set of FOL 
sentences which contains its FOL theorems is a fixed-point of the fixed-point equation of Default Logic with an 
initial set of axioms and defaults if and only if the meaning (or rather disquotation) of that set of sentences is 
logically equivalent to DR of the meanings of that initial set of sentences and those defaults. 
R1: (ms(r t(fol 'κ){'Γi}'αi:'βij/'χi))≡(R t(ms 'κ)(∀iΓi)αi:βij/χi) 
proof: Inducting on the numeric variable t gives a base case and an induction step: 
(1) The Base Case: (ms(r 0(fol 'κ){'Γi}'αi:'βij/'χi))≡(R 0(ms 'κ)(∀iΓi)αi:βij/χi).  Starting from (ms(r 0(fol 
'κ){'Γi}'αi:'βij/'χi)) unfolding r gives:  (ms(fol{'Γi})).  By C2 this is equivalent to: (ms{'Γi}).  By MS2 this is 
equivalent to: (∀iΓi).  Folding R then gives:  (R t(ms 'κ)(∀iΓi)αi:βij/χi)  which proves the base case. 
(2) The Induction Step:  ((ms(r t(fol 'κ){'Γi}'αi:'βij/'χi))≡(R t(ms 'κ)(∀iΓi)αi:βij/χi)) 
                                →((ms(r t+1(fol 'κ)'{'Γi}'αi:'βij/'χi)) ≡(R t+1(ms 'κ)(∀iΓi)αi:βij/χi)) 
Setting aside the induction hypothesis, we start from: (ms(r t+1(fol 'κ){'Γi}'αi:'βij/'χi)) 
Unfolding r gives: (ms(fol((r t 'κ{'Γi}'αi:'βij/'χi)∪{'χi: ('αiε(r t 'κ{'Γi}'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)}))) 
By C2 this is equivalent to: (ms((r t 'κ{'Γi} 'αi:'βij/'χi)∪{'χi: ('αiε(r t 'κ{'Γi}'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) 
By MS3 this is equivalent to:  ((ms(r t 'κ{'Γi}'αi:'βij/'χi))∧(ms{'χi: ('αiε(r t 'κ{'Γi}'αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)})) 
By MS2 this is : (ms(r t 'κ{'Γi}'αi:'βij/'χi))∧∀i((('αiε(r t 'κ{'Γi}αi:'βij/'χi))∧∧j=1,mi('(¬βij)∉'κ)) →(mg 'χi)) 
Using C1 twice gives and folding <κ> gives: 
(ms(r t 'κ{'Γi}'αi:'βij/'χi)) ∧∀i((([ms(r t 'κ{'Γi}'αi:'βij/'χi)](mg 'αi)) ∧∧j=1,mi(<(ms 'κ)>(mg 'βij)))→(mg 'χi)) 
Using the M0-M7 gives: (ms(r t 'κ{'Γi}''αi:'βij/'χi))∧∀i((([ms(r t 'κ{'Γi}''αi:'βij/'χi)]αi)∧∧j=1,mi(<(ms 'κ)>βij))→χi) 
Using the induction hypothesis twice gives: 
(R t(ms 'κ)(∀iΓi)αi:βij/χi)∧∀i((([(R t(ms 'κ)(∀iΓi)αi:βij/χi)]αi)∧∧j=1,mi(<(ms 'κ)>βij))→χi) 
Folding R then gives:  ((R t+1(ms 'κ)(∀iΓi)αi:βij/χi)  which proves the Induction Step.  QED. 
DR1: (ms(dr(fol 'κ){'Γi}'αi:'βij/'χi)) ≡(DR(ms 'κ)(∀iΓi)αi:βij/χi) 
proof: (ms(dr(fol 'κ)'{'Γi}'αi:'βij/'χi)) Unfolding the definition of dr gives:  ms(∪t=1,ω(r t(fol 'κ)'{'Γi}'αi:'βij/'χi)) 
Unfolding ∪ gives: ms{s: ∃t(sε(r t(fol 'κ){'Γi}'αi:'βij/'χi))}.  Unfolding ms gives:  ∀s((sε{s: ∃t(sε(r t(fol 
'κ){'Γi}'αi:'βij/'χi))})→(mg s)) which is equivalent to: ∀s((∃t(sε(r t(fol 'κ){'Γi}'αi:'βij/'χi)))→(mg s)) which is 
equivalent to:  ∀t∀s((sε(r t(fol 'κ){'Γi}'αi:'βij/'χi))→(mg s)).  Folding ms gives:  ∀t(ms(r t(fol 'κ){'Γi}'αi:'βij/'χi)) 
By R1 this is equivalent to: ∀t(R t(ms 'κ)(∀iΓi)αi:βij/χi).  Folding DR then gives  (DR(ms 'κ)(∀iΓi)αi:βij/χi) QED. 
DR2: ((fol 'κ)=(dr(fol 'κ){'Γi} 'αi:'βij/'χi))↔((ms 'κ)≡(DR(ms 'κ)(ms 'Γ)αi:βij/χi)) 
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proof:  By FOL9 (fol 'κ)=(dr(fol 'κ){'Γi}'αi:'βij/'χi)  is: (fol 'κ)=(fol(dl(fol 'κ){'Γi}'αi:'βij/'χi)).  By C4 this is equivalent 
to: (ms 'κ)≡(ms(dr(fol 'κ){'Γi}'αi:'βij/'χi)).  By DR1 this is equivalent to:  (ms 'κ)≡(DR(ms 'κ)(∀iΓi)αi:βij/χi) QED. 
 

Theorem DR2 shows that the set of theorems: (fol 'κ) of a set 'κ is a fixed-point of a fixed-point equation of 
Default Logic if and only if the meaning (ms 'κ) of 'κ is a solution to the necessary  equivalence.  Furthermore, by 
FOL10 there are no other fixed-points (such as a set not containing all its theorems)  and by MD8 there are no 
other solutions (such as a proposition not representable as a sentence in the FOL object language).  Therefore, 
the Modal representation of Default Logic (i.e. DR), faithfully represents the set theoretic description of the 
"recursive" definition of Default Logic (i.e. dr).  Finally, we note that (∀iΓi) and (ms 'κ) may be generalized to be 
arbitrary propositions Γ and κ giving the more general modal representation: κ≡(DR κ Γ αi:βij/χi). 
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