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ON THE RELATIONSHIPS AMONG QUANTIFIED AUTOEPISTEMIC LOGIC, ITS 
KERNEL, AND QUANTIFIED REFLECTIVE LOGIC 

Frank Brown 
Abstract: A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose 
modal laws are slightly stronger than S5.  This Quantified Autoepistemic Logic obeys all the laws of First Order 
Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point.  It is proven that this Logic has a 
kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel.  This result is 
important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by 
eliminating L from it.  It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of 
Quantified Reflective Logic, which coincides with it in the propositional case. 

Keywords: Quantified Autoepistemic Logic, Quantified Reflective Logic, Modal Logic, Nonmonotonic Logic. 

1. Introduction 
Quantified Autoepistemic Logic (i.e. QAEL) is a generalization of Autoepistemic Logic [Moore, Konolige87, 
Konolige87b], where both universally and existentially quantified variables are allowed to cross the scope of the L 
predicate.  In a recent paper [Brown 2003b, 2003d] showed that Autoepistemic Logic could be represented in an 
extension of S5 Modal Logic.  This modal representation may be generalized to provide a Quantified 
Autoepistemic Logic with the following necessary equivalence: 

κ≡(QAEL κ Γ) 
where QAEL is defined as follows:  
      (QAEL κ Γ) =df Γ∧∀i∀ξi((L 'χi)↔([κ]χi)) 
      (L 'χi) =df (L'χi ai), 
where χi is the ith sentence with or without free variables of a First Order Logic (i.e. FOL) and ai is an association 
list associating the free variables in 'χi to values specified by the sequence of variables ξi.  The ∀i quantifier 
ranges across the natural numbers.  This Quantified Autoepistemic Logic is important because unlike some other 
attempts [Konolidge1989] to generalize Autoepistemic Logic, its quantifiers obey both the Barcan Formulae, the 
converse of the Barcan formula, and also all the laws of S5 Modal Logic and First Order Logic (i.e. FOL).   
Interpreted doxastically this necessary equivalence states that: 
     that which is believed is equivalent to:  Γ and  for all i and for all ξi (L 'χi) if and only if χi is believed.  
The purpose of this paper is to show that the L predicate is not essential to solving for κ and can be eliminated 
thereby allowing the above necessary equivalence to be replaced by a simpler necessary equivalence which 
when interpreted as a doxastic logic states: 
                that which is believed is equivalent to:  Γ (with each L' replaced by [κ]) . 
thereby eliminating every occurrence of the L predicate, all the (quoted) names of sentences, and the bi-
implication  containing L. 
The remainder of this paper proves that the L predicate can be eliminated.  Section 2 describes the First Order 
Logic (i.e.FOL) used herein.  Section 3 describes the Modal Logic used herein.  QAEL is defined in more detail in 
section 4.  The L eliminated form of Quantified Autoepistemic Logic herein called the Quantified Autoepistemic 
Kernel (i.e. QAEK) is defined in section 5 and is explicated with theorems LEXT1 and LEXT2.  In section 6, QAEK 
is shown to be related to QAEL by theorems QAEK1, QAEK2, QAEK3.  The relationship between QAEK and 
Quantified Reflective Logic (i.e. QRL)  [Brown 2003a] is given in section 7.  Finally, in section 8, some 
consequences of all these results are discussed.  Figure 1 outlines the relationship of all these theorems in 
producing the final theorems LEXT2, QAEK3, and AR2.  
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Figure 1: Dependencies among the Theorems 

2. First Order Logic 
We use a First Order Logic (i.e. FOL) defined as the six  tuple: (→, #f, ∀, vars, predicates, functions) where →, 
#f,  and ∀ are logical symbols, vars is a set of variable symbols, predicates is a set of predicate symbols each of 
which has an implicit arity specifying the number of associated terms, and functions is a set of function symbols 
each of which has an implicit arity specifying the number of associated terms.  Lower case Roman letters 
possibly indexed with digits are used as variables.  Greek letters possibly indexed with digits or lower case roman 
letters are used as syntactic metavariables.  γ, γ1,...γn, range over the variables, ξ, ξ1...ξn range over 
sequences of variables of an appropriate arity, π,π1...πn range over the predicate symbols, φ, φ1...φn range over 
function symbols, δ, δ1...δn, σ range over terms, and α, α1...αn, β, β1...βn,χ, χ1...χn,Γ,Γ1,...Γn,κ,κ1,...κn, ϕ, 
range over sentences (including sentences with free variables).  The terms are of the forms γ and (φ δ1...δn), and 
the sentences are of the forms (α→β), #f, (∀γ α), and (π δ1...δn).  A nullary predicate π or function φ is 
written without parentheses.  ϕ{π/λξα} represents the replacement of all occurrences of π in ϕ by λξα followed 
by lambda conversion.    The primitive symbols are shown in Figure 2 with their  interpretations.  The particular 
FOL used herein includes the binary predicate symbol L and a denumerably infinite number of 0-ary function 
symbols representing the names (i.e. 'α) of the sentences (i.e. α) of this FOL. 

Symbol Meaning 
α→ β if α then β. 
#f falsity 
∀γ α for all γ, α. 

Figure 2: Primitive Symbols of First Order Logic 
The defined symbols are listed in Figure 3 with their definitions and intuitive interpretations. 

Symbol Definition Meaning  Symbol Definition Meaning 
¬α α → #f not α  α∧β ¬(α → ¬β) α and β 
#t ¬ #f truth  α↔ β (α→ β) ∧ (β→ α) α if and only if β 
α∨β (¬ α)→ β α or β  ∃γ α ¬∀γ ¬α for some γ , α 

Figure 3: Defined Symbols of First Order Logic 

3. Modal Logic 
We extend First Order Logic with a necessity symbol as given in Figure 4  below: 

Symbol Meaning 
[]α α is logically necessary 

Figure 4: Primitive Symbols of Modal Logic 
and with the laws of an S5 Modal Logic [Hughes & Cresswell 1968] as given in Figure 5 below: 
   R0: from α infer ([] α)     A2:  ([](α→ β)) → (([]α)→ ([]β)) 
   A1: ([]α) → α      A3: ([]α) ∨ ([]¬[]α) 

Figure 5: The Laws of S5 Modal Logic 
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These S5 modal laws and the laws of FOL constitute an S5 Modal Quantificational Logic similar to [Carnap 1946; 
Carnap 1956], and a FOL version [Parks 1976] of [Bressan 1972] in which the Barcan formula: 
(∀γ([]α))→([]∀γα) and its converse hold.  The defined Modal symbols used herein are listed in Figure 6 with 
their definitions and intuitive interpretations. 
Symbol Definition Meaning  Symbol Definition Meaning 
<> α ¬ [] ¬α α is logically possible  α≡ β [] (α↔β) α is synonymous to β 
<β> α <> (β∧α) α and β is logically possible  δ=σ (πδ)≡(π σ) δ  is logically equal to σ 

[β] α [] (β→α) β entails α  δ≠σ ¬(δ=σ) δ is not logically equal to σ. 
Figure 3: Defined Symbols of Modal Logic 

Next, we extend the FOL + S5 Modal Quantificational Logic with the A4 axiom scheme given in Figure 7. 
A4: <>Γ{π/λξα} → <>Γ 
where Γ{π/λξα} is the simultaneous replacement in Γ of all unmodalized occurrences of π by α. 

Figure 7: The Possibility Axiom Scheme 
Intuitively, A4 specifies that a sentence Γ is logically possible whenever the result obtained by "interpreting" all 
the unmodalized occurrences of a predicate within it, is logically possible.  If A4 is successively applied to all the 
unmodalized predicates then it follows that a sentence Γ is logically possible if the result of interpreting all the 
unmodalized predicates is logically possible.  The possibility axiom A4 extends the trivial possibility axiom (i.e.  
some proposition is neither #t nor #f) given in [Lewis 1936] and [Bressan 1972], the S5c possibility axiom schema 
(i.e. every conjunction of distinct negated or unnegated propositional constants is logically possible) given in 
[Hendry & Pokriefka 1985], and is implied by the possibility axiom schema used in the Z Modal Quantificational 
Logic described in [Brown 1987; Brown 1989]. The following metatheorems are derivable: 
ZP1: The Possibility of a Separable Predicates:  If (1) Γ, α, and β are sentences of FOL extended whereby any 
modalized sentence may occur in the place of predicates and (2) π does not occur unmodalized in any of Γ, α, 
and β then:  (<>(Γ∧(∀ξ(α→(π ξ)))∧(∀ξ(β→¬(π ξ)))))↔(<>(Γ∧(¬∃ξ(α∧β)))) 
ZP2: The Possibility of a Defined Predicate:  If (1) Γ and α are sentences of FOL extended whereby any 
modalized sentence may occur in the place of predicates and (2) π does not occur unmodalized in any of Γ and 
α then:  (<>(Γ∧(∀ξ((π ξ)↔α))))↔(<>Γ)  proof: Let β be ¬α in ZP1 and simplify. QED. 
ZR: The Reduction Lemma: If (1) κ occurs in Γ and Ψ only in the context: <κ>ϕ for some ϕ (or in the context 
[κ]μ which is essentially of the same modal form: ¬<κ>¬μ and (2) for all such ϕ: 
∀p(((<(Γ∧Ψ)>ϕ)↔(<(Γ>ϕ)){κ/p}) then : (κ≡(Γ∧Ψ)) ↔ ∃p((κ≡(p∧(Ψ{κ/p})))∧(p≡(Γ{κ/p}))) 
ZR1: Reducing a Reflection with a Separable Predicate:  If (1) κ occurs in Γ, α, and β only in the context: <κ>ϕ 
for some ϕ (or in the context [κ]μ which is essentially of the same modal form: (¬<κ>¬μ), (2) Γ, α, β, and ϕ are 
sentences of FOL extended whereby any modalized sentence may occur in the place of predicates, (3) π does 
not occur unmodalized in any of Γ, α, β, and ϕ then:  (κ≡(Γ∧(∀ξ(α→(π ξ)))∧(∀ξ(β→¬(π ξ))))) 
↔ ∃p((κ≡(p∧(((∀ξ(α→(π ξ)))∧(∀ξ(β→¬(π ξ)))){κ/p})))∧(p≡((Γ∧(¬∃ξ(α∧β))){κ/p}))) 
ZR2: Reducing a Reflection with a Defined Predicate:  If (1) κ occurs in Γ, and α only in the context: <κ>ϕ for 
some ϕ (or in the context [κ]μ which is essentially of the same modal form: (¬<κ>¬μ), (2) Γ, α, , and ϕ are 
sentences of FOL extended whereby any modalized sentence may occur in the place of predicates, (3) π does 
not occur unmodalized in any of Γ, α,  and ϕ then:  κ≡(Γ∧∀ξ((π ξ)↔α))↔ ∃p κ≡(p∧∀ξ((π ξ)↔α{κ/p})) 
∧ p≡Γ{κ/p}.  proof:  Let β be ¬α in ZR1 and simplify. QED. 

4. Quantified Autoepistemic Logic 
Quantified Autoepistemic Logic (i.e. QAEL)  is defined in Modal Logic by a necessary equivalence of the form: 

κ≡(QAEL κ Γ) 
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where QAEL is defined as follows: (QAEL κ Γ) =df Γ∧∀i∀ξi((L 'χi)↔([κ]χi)) where (L 'χi) =df (L 'χi ai), χi is the 
ith sentence with or without free variables of FOL and ai is an association list binding the free variables in 'χi to 
values specified by the sequence of metalanguage variables ξi.  The ∀i quantifier ranges across the natural 
numbers.  Any FOL proposition κ which makes this necessary equivalence true is a solution.  QAEL addresses 
the problem of how quantified variables whose scopes cross the L predicate may be represented.  Furthermore 
these quantifiers obey not only the Barcan formula but unlike the generalization of Autoepistemic Logic given in 
[Konolige 1989] its converse and therefore does not suffer the anomalies therein discussed.   For example we 
could then state in QAEL that everything is a bird and that all things believed to be birds for which flying is 
believable do in fact fly as follows: κ≡(QAEL κ((∀x(Bird x))∧∀x(((L '(Bird x))∧(¬L '(¬(Fly x))))→(Fly x)))) 

5. Quantified Autoepistemic Kernel 
The Quantified Autoepistemic Kernel [Brown 1989] is defined in Modal Quantificational Logic by the necessary 
equivalence: 

ϕ≡(QAEK ϕ Γ) 
where QAEK is defined as: (QAEK ϕ Γ) =df Γ{L '/[ϕ]} 
The L predicate does not occur unmodalized in QAEK.  However, the kernel may be used to define an extension 
containing facts involving L  as follows: 
(L-EXT ϕ) =df (ϕ∧∀i∀ξi((L 'χi)↔(([ϕ]χi){L '/[ϕ]}))) 
The kernel ϕ possesses two important properties with respect to L-extensions, namely that the L-extension of ϕ 
entails ϕ, and ϕ entails every FOL sentence not containing an occurrence of L which the L-extension entails 
LEXT1: [(L-ext ϕ)]ϕ  proof: Unfolding L-ext gives a tautology. QED. 
LEXT2: If L  is not in s and if ϕ contains no unmodalized occurrence of L, then: ∀s([(L-ext ϕ)]s)↔ ([ϕ]s) 
proof: Pushing negation through gives the equivalent sentence:  ∀r((<(L-ext ϕ)>r)↔ (<ϕ>r)) 
Unfolding L-ext gives: ∀r((<(ϕ∧∀i∀ξi((L χi)↔(([ϕ]χi){L '/[ϕ]}))>r) ↔ (<ϕ>r)) or rather: 
∀r((<ϕ>(∀i∀ξi((L  'χi)↔(([ϕ]χi){L '/[ϕ]}))∧r) ↔ (<ϕ>r)) which is an instance of theorem ZP2. QED 
LEXT1 and LEXT2 show that the kernel determines all the non-kernel sentences in the L-extension.  
Representing problems in the Quantified Autoepistemic Kernel simplifies their solution since the pre-processing 
step of eliminating the L predicate from Γ is eliminated. 

6. The Relationship between Quantified Autoepistemic Logic and its Kernel 

We now show how all occurrences of L including those within quotes as parts of structural descriptive names of 
sentences of Autoepistemic Logic may be eliminated from Γ:  For example, if Γ consisted of the single default: 
(¬(L '(L '(¬ π))))→π then the necessary equivalence is:  κ≡(QAEL κ((¬(L '(L '(¬ π))))→π)) 
Unfolding AEL gives:  κ≡(((¬(L'(L '(¬ π ))))→π)∧∀i∀ξi((L'χi)↔([κ]χi))).  Since the quantified statement is 
connected to:  (¬(L '(L '(¬ π))))→π by a conjunction it may be assumed when simplifying that expression.  
Instantiating i so that χi is (L '(¬ π)) and using that instance gives the equivalent expression:  κ≡(((¬([κ](L 
'(¬ π))))→π) ∧∀i∀ξi((L 'χi)↔([κ]χi))).  We would like to eliminate the remaining L in the first formulae but it is 
inside the scope of an entailment and therefore the (non-necessary) equivalence: ∀i∀ξi((L  'χi)↔([κ]χi)))  does 
not justify such a reduction merely by virtue of the two formulas being connected by conjunction.  However, the 
entire formula allows the derivation of:  [κ](∀i∀ξi((L 'χi))↔([κ]χi))  which shows that ∀i∀ξi((L 'χi)↔([κ]χi)) may 
be assumed in any scope entailed by κ.  Thus we can still reduce occurrences of L even embedded within an 
entailment.  Thus, the above equation is equivalent to:  κ≡(((¬([κ]([κ](¬ π))))→π)∧∀i∀ξi((L 'χi)↔([κ]χi))  in 
which no occurrence of L nor quotation appears in the first formulae in the conjunction.  Notating the above 
described process (i.e. sequence of deductions) as (Γ{L '/[κ]}) or rather the substitution of L ' by [κ] gives the 
theorem: 
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QAEK1: (κ≡(QAEL κ Γ)) ↔ (κ≡(QAEL κ (Γ{L '/[κ]}))) 
The process which eliminated L from Γ can also be used to eliminate L from χi in the formulae: κ≡((Γ{L 
'/[κ]})∧∀i∀ξi((L 'χi)↔([κ]χi))).  Since χi occurs within the modal scope of a κ entailment we are justified in 
replacing an instance of it by another formulae by assuming ∀i∀ξi((L 'χi)↔([κ]χi))) for any other instance of χi 
since [κ]∀i∀ξi((L 'χi)↔([κ]χi))) follows from the overall equation.  To replace each χi by a sentence which no 
longer contains L, we specify an ordering of all the sentences based on the maximum depth of Ls as they occur 
through the structural descriptive names of the sentences.  A sentence χi with no L would be of depth 0, a 
sentence with L would be at depth 1, a sentence with 'L would be of depth 2, a sentence with  ''L would be of 
depth 3 and so forth.  The proof is by induction.  The base case is always true since L is not in those sentences.  
The induction step proceeds by using ∀i∀ξi((L 'χi)↔([κ]χi)))) on sentences whose L depth is less than n to 
prove that relation for sentences whose depth is n.   Notating the result of the above described process gives: 
QAEK2: (κ≡(QAEL κ Γ))↔ (κ≡((Γ{L '/[κ]})∧∀i∀ξi((L 'χi)↔(([κ]χi){L '/[κ]}))) 
QAEK2 shows how all but one occurrence of L may be eliminated from the equivalence.  Essentially κ is logically 
equivalent to a modal formula Γ{L '/[κ]}) not containing L conjoined to what is essentially a "definition" of L in 
terms of another modal formulae not containing L.  This suggests that L is superfluous notation and that the 
essence of κ lies only in the first formulae.  This intuition is easily proven: 
QAEK3: (κ≡(QAEL κ Γ))↔ ∃p((κ≡(L-EXT p))∧(p≡(QAEK p Γ))) 
proof:  By QAEK2 (κ≡(QAEL κ Γ)) is equivalent to: (κ≡((Γ{L '/[κ]})∧∀i∀ξi((L 'χi)↔(([κ]χi){L '/[κ]})) 
Instantiating ZR2 with:  Γ:= Γ{L '/[κ]},  ξ:=iξi, π:=L, α:=([κ]χi{L '/[κ]})))  shows that the above expression is 
equivalent to: ∃p((κ≡(p∧∀i∀ξi((L ' χi)↔(([p]χi){L  '/[p]}))) ∧(p≡(Γ{L '/[p]}))).  Folding L-EXT and QAEK gives 
∃p((κ≡(L-EXT p))∧(p≡(QAEK p Γ))) QED. 
QAEK3 divides the Autoepistemic equation into two distinct equivalences, one axiomatizing the kernel p and the 
other defining the stronger proposition κ which is the L-extension of p containing additional facts about the L  
predicate.  LEXT1 and LEXT2 show that the L-extension κ is a conservative extension of the kernel and therefore 
it is not essential.  For this reason it suffices to deal with just the necessary equivalence for the Quantified 
Autoepistemic Kernel in studying Quantified Autoepistemic Logic:   ϕ≡(QAEK ϕ Γ). 

7. The Relationship between Quantified Autoepistemic Kernel and Quantified Reflective Logic 
The modal representation of Reflective Logic [Brown 1989, 2003a, 2003c] may be generalized to a Quantified 
Reflective Logic as: 

κ≡(QRL κ Γ αi:βij/χi) 
where QRL is defined in Modal Logic as follows: 
(QRL κ Γ αi:βij/χi) =df  Γ∧∀i∀ξi((([κ]αi)∧∧j=1,mi<κ>βij)→χi) 
where Γ, αi, βij, and χi are sentences of FOL which may contain free variables.  The variables in ξi may occur in 
any of αi, βij, and χi.  When the context is obvious Γ αi:βij/χi is omitted and instead just (QRL κ) is written. 
∧j=1,mi stands for the conjunction of the formula which follows it as j ranges from 1 to mi.  If mi=0 then it specifies 
#t.  If i ranges over a finite number of defaults then ∀i may be replaced in this definition by a conjunction: ∧i.  
Interpreted as a doxastic logic, the necessary equivalence states: 

that which is believed is logically equivalent to: 
     Γ and for each i, if αi is believed and for each j, βij is believable then χi 

Quantified Reflective Logic is an instance of the Quantified Autoepistemic Kernel.  Specifically: 
QAR1:  (QRL κ Γ αi:βij/χi)≡(QAEK κ Γ∧∀i∀ξi(((L 'αi)∧∧j=1,mi(¬(L '(¬βij))))→χi)) 
proof:  Unfolding QRL and QAEK gives identical formulas.  QED. 
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We call the instance of the Quantified Autoepistemic Kernel in which no quantified variables in Γ cross a modal 
scope simply the Autoepistemic Kernel. (i.e. AEK).  Likewise, we call the instance of Quantified Reflective Logic 
with no variables in the any sequence ξi simply Reflective Logic (i.e. RL). 
(AEK ϕ Γ) =df Γ{L /[ϕ]} 
(RL κ Γ αi:βij/χi) =df  Γ∧∀i((([κ]αi)∧∧j=1,mi<κ>βij)→χi) 
where Γ, αi, βij, and χi are closed sentences of FOL.  By closed it is meant that no sentence may contain a free 
variable. 
By QAR1 Reflective Logic is clearly an instance of the  Autoepistemic Kernel.  However, in addition, it turns out 
that the Autoepistemic Kernel is also an instance of Reflective Logic: 
AR2. The Autoepistemic Kernel is an instance of Reflective Logic.  Specifically, for every FOL formulae Γi there 
exist FOL formulas: αi, βij, and χi. such that:  (AEK κ (∀iΓi))≡(RL κ #t αi:βij/χi) 
proof:  By QAR1 it suffices to prove that each Γi{L'/[κ]), which we herebelow call Ψ is representable as 
∧i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) 
We choose a k-entailment: ([κ]ϕ) in Ψ of lowest scope that has not already been chosen.  We use the laws of 
classical logic to place ϕ into conjunctive normal form (treating any embedded κ-entailment as another 
predicate).  The following five theorem schemata of Z are then used to reduce the scope of [κ]1 . 
KU1: ([κ](α1∧...∧αn))≡(([κ]α1)∧...∧([κ]αn)) 
KU2: ([κ](α1∨...∨αm∨([κ]ϕ)∨β1∨...∨βn))  ≡(([κ]ϕ)∨([κ](α1∨...∨αm∨β1∨...∨βn))) 
KU3:  ([κ](α1∨...∨αm∨(¬([κ]ϕ))∨β1∨...∨βn)) ≡((¬[κ]ϕ)∨([κ](α1∨...∨αm∨β1∨...∨βn))) 
KU4: ([κ]([κ]ϕ))≡([κ]ϕ) 
KU5: ([κ](¬[κ]ϕ))≡((¬[κ]ϕ)∨([κ]#f)) 
If the result begins with a conjunction, KU1 is applied.  If the result begins with a disjunction with an embedded κ 
entailment or negation of a κ entailment then respectively KU2 or KU3 is applied.  If the result is itself a k-
entailment of the negation of a k-entailment then respectively KU4 or KU5 is applied.  The over all process is 
repeated until no further KU rule is applicable.  When the process finishes since none of the above rules is 
applicable if the overall formula is put into conjunctive normal form then every resulting disjunction must be of the 
following form when negations of entailments are ordered before entailments which are ordered before other 
expressions:  ((∨j=1,a¬([κ]αj))∨(∨j=1,b([κ]βj))∨(∨j=1,cχj))  Pulling the first negation out and noting that 
(∧j=1,a([κ]αj)) is equivalent to ([κ](∧j=1,aαj)) gives: 
((¬([κ](∧j=1,aαj)))∨(∨j=1,b([κ]βj))∨(∨j=1,cχj)) or rather: ((¬([κ](∧j=1,aαj)))∨(∨j=1,b([κ]βj))∨(∨j=1,cχj)) 
Letting α be (∧j=1,aαj) and χ be (∨j=1,cχj) gives: ((¬([κ]α))∨(∨j=1,b([κ]βj))∨χ) 
where α is #t if their are no αj formulas (since that is the identity of conjunction) and where χ is #f if there are no 
χj formulas (since that is the identity of disjunction).  Rewriting the above as an implication gives: 
(([κ]α)∧(∧j=1,mi(<κ>βj)))→χi where the resulting βj are the negations of the previous ones.  This formula is 
called a default.  The conjunction of all the defaults is then written as: 
∧i((([κ]αi)∧(∧j=1,mi(<κ>βij)))→χi) where the defaults are not required to have any β subformulas.  QED. 
(RL κ #t αi:βij/χi) is often written as: (RL κ Γ αi:βij/χi) where Γ is all those defaults having no α (or where α is 
#t) nor β subformulas (and hence no modals) and i ranges over just the "real" defaults containing modals. 

                                                           
1When ([K]ψ) is viewed with K fixed as a unary symbol, it has the properties of a KU45 modal logic [Park] . 
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8. Conclusion 
The nonmonotonic systems discussed herein are related as described in Figure 8. 
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ael     = Autoepistemic Logic [Moore 1985] rl  = Reflective Logic [Brown 2003a, Brown 2003c] 
AEL   = Autoepistemic Logic in Modal Logic QAEL = Quantified Autoepistemic Logic in Modal Logic 
AEK   = Autoepistemic Kernel in Modal Logic QAEK = Quantified Autoepistemic Kernel in Modal Logic 
RL     = Reflective Logic in Modal Logic QRL   = Quantified Reflective Logic in Modal Logic 

Figure 8: Relationships among NonMonotonic Systems 
The original set theoretic description of Autoepistemic Logic (i.e. ael) is equivalent [Brown 2003b, 2003d] to the 
modal description AEL and the set theoretic description of Reflective Logic (i.e. rl) is equivalent [Brown 2003a, 
2003c] to the modal description RL.  Equivalence means that the meaning of the fixed-points of the set theoretic 
descriptions are identical to the solutions of the necessary equivalences of the modal systems whenever their 
inputs bear a similar relation.  Since the modal systems (i.e. FOL+S5+A4) are much simpler than the set theoretic 
descriptions (i.e. FOL + Set Theory + FOL Syntax, + FOL Proof Theory) they provide a reduction in both 
conceptual and computational complexity.  For this reason we focus on the modal systems: AEL and RL. 
QAEL and QAEK, are respectively generalizations of AEL and AEK in which quantifiers are allowed to be inserted 
anywhere in the formulas and where such quantified variables may cross modal scopes.  Since AEL and QAEL 
are proven by QAEK3 and LEXT2 to be conservative extensions (involving the superfluous L predicate) of AEK 
and QAEK respectively, these systems AEK and QAEK are said to be the kernels of AEL and QAEL respectively.  
Because the kernel systems eliminate all occurrences of L' and the biconditional relating L' to [k] they are more 
useful systems for both understanding and automatic theorem proving.  For this reason we now focus on just the 
kernel systems: AEK and QAEK. 
AEK is proven to be equivalent to RL by AR2.  QRL is a generalization of RL where only universal quantifiers may 
be inserted and only inserted at the beginning of a default.  By QAR1, QAEK is a generalization of QRL,  But, in 
general, QRL is weaker than QAEK since for example it does not allow for existential quantifiers just before a 
default.  Because QAEK and QRL differ while AEK and RL are equivalent, it follows that both QAEK and QRL can 
be said to be different quantificational generalizations of the Autoepistemic Kernel.  Both are interesting systems 
with QAEK providing greater generality and QRL having deep relationships to nomonotonic logics with quantified 
default inference rules [Brown 2003e].  [Brown 2003f] describes an Automatic Deduction system for the 
propositional case of Autoepistemic Kernels (i.e. AEK) which reduces to the propositional case of Reflective Logic 
(i.e. RL)).  Deduction Methods for the QAEL and QRL are discussed in [Brown 1987; Leasure 1993; Leasure & 
Brown 1995]. 
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