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A MATHEMATICAL APPARATUS FOR DOMAIN ONTOLOGY SIMULATION.  
AN EXTENDABLE LANGUAGE OF APPLIED LOGIC1 

Alexander Kleshchev,  Irene Artemjeva 

Abstract: A mathematical apparatus for domain ontology simulation will be described in the series of the articles. 
This article is the first one of the series. The paper is devoted to means for representation of domain models and 
domain ontology models, so here a logical language is used only as a means for formalizing ideas. The chief 
requirement to such a language is that it must have such a semantic basis that would allow us to determine the 
most exact approximation of a set of intended interpretation functions as often as possible. Another requirement 
closely connected with the foregoing one is that the awkwardness of expressing ideas in such a language must 
not considerably exceed the complexity of their expressing in natural language. There are two ways to meet 
the requirements. The first one is to define and fix a wide semantic basis of the language. In this case the 
semantic basis nonetheless can be insufficient for some applications of the language. Extending applications 
of the language can lead from time to time to the necessity of further extending its semantic basis, i.e. to the 

                                                           
1 This paper was made according to the program of fundamental scientific research of the Presidium of the 

Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical 
foundation of the intellectual systems based on ontologies for intellectual support of scientific researches". 
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necessity of defining new and new versions of the language. The second way is to make the kernel of the 
language being as nearer to the semantic basis of the classical language as possible and to allow us to make 
necessary extensions of the kernel for particular applications. In this article the second way is used to define the 
extendable language of applied logic. The goal of this article is to define the kernel of the extendable language of 
applied logic and its standard extension. The standard extension of the language defines elements of the 
semantic basis that are supposed to be useful practically in all the applications. 

Keywords: Extendable language of applied logic, ontology language specification, kernel of extendable language 
of applied logic, the standard extension of the language of applied logic. 

ACM Classification Keywords :I.2.4 Knowledge Representation Formalisms and Methods, F4.1. Mathematical 
Logic 

Introduction 
At present the importance of studying properties of domain ontologies is generally recognized [Guarino, 1998] 
[Studer et al, 1998]. As a rule, a language of predicate calculus of the first order, other languages of mathematical 
logic [Guarino, 1998] [Wielinga et al, 1994] or ontology description languages [van Heijst et al, 1996] are used for 
formal representation of ontologies.  
Languages of mathematical logic were created for aims that were not connected directly with describing domain 
ontologies. Therefore, they do not allow us to represent formally all the properties of domain ontologies. In 
particular, the definition of values and sorts for names of a signature, distinctions between the propositions 
representing domain knowledge and ontological agreements are beyond the syntax and semantics of these 
languages. Some poorness of the semantic basis for the most of such languages leads to the fact that the 
meaning of ontological agreements is obscured by awkwardness of technical details which are necessary to 
express the meaning in these languages. In addition, the languages of the first order do not allow us to introduce 
terms of a high level of generality and not taking part in description of situations (states of affairs in terms of the 
paper [Guarino, 1998]) into ontology descriptions. As a consequence, an ontology description representing 
properties of all domain terms turns out immense even if these terms can be divided into classes of terms with the 
same properties.  
Semantics of ontology description languages and of predicate calculus languages is equivalent. Both ontologies 
and domain models can be described in these languages. Therefore, it is not clear in what measure such 
languages are specific for formalizing exactly domain ontologies and in what way this specificity is represented by 
their syntax and semantics. Operational aspects of semantics of these languages are not connected with domain 
ontologies but can be important only for describing task and method ontologies.  
In papers [Artemjeva et al, 1995, 1996, 1997a, 1997b], [Kleshchev et al, 1998] an attempt was made to suggest a 
mathematical apparatus - logic relationship systems - for domain simulation. This apparatus cleared up some of 
the above troubles. But direct application of this apparatus for simulation of domain ontologies is impossible 
because domain ontology models are sets of domain models. For such an application it is necessary to make an 
appropriate generalization of the apparatus.  
The goal of the article series is to build a mathematical apparatus for domain ontology simulation. In the article an 
extendable language of applied logic is defined and also the standard extension of the language. This language 
will be used for representation of mathematical models of domain ontologies.  

1. The Necessity of an Extendable Language of Applied Logic 
In this article an extendable language of applied logic is defined. The necessity of the language is motivated by 
the following circumstances. The language of classical mathematical logic - the language of predicate calculus - 
was developed to attain two aims conflicting with one another in many respects. First, it is a means for description 
of generative process states in a predicate calculus (of sets of formulas). Second, it is a means for 
formalizing ideas.  
Any language for description of generative process states (of sets of formulas) in a predicate calculus has to have 
such a semantic basis (a set of language symbols whose semantics does not depend on an interpretation of 
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the signature symbols) that the predicate calculus being complete contains a finite set of inference rules. The 
semantic basis of the classical language of predicate calculus is formed by propositional connectives and 
quantifiers. In addition, sets (domains of variable values), Cartesian product of sets (domains of definitions of 
functions and predicates are Cartesian products) and also functional maps (the interpretations of functional and 
predicate symbols are elements of the functional map set) belong to the semantic basis implicitly. The inference 
rules of the predicate calculus usually correspond to the semantics of propositional connectives and quantifiers.  
With the use of a predicate calculus language as a means for formalizing ideas, every logic theory can be 
considered as a way of intensional determining a set of interpretation functions having the same finite domain of 
definition - the signature of the language. In this case, the language has to have such a semantic basis that the 
most exact approximation of any intended set of interpretation functions can be determined by a finite set of 
propositions. It is clear, the wider such a semantic basis, the more often this aim can be achieved. In real 
applications, when declarative models (systems of algebraic, differential and other equations, and also systems of 
inequalities and optimization tasks) are determined this semantic basis contains arithmetic at the minimum. 
However, it is well known that a predicate calculus being complete and based on such a language cannot contain 
a finite set of inference rules.  
In this manner, there are, as they are, a few logic languages. Some of them (for describing formulas) have a 
restricted semantic basis but the others (for formalizing ideas) have an extendable semantic basis. The 
languages of the first group are means for representation of generative process states in predicate calculus 
studied within mathematical logic. But the others are means for representation of declarative models studied 
within abstract and applied mathematics.  
This paper is devoted to means for representation of domain models and domain ontology models, so here a 
logic language is used only as a means for formalizing ideas. The chief requirement to such a language is that it 
must have such a semantic basis that would allow us to determine the most exact approximation of a set of 
intended interpretation functions as often as possible. Another requirement closely connected with the foregoing 
one is that the awkwardness of expressing ideas in such a language must not considerably exceed the 
complexity of their expressing in natural language. There are two ways to meet the requirements. The first one is 
to define and fix a wide semantic basis of the language. In this case the semantic basis nonetheless can be 
insufficient for some applications of the language. Extending applications of the language can lead from time to 
time to the necessity of further extending its semantic basis, i.e. to the necessity of defining new and new 
versions of the language. The second way is to make the kernel of the language being as nearer to the semantic 
basis of the classical language as possible and to allow us to make necessary extensions of the kernel for 
particular applications.  
In this article the second way is used to define the language of applied logic. The definition of the language 
consists of the kernel of the language only. When the semantic basis is extended for particular applications the 
following two classes of elements are possible. The elements of the first class can be impossible or undesirable 
to be defined by means of the kernel of the language and by extensions built. On the contrary, the elements of 
the second class can be naturally defined by means of the kernel and extensions built. The elements of the first 
class are described in the standard extension and in specialized extensions in the same form that is used in the 
description of the kernel of the language. The standard extension of the language defines elements of the 
semantic basis that are supposed to be useful practically in all the applications. A specialized extension of the 
language defines elements of the semantic basis that are necessary for a comparatively narrow class of 
applications. Because the same specialized extensions can be used in different applications such extensions 
have names. Every particular language of applied logic contains the kernel and usually the standard extension 
and possibly some specialized extensions. By this means, every particular language of applied logic is 
characterized by a set of extension names rather than a signature. A signature is introduced by a particular 
logical theory represented in such a language. Therewith, propositions of the theory can associate values 
(interpretation) or sorts with names (elements of the signature) or can restrict possible functions of interpretations 
for these names according to the interpretation of other names. In turn, every theory has a name. The parameters 
of the name are the names of the extensions of the language that are used for describing the theory. Other 
theories represented by their names also can be elements of a theory.  
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In this article the syntax and semantics of auxiliary constructions of the language (terms and formulas) and its 
basic constructions (propositions and logic theories) are defined.  

2. The Kernel of the Applied Logic Language. The Syntax of Terms, Formulas, Propositions and 
Applied Logic Theory 
The syntax of terms. The terms are:  
1. a name n; 
2. a variable v; 
3. N and L;  
4. t1 → t2, where t1 and t2 are terms;  
5. (× t1,..., tk), where t1, ..., tk are terms; 
6. t(t1, ..., tk), where t , t1, ..., tk are terms; 
7. j(t), where t is a term. 
 

The syntax of formulas. The formulas are: 
1. t(t1, ..., tk), where t , t1, ..., tk are terms; 
2. ¬f1, f1 & f2, f1 ∨ f2, f1 ⇒ f2, f1 ⇔ f2, where f1 and f2 are formulas. 
 

If a variable is not bound in a term or in a formula then it is considered as free in the term or in the formula. If a 
variable is bound in a term or in a formula then it is bound also in the proposition including this term or this 
formula. There are no bound variables in the kernel of the language.  
 

The syntax of propositions. A proposition consists of a prefix and a body. A prefix is a set of variable descriptions 
(v1: t1)...(vm: tm) (bounded universal quantifiers), where (vi: ti) is a variable description, vi is a variable, ti is a term 
for all i=1, ...,m. For I = 1,...,m only the variables v1, ..., vm can be free variables of the term terms t1, ..., tm. A set 
of variable descriptions can be empty. All the variables v1, ..., vm are mutually different.  
The body of a proposition depends on the type of the proposition. The types of propositions are a value 
description for a name, a sort description for a name, a restriction on the interpretation of names. Any free 
variable which is a part of the body of a proposition must be described in its prefix. If a variable is bound in the 
body of a proposition then it cannot be a part of the prefix of the proposition.  
The body of a value description for a name has a form t1 ≡ t2, where t1 and t2 are terms. 
The body of a sort description for a name has a form sort t1 : t2, where t1 and t2 are terms. 
The body of a restriction on the interpretation of names is a formula. 
 

The syntax of applied logic theories. An applied logic theory named T(E1, ..., Ek), where E1, ..., Ek are the names 
of extensions of the language used for representing the theory is a pair <TS, SS>, where TS is a finite set 
(perhaps empty) of names of other theories, SS is a finite set (perhaps empty) of propositions. Any applied logic 
theory T = <TS, SS> by definition is equivalent to an applied logic theory <∅, SS'>, where SS' is the result of the 
following process. Let us denote ts(T) = TS, ss(T) =SS. Let TS1= ts(T) and SS1= ss(T). For every i = 1,2, ... let 
TSi+1 = U

iTSt
tts

∈
)( , SSi+1 = SSi ∪ U

iTSt
tss

∈
)( . If TSn = ∅ on a recurrent step n then SS' = SSn. The theory <∅, SS'> 

will be called the reduction of the theory <TS, SS>.  
An applied logic theory will be called syntactically correct if 
- TS contains only syntactically correct applied logic theories; 
- SS contains propositions written by means of the kernel of the language and of its extensions E1, E2, ..., Ek only; 
- the above process for building the reduction of the logic theory is completed in a finite number of steps;  
- the reduction of the theory T contains a nonempty set of propositions. 
It is evident that the set of propositions of the reduction of any syntactically correct applied logical theory is 
a finite set.  
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3. The Kernel of the Applied Logic Language. Semantics of Terms, Formulas, Propositions and 
Applied Logic Theory 
Semantics of terms and formulas. Semantics of terms and formulas determines the values of terms and formulas 
and also the conditions under which these values exist. In this case it is suggested that a function α is given on 
the set of names. For every name the value of the function is an interpretation of the name. The values of terms 
and formulas will be defined in relation to an interpretation function α and an arbitrary admissible substitution θ of 
values for all the free variables in the term or in the formula. If a variable being free in a term or in a formula is 
also free in the proposition including the term or the formula then in an admissible substitution θ the value for the 
variable is determined by the semantics of the proposition. But if a variable being free in a term or in a formula is 
bound in the proposition including the term or the formula then in an admissible substitution θ the value for the 
variable is determined by the semantics of the term or of the formula in that the variable is bound. Let Jαθ(t) 
denote the value of a term t for an interpretation function α and an admissible substitution θ, Jαθ(f) denote the 
value of a formula f for an interpretation function α and an admissible θ, θ(v) denote the value of a variable v in 
the substitution θ. 
The values of terms are defined by the following way. 
1. Jαθ(n) = α(n), where n is a name; Jαθ(n) does not depend on θ; the value Jαθ(n) exists if n is an element of the 
set Jαθ(N); 
2. Jαθ(v) = θ(v), where v is a variable;  
3. Jαθ(N) is the infinite set of all possible names; Jαθ(N) does not contain all the names that are described in the 
standard and in any used specialized extension of the language and also "N", "L", "≡","=", "→", "×", "⇒", "∨", 
"&", "¬", "⇔", "(", ")", “:”, "true", "false", ",", "sort", "j"; Jαθ(N) does not depend on α and θ; 
4. Jαθ(L) is the set consisting of two elements true and false; Jαθ(L) does not depend on α and θ; 
5. Jαθ(t1 → t2) is the set of all possible completely defined functions from the set Jαθ(t1) to the set Jαθ(t2); the value 
of the term exists if the both values Jαθ(t1) and Jαθ(t2) are sets; 
6. Jαθ(× t1, ..., tk) is the Cartesian product of the sets Jαθ(t1), ..., Jαθ(tk); the value of the term exists if all the values 
Jαθ(t1), ..., Jαθ(tk) are sets; the operation "×" has all the properties of Cartesian product but associativity Jαθ(×(× t1, 
t2), t3) ≠ Jαθ(× t1, (× t2, t3)); 
7. Jαθ(t(t1, ..., tk)) = ϕ(Jαθ(t1), ..., Jαθ(tk)) is the value of the function ϕ which is the interpretation of the name Jαθ(t) 
(i.e. ϕ = α(Jαθ(t))), applied to the arguments Jαθ(t1), ..., Jαθ(tk); the value of the term exists if the value Jαθ(t) is a 
name, having a sort (s' → s), where s' is the Cartesian product of the sets s1, ..., sk or a subset of the Cartesian 
product, s is a set, with s ≠ Jαθ(L), <Jαθ(t1), ..., Jαθ(tk)> ∈ s'; in this case Jαθ(t(t1, ..., tk)) ∈ s; let us notice that if t' is 
such a term that Jαθ(t') = <Jαθ(t1), ..., Jαθ(tk)> then Jαθ(t(t')) = Jαθ(t(t1, ..., tk)); 
8. Jαθ(j(t)) = α(Jαθ(t)) is the interpretation of the name Jαθ(t); the value of the term exists if Jαθ(t) is a name. 
 

The values of formulas are defined in the following way. 
1. Jαθ(t(t1, ..., tk)) ⇔ ρ(Jαθ(t1), ..., Jαθ(tk)) is the value of the predicate ρ, which is the interpretation of the name 
Jαθ(t) (i.e. ρ = α(Jαθ(t))) applied to the arguments Jαθ(t1), ..., Jαθ(tk); the formula has a value if the value Jαθ(t) is a 
name having a sort (s' → L), where s' is the Cartesian product of the sets s1, ..., sk or a subset of the Cartesian 
product, <Jαθ(t1), ..., Jαθ(tk)> ∈ s'; let us notice that if t' is such a term that Jαθ(t') = <Jαθ(t1), ..., Jαθ(tk)> then 
Jαθ(t(t')) ⇔ Jαθ(t(t1, ..., tk)); 
2. Jαθ(¬ f) ⇔ ¬ Jαθ(f), i.e. the value of the formula ¬ f is true if and only if the value Jαθ(f) is false; the formula 
has a value if the formula f has a value for the interpretation function α and the substitution θ; 
3. Jαθ(f1 & f2) ⇔ Jαθ(f1) & Jαθ(f2), i.e. the value of the formula f1 & f2 is true if and only if the both values Jαθ(f1) and 
Jαθ(f2) are true; the formula has a value if the both formulas f1 and f2 have values for the interpretation function α 
and the substitution θ; 
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4. Jαθ(f1 ∨ f2) ⇔ Jαθ(f1) ∨ Jαθ(f2), i.e. the value of the formula f1 ∨ f2 is true if and only if at least one of the values 
Jαθ(f1) or Jαθ(f2) is true; the formula has a value if the both formulas f1 and f2 have values for the interpretation 
function α and the substitution θ; 
5. Jαθ(f1 ⇒ f2) ⇔ Jαθ(f1) ⇒ Jαθ(f2), i.e. the value of the formula f1 ⇒ f2 is true if and only if either the value Jαθ(f1) 
is false or the both values Jαθ(f1) and Jαθ(f2) are true; the formula has a value if the both formulas f1 and f2 have 
values for the interpretation function α and the substitution θ; 
6. Jαθ(f1 ⇔ f2) ⇔ Jαθ(f1) ⇔ Jαθ(f2), i.e. the value of the formula f1 ⇔ f2 is true if and only if either the both values 
Jαθ(f1) and Jαθ(f2) are false or the both values Jαθ(f1) and Jαθ(f2) are true; the formula has a value if the both 
formulas f1 and f2 have values for the interpretation function α and the substitution θ; 
 

Semantics of propositions. Semantics of propositions determines the meaning of the propositions and also the 
conditions under which propositions have meaning.  
The set of admissible substitutions θ for free variables of a proposition is formed in the following way. If the prefix 
of the proposition is empty then the set of admissible substitutions of the proposition consists of the only empty 
substitution. Let the prefix of the proposition be of the form (v1: t1)...(vm: tm), then the set of admissible 
substitutions is the set of all the substitutions θ = (v1/c1, ..., vm/cm), where c1 ∈ Jαθ1(t1), ..., cm ∈ Jαθm(tm).  
A value description for a name with the body t1 ≡ t2 has the following meaning: for every admissible substitution θ 
the interpretation of the name Jαθ(t1) is Jαθ(t2). The proposition has meaning if for all the admissible substitutions 
the value Jαθ(t1) is a name, the value of the term t2 exists for the interpretation function α and for the substitution 
θ and also it does not follow from the logical theory that the name Jαθ(t1) has more than one value. A set of value 
descriptions for names can contain recursive value definitions for names.  
A sort description for a name with the body sort t1 : t2 has the following meaning: for every admissible substitution 
θ the name Jαθ(t1) has the sort Jαθ(t2). The proposition has meaning if for all the admissible substitutions Jαθ(t1) is 
a name, Jαθ(t2) is a set and it does not follow from the logical theory that the name Jαθ(t1) has more than one sort. 
A set of sort descriptions for names can contain recursive sort definitions for names. 
If a sort description for a name has the body sort t1 : t2 → t3 and Jαθ(t3) ≠ Jαθ(L) then we will say that the name 
Jαθ(t1) is a functional name; if Jαθ(t3) = Jαθ(L) then we will say that the name Jαθ(t1) is a predicative name; 
otherwise we will say that the name Jαθ(t1) is an objective name.  
A restriction on the interpretation of names has the following meaning: an interpretation function α is admissible if 
Jαθ(f) = true for all the admissible substitutions θ, where f is a formula that is the body of this proposition. The 
proposition has meaning if there is such an interpretation function that the formula f is true for all the admissible 
substitutions θ. 
 

Semantics of applied logic theories. The set of names being parts of an applied logic theory can be divided into 
two nonintersecting subsets: a set of uniquely interpreted names and a set of ambiguously interpreted names. A 
name is uniquely interpreted if one of the following conditions is met: 
- the applied logic theory determines neither any sort nor any value for a name n; in this case for any α the 
interpretation α(n) = n; 
- the applied logic theory determines a value e for a name n and the value does not depend on the interpretations 
of other names; in this case for any α the interpretation α(n) = e; 
- the applied logic theory determines a value e for a name n and the value is uniquely determined by the 
interpretations of other names. 
All the other names are ambiguously interpreted. For every such a name the applied logic theory determines a 
sort s but does not determine any value. In this case any interpretation function α must meet the restriction 
α(n)∈s.  
An interpretation function α is admissible for an applied logic theory if all the propositions of the theory reduction 
have meaning for this interpretation function. An applied logic theory is semantically correct if there is an 
admissible interpretation function α. Since for every proposition the set of admissible substitutions is determined 
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uniquely but the admissible interpretation function is determined ambiguously then a semantically correct applied 
logic theory determines a set of admissible interpretation functions. It is easily seen that under these conditions 
the set of ambiguously interpreted names of any semantically correct applied logic theory is finite for any 
admissible interpretation function.  
The constriction of an admissible interpretation function α to the set of ambiguously interpreted names of an 
applied logic theory will be called a model of the theory. A model of an applied logic theory can be represented by 
such a set of value descriptions for names that after adding the set to the theory all the names of the new theory 
built in such a way will be uniquely interpreted.  

4. The Standard Extension of the Language of Applied Logic  
An extension of the language is a description of syntax and semantics for terms and formulas. These terms and 
formulas are added to the kernel of the language of applied logic. The standard extension ST of the language of 
applied logic introduces syntactic constructions for some special languages of mathematical logic and also 
arithmetic and set-theoretic constants, operations and relations. The syntax of many constructions is usual for 
mathematical expressions. All the quantifier constructions have a unified syntax Α(v1: t1)…(vm: tm) t Ω or Α(v1: 
t1)…(vm: tm) f Ω, where Α and Ω are quantifier brackets (unique for every quantifier), (v1: t1)…(vm: tm) is a set of 
variable descriptions, t is a term, and f is a formula. The variables v1, …, vm are bound in this construction. 
The terms are:  
1. a quantifier construction (ι(v1: t1)…(vm: tm) f) (iota-operator); Jα,θ((ι(v1: t1)…(vm: tm) f)) is equal to such an 
element of the set of admissible substitutions for (v1: t1)…(vm: tm) that if it was substituted for the variables v1,…, 
vm then the value Jαθ(f) would be true; the value of the term exists if the values Jαθ(t1), …, Jαθ(tm) are sets and 
such an element of the Cartesian product is unique that if it was substituted for the variables then the value Jα,θ(f) 
would be true; 
2. a quantifier construction (λ(v1: t1)...(vm: tm) t) (lambda-term determining a function); Jαθ((λ(v1: t1)...(vm: tm) t)) is a 
function ϕ of m arguments; for any element <q1, .., qm> of the set of admissible substitutions for (v1: t1)… (vm: tm) 
the value ϕ(q1,q2,..,qm) = Jαθ(t); 
3. a quantifier construction (λ(v1: t1)...(vm: tm) f) (lambda-term determining a predicate); Jαθ((λ(v1:t1)...(vm:tm) f)) is a 
predicate ρ of m arguments; for any element <q1,q2,..,qm> of the set of admissible substitutions for (v1: t1)… (vm: 
tm) the value ρ(q1,q2,..,qm) ⇔ Jαθ(f); 
4. /(f1 ⇒ t1), ..., (fm ⇒ tm)/ (conditional term), where t1, .., tm are terms and f1, .., fm are formulas; Jαθ(/(f1 ⇒ t1), …, 
fm ⇒ tm)/) = Jαθ(tk) under the condition that Jαθ(fk) is true; the value of the term exists if all the terms t1, ..., tm and 
all the formulas f1, …, fm have values for the interpretation function α and the substitution θ and also there is the 
only k such that Jαθ(fk) is true; 
5. numerical constants r; Jαθ(r) has the value of the number corresponding to the numerical constant r; Jαθ(r) 
does not depend on α and θ; 
6. R and also Jαθ(R) is the set of all the real numbers; Jαθ(R) does not depend on α and θ; 
6. t1 + t2, or t1 - t2, or t1 * t2, or t1 / t2 where t1 and t2 are terms; Jαθ( t1 + t2) = Jαθ( t1) + Jαθ(t2), i.e. Jαθ(t1 + t2) is the 
sum of Jαθ(t1) and Jαθ(t2); the value of the term exists if both Jαθ(t1) and Jαθ(t2) are numbers; Jαθ(τ) where τ is t1 - 
t2 or t1 * t2 or t1 / t2 is defined in such a way; 
11. t1 ↑ t2, where t1 and t2 are terms; Jαθ(t1 ↑ t2) = Jαθ(t1) ↑ Jαθ(t2), i.e. Jαθ(t1 ↑ t2) is Jαθ(t2)-th power of the number 
Jαθ(t1); the value of the term exists if both Jαθ(t1) and Jαθ(t2) are numbers and Jαθ(t2)-th power of the number 
Jαθ(t1) exists; 
12. ∅ and also Jαθ(∅) is the empty set; Jαθ(∅) does not depend on α and θ; 
13.{t1, ..., tk}, where t1, ..., tk are terms; Jα,θ({t1, ..., tk}) = {Jαθ(t1), ..., Jαθ(tk)}, i.e. the value of the term is the set 
those elements are Jαθ(t1), ..., Jαθ(tk); the value of the term exists if for the interpretation function α and the 
substitution θ the terms t1, ..., tk have values; 
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14.{ }t, where t is a term; Jαθ({ }t) is the set of all the finite subsets (including the empty set and maybe Jαθ(t)) of 
the set Jαθ(t); the value of the term exists if Jαθ(t) is a set;  
15. a quantifier construction {(v1: t1)…(vm: tm) f} (intensionality quantifier); Jαθ({(v1: t1)…(vm: tm) f}) is the subset of 
the set of admissible substitutions for (v1: t1)…(vm: tm) that Jαθ(f)= true; the value of the term exists if the formula f 
has a value for all the admissible substitutions; 
16. a quantifier construction {(v1: t1)…(vm: tm) t} (quantifier of set transformation); Jαθ({(v1: t1)…(vm: tm) t}) is the set 
of all the values of the term Jαθ(t), where θ belongs to the set of admissible substitutions for (v1: t1)…(vm: tm); the 
value of the term exists if Jαθ(t) is a set and if for the interpretation function α and for any admissible substitution 
θ the term t has a value; 
17. t1 ∪ t2, or t1 ∩ t2, or t1 \ t2, where t1 and t2 are terms; Jαθ(t1 ∪ t2) = Jαθ(t1) ∪ Jαθ(t2), i.e. Jαθ(t1 ∪ t2) is the union 
of the sets Jαθ(t1) and Jαθ(t2); the value of the term exists if both Jαθ(t1) and Jαθ(t2) are sets; Jαθ(τ) where τ is t1 ∩ 
t2 or t1 \ t2 is defined in such a way; 
18. μ(t), where t is a term; Jαθ(μ(t)) is the cardinality of the set Jαθ(t); the value of the term exists if Jαθ(t) is 
a finite set; 
19. t1 ⇑ t2, where t1 and t2 are terms; Jαθ(t1 ⇑ t2) = Jαθ(t1)⇑ Jαθ(t2), i.e. Jαθ(t1 ⇑ t2) is the set Jαθ(t1) raised to the 
Cartesian power Jαθ(t2); the value of the term exists if Jαθ(t1) is a set and Jαθ(t2) is a positive integer; the operation 
"⇑" has all the properties of the Cartesian power but associativity: Jαθ((t1⇑ t2)⇑ t3) ≠ Jαθ(t1 ⇑ (t2 * t3)); 
20. <t1, ..., tm>, where t1, ..., tm are terms; Jαθ(<t1, ..., tm>) = <Jαθ(t1), ..., Jαθ(tm)>, i.e. the value of the term is the m-
tuple composed of the values Jαθ(t1), ..., Jαθ(tm); the value of the term exists if for the interpretation function α and 
the substitution θ the terms t1, ..., tm have values; 
21. π(t1, t2), where t1 and t2 are terms; Jαθ(π(t1, t2)) = π(Jαθ(t1), Jαθ(t2)), i.e. the value of the term is the Jαθ(t1)-th 
projection of the tuple (of an element of a Cartesian product) Jαθ(t2); the value of the term exists if Jαθ(t2) is a m-
tuple and Jαθ(t1) is a positive integer not greater than m; 
22. length(t), where t is a term; Jαθ(length(t)) is the number of elements in the tuple Jαθ(t); the value of the term 
exists if Jαθ(t) is a tuple. 
 
The formulas are: 
1. t1 = t2, or t1 ≠ t2, where t1 and t2 are terms; Jαθ(t1 = t2) ⇔ Jαθ(t1) = Jαθ(t2), i.e. the value of the formula is true if 
and only if the values Jαθ(t1) and Jαθ(t2) are the same; the formula has a value if for the interpretation function α 
and the substitution θ the both terms t1 and t2 have values; Jαθ(t1 ≠ t2) is defined in such a way; 
2. t1 > t2, or t1 < t2, or t1 ≤ t2, or t1 ≥ t2, where t1 and t2 are terms; Jαθ(t1 > t2) ⇔ Jαθ(t1) > Jαθ(t2), i.e. the value of the 
formula is true if and only if the value Jαθ(t1) is greater than the value Jαθ(t2); the formula has a value if both Jαθ(t1) 
and Jαθ(t2) are numbers; Jαθ(φ) where φ is t1 < t2, or t1 ≤ t2, or t1 ≥ t2 is defined in such a way; 
3. t1 ∈ t2, or t1 ∉ t2, where t1 and t2 are terms; Jαθ(t1 ∈ t2) ⇔ Jαθ(t1) ∈ Jαθ(t2), i.e. the value of the formula is true if 
and only if the value Jαθ(t1) belongs to the set Jαθ(t2); the formula has a value if for the interpretation function α 
and the substitution θ the term t1 has a value and Jαθ(t2) is a set; Jαθ(t1 ∉ t2) is defined in such a way; 
4. t1 ⊂ t2, or t1 ⊆ t2, or t1 ⊄ t2, where t1 and t2 are terms; Jαθ(t1 ⊂ t2) ⇔ Jαθ(t1) ⊂ Jαθ(t2), i.e. the value of the 
formula is true if and only if the set Jαθ(t1) is a proper subset of the set Jαθ(t2); the formula has a value if both 
Jαθ(t1) and Jαθ(t2) are sets; Jαθ(φ) where φ is t1 ⊆ t2, or t1 ⊄ t2 is defined in such a way. 

Conclusions 
In this article the kernel of the extendable language of applied logic has been introduced. Any applied logic theory 
is characterized by a set (perhaps empty) consisting of the standard extension and specialized extensions of the 
language. The article also defines the standard extension of the language. The standard extension introduces 
syntactic constructions for some special languages of mathematical logic and also arithmetic and set-theoretic 
constants, operations and relations.  
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INFORMATION PROCESSING IN A COGNITIVE MODEL OF NLP 

Velina Slavova,  Alona Soschen,  Luke Immes 

Abstract: A model of the cognitive process of natural language processing has been developed using the 
formalism of generalized nets. Following this stage-simulating model, the treatment of information inevitably 
includes phases, which require joint operations in two knowledge spaces – language and semantics. In order to 
examine and formalize the relations between the language and the semantic levels of treatment, the language is 
presented as an information system, conceived on the bases of human cognitive resources, semantic primitives, 
semantic operators and language rules and data. This approach is applied for modeling a specific grammatical 
rule – the secondary predication in Russian. Grammatical rules of the language space are expressed as 
operators in the semantic space. Examples from the linguistics domain are treated and several conclusions for 
the semantics of the modeled rule are made. The results of applying the information system approach to the 
language turn up to be consistent with the stages of treatment modeled with the generalized net.  
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