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SERVICES FOR SATELLITE DATA PROCESSING 

Andriy Shelestov,  Oleksiy Kravchenko,  Michael Korbakov  

Abstract: Data processing services for Meteosat geostationary satellite are presented. Implemented services 
correspond to the different levels of remote-sensing data processing, including noise reduction at preprocessing 
level, cloud mask extraction at low-level and fractal dimension estimation at high-level. Cloud mask obtained as a 
result of Markovian segmentation of infrared data. To overcome high computation complexity of Markovian 
segmentation parallel algorithm is developed. Fractal dimension of Meteosat data estimated using fractional 
Brownian motion models. 
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Introduction 
Among the variety of artificial Earth satellites geostationary satellites stand out due to their unique capability to 
observe Earth in a high frequency manner. The achievement of similar temporal characteristics using low orbit 
satellite platform could be possible only with a fair amount of satellites. However geostationary satellites suffer 
from two main drawbacks – low spatial resolution and relatively small amount of spectral bands. By these 
circumstances it is common to use geostationary satellites in the investigation of global Earth processes 
especially in the field of meteorology. 
In this paper three services for geostationary satellite data processing are described. These services are 
designed to process data of Meteosat satellite that is operated by EUMETSAT international organization and 
provides information for solving practical meteorological problems. This satellite’s onboard equipment makes one 
image of earth disk in 30 minutes in three spectral bands – visible (VIS), infrared (IR), water vapour (WV). 
Developed services include preprocessing service of noise detection and reduction, service for cloud mask 
extraction and high-level service for fractal features estimation. 
Although noise reduction as preprocessing step is obviously important for further processing one of the most 
useful satellite data products is cloud mask. It can be used in a standalone way in applications such as air flights 
and satellite photography planning. Also it can be used as an input data for various satellite data processing 
algorithms like Normalized Difference Vegetation Index (NDVI), Sea Surface Temperature (SST) and operational 
wind vectors maps extraction, or even more complex applications such as numerical weather models. 
A common approach for cloud mask extracting is using of multi- and hyperspectral satellites providing data in 
many spectral bands. Basing on information about radiance intensities a conclusion about cloudiness can be 
made on per pixel basis. For instance, this approach is widely used for processing of multispectral AVHRR and 
MODIS data. But three spectral bands of Meteosat do not provide enough information for multispectral cloud 
recognition algorithms operating on per pixel basis. This causes the need for algorithms, which involves temporal 
and spatial dependencies in data processing. One of such algorithms is a Markov Random Field segmentation, 
which allows determining pixel’s class with regard to its neighborhoods. Markovian approach allows taking into 
account different possible distributions of intensities per class and do not introduce global parameters such as 
thresholds, which is often used in multispectral data processing. 
To extract high-level meteorological features fractal approach is used.  Meteosat data is modeled by fractional 
Brownian motion process. Approximation with self-affine fractal allows estimating local fractal dimension of 
Meteosat image. For this problem Fourier estimator is considered. 
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Data Preprocessing 
Meteosat images come with a lot of noise of two sorts. The first one is the so-called “salt and pepper” noise 
consisting of noisy pixels uniformly distributed over image. The second one is the impulse burst noise, which 
distorts images with horizontal streaks of few pixel heights filled with white noise. 
In the Space Research Institute NASU-NSAU algorithm for detecting and removing such noise was developed 
[Phuong, 2004]. On the first step of this algorithm noise streaks is detected and removed by cubic spline 
interpolation method. During the second step the “salt and pepper” noise is detected by modified median filter and 
removed by using bit planes approach. The algorithm based on this approach separates an image in 256 planes 
with binary values. After that, each of these planes is processed separately in order to remove noise. 

Cloud Mask Extraction 
Following Markovian approach the image is represented as a mn×  matrix of sites S. The neighborhood of site 

ijs  is any subset Sij ⊂∂ , such that ijijs ∂∉ . With each site ijs  two random variables are associated – an 
intensity ijX  (as usual it takes integer value in interval [0; 255]) and a hidden label ijY . The specific values the 
random variables take are denoted ijx  and ijy  respectively. So two sets of variables defined for image S: 

{ }nmXXX ,...,11=  and { }nmYYY ,...,11= . 

Markov Random Fields (MRFs) are widely used for image segmentation [Li, 1995]. With the Hammersley-Clifford 
theorem the equivalence of MRF and statistical physics Gibbs models was proved [Li, 1995]. This theorem gives 
us the equation for probability of specific segmentation ( )YP  
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In this equation, z is normalizing constant necessary for holding the condition ( ) 1=∑
Y

YP . β  denotes the 

image correlation parameter. V is the so-called potential function. Its structure is highly coupled with optimal 
segmentation of MRF. Defining a particular potential function it is possible to model physics features of 
segmentation. The right part of equation shows that potential function V can be represented as a sum of 
potentials defined at each site: ∑=

ji
ijVV

,
. 

For the cloud mask extraction problem the following Markovian model was used: the observed intensity ijX  
depends only on local label ijY  and a conditional distribution of random variable ijX  is Gaussian. The Bayes’ 
theorem about a priory and a posteriori probabilities’ relation yields a complete model of intensities and labels 
coupling [Shiryaev, 1989]: 
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Here ijσ  and ijμ  are a standard deviation and a mean of random variable ijX , ijn  is the number of pixels in 
neighborhood ij∂  with the label equal to ijY . 

The goal of segmentation is to maximize )|( XYP  under particular intensities X . This corresponds to 
obtaining maximum for a posteriori label’s estimate:  

( ){ }XYPYY y |maxarg: * = .     (3) 

Results of clouds segmentation and corresponding cloud borders are shown at the fig.1. 
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Fig. 1 .MRF segmentation result and corresponding cloud borders. 

 

Parallel Execution Results 
High computational complexity of Markovian segmentation algorithm together with large sizes of satellite images 
determines the need for parallel realization of cloud mask extraction process. 
Meteosat image filtering and Markovian segmentation algorithms were implemented using MPI parallel 
programming interface [MPI, 1997]. Due to locality of dependencies in Markovian image model, it is possible to 
divide image into almost independent rectangular parts. Then each of these parts is processed by different 
computational node. Synchronization of several global per-class parameters and image part's borders is 
performed by means of MPI's group communication functions. 
The program was run on the cluster of Institute of Cybernetics NASU consisting of 32 Intel Xeon processors. It 
has demonstrated good level of parallel acceleration giving almost proportional speed boost with increase of 
number of computational nodes used (fig. 2). Processing time increasing and productivity slowdown for 32 
processors is related with large amount of interprocessors’ data transfer, which is fulfilled in sequential way (due 
to architecture of parallel machine). So according to experimental results the most preferable number of 
processors for this task is 20. This information is important for load balancing. 
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Fig. 2. Performance evaluation of parallel MRF segmentation algorithm. 

Fractal Features Extraction 
To estimate fractal dimension of Meteosat data water-vapour images are modeled by fractional Brownian motion 
(FBM) process. Fractional Brownian motion process is the generalization of plain Brownian motion process with 
expected squared difference in intensity of any two pixels being proportional to the powered distance between the 
pixels. In the case of two dimensions it is described by the following equation [Potapov, 2002]: 

( ) ( ) H
yxyyxxIyxI 222 ~,, Δ+ΔΔ+Δ+−E ,   (4) 

where ( )yxI ,  – is the intensity of pixel with coordinates ( )yx, , 
10 << H  –  is the Hurst coefficient. 

The case of 21=H  corresponds to classical Brownian motion. 
It can be shown that two-dimensional FBM process has a Fourier power spectrum 

( ) βffF 1~2E ,     (5) 

where the power exponent β , the Hurst coefficient H  and fractal dimension D  are determined by the  
following equations: 

22 += Hβ , HD −= 3     (6) 
Thus knowing β  parameter we can estimate the Hurst coefficient H and fractal dimension D . 
To examine our algorithm for fractal dimension estimation synthesized images were used. To generate fractional 
Brownian motion on a two-dimensional grid we use fast Fourier transform filtering. This procedure generates an 
initial image 0I  as a set of independent Gaussian random variables, ( ) ( )1,0~,0 NyxI . Then a discrete 
Fourier transform is applied to image 0I , thus obtaining the grid of Fourier coefficients: 
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The second step consists in construction of new Fourier coefficients ( ) ( ) 422
01 ,,

β

yxyxyx kkkkFkkF += . 

At last the inverse Fourier transform is applied to ( )yx kkF ,1  coefficients forming result image 1I . 

Modeling results for different values of Hurst coefficient H  and fractal dimension D  from (6) are shown at fig. 3. 
 

   
a) b) c) 

Fig. 3. The examples of FBM generation  
a – 4.0=H , 6.2=D ;   b – 7.0=H , 3.2=D ;   c – 9.0=H , 1.2=D  

 

Fractal features extraction algorithm based on local Fourier power spectrum investigation. Whole Meteosat image 
is processed by moving window and corresponding image part used to calculate local Fourier coefficients 
( )yx kkF , . According to (5) these coefficients are used to estimate index of power approximation from a linear 

fit to data ( )( ){ }NkkkkkkF yxyxyx ,1,,log,,log 22
1 =+ . 

This approach was applied to Meteosat data processing, specifically for fractal dimension detection after cloud 
mask segmentation. It allows to determine areas of turbulence and to detect sources of some meteorological 
disasters.  Results of satellite data processing are shown at fig. 4.  
 

 

          
Fig. 4. Original WV image and corresponding fractal dimension estimation. 

 

Conclusions and Further Works 
Markovian approach has showed its effectiveness in the task of cloud mask extraction from Meteosat satellite 
data. Also parallel Markovian segmentation algorithm performed very well exploiting locality of Markovian image 
model. After cloud mask construction one can implement any other algorithm of higher level satellite data 
processing. One of them is fractal dimension detection. It allows to determine areas of turbulence and to detect 
sources of some meteorological disasters.   
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Further works includes services implementation in GRID environment, which will connect computational cluster  
and other computational resources with satellite data archives. GRID infrastructure will allow to integrate data 
processing algorithms with datasets and to provide access to computational tools and there results (products and 
services) for wide area of users. This kind of investigation is actively carrying out in Space Research Institute of 
National Academy of Sciences and National Space Agency of Ukraine. 
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FORMAL DEFINITION OF ARTIFICIAL INTELLIGENCE 1 

Dimiter Dobrev 

Abstract: A definition of Artificial Intelligence (AI) was proposed in [1] but this definition was not absolutely formal 
at least because the word "Human" was used. In this paper we will formalize the definition from [1]. The biggest 
problem in this definition was that the level of intelligence of AI is compared to the intelligence of a human being. 
In order to change this we will introduce some parameters to which AI will depend. One of this parameters will be 
the level of intelligence and we will define one AI to each level of intelligence. We assume that for some level of 
intelligence the respective AI will be more intelligent than a human being. Nevertheless, we cannot say which is 
this level because we cannot calculate its exact value. 

Keywords: AI Definition, Artificial Intelligence. 

ACM Classification Keywords: I.2.0 Artificial Intelligence - Philosophical foundations  

Introduction 
The definition in [1] first was published in popular form in [2, 3]. It was stated in one sentence but with many 
assumptions and explanations which were given before and after this sentence. Here is the definition of AI in one 
sentence: 

AI will be such a program which in an arbitrary world will cope no worse than a human. 
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