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Note that the proposed methodology for examining activity logs is more or less automatic - that is, it allows for 
little human interaction. However, experimental results have shown that such algorithms are not very successful. 
Therefore, it is worth exploring how human experts can participate in the different stages of pattern discovery. For 
example, when a new pattern is discovered, it can be examined by a domain expert before it is recorded in the 
pattern database.  
To summarize, we propose a methodology for network activity log processing. We believe that the theoretical 
background behind the proposed methodology is sound and that when applied in practice the proposed network 
activity analyzer will produce results better than most existing network monitoring systems. However, the only 
way to find this for certain is to implement the proposed network activity analyzer and compare its performance 
and effectiveness to existing network monitoring systems. 
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ON THE ERROR-FREE COMPUTATION OF FAST COSINE TRANSFORM 

Vassil Dimitrov,  Khan Wahid 

Abstract: We extend our previous work into error-free representations of transform basis functions by presenting 
a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) 
and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new 
algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without 
any intermediate number representation conversions. The resulting architecture is very regular and reduces 
latency by 50% compared to a previous error-free design, with virtually the same hardware cost. 
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Introduction 
The Discrete Cosine Transform (DCT) is the core transform of many image processing applications for reduced 
bandwidth image and video transmission, including the JPEG image processing standard and high performance 
video coding standards such as MPEG and H.263. 
Because of the enormous popularity of the DCT, much research has been published on fast DCT algorithms 
[Arai, 1988][Duhamel, 1990][Feig, 1992][Linzer, 1991], where the effort is devoted to reducing the number of 
arithmetic operations used. Scaled DCT algorithms rely on a post-pointwise scaling operation which removes 
some of the arithmetic operations from the main transform computation. The post-scaling operations for a 2-D 
DCT can be delayed until the end of the transformation process. In this paper, we discuss a new algebraic-
integer-mapping for the Linzer-Feig scaled-DCT [Linzer, 1991]. 
Several algorithms and architectures have previously been proposed to optimize both pure and scaled DCT 
implementations using 1-D and 2-D algebraic integer (AI) encoding of the DCT basis functions. Both single and 
multidimensional AI schemes have been used for low-complexity and parallel architectures [Dimitrov, 
1998][Dimitrov, 2003][Wahid, 2004]. In most of these previous published encoding techniques, conversion from 
the AI output of each 1-D DCT computation has been required, even if the DCT is being used in a separable 2-D 
DCT computation. Here we introduce a new algebraic integer encoding technique which removes the need for 
conversion to binary at the end of the first 1-D DCT. We also extend this concept for 2-D error-free algebraic 
integer encoding and supply details on the computational complexity and mathematical precision required to 
implement the algorithm. 

Background 
For a real data sequence )(nx  of length N, the DCT is defined as follows: 

10;
2

)12(cos)(2)(
1

0
−≤≤⎥⎦

⎤
⎢⎣
⎡ +

= ∑
−

=

Nk
N

knnxkF
N

n
π    (1) 

The Inverse DCT (IDCT) is also defined as: 
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Both DCT and IDCT are separable transformations. So the 2-D transform can be computed by first performing 1-
D transforms on each row and then performing 1-D transforms on each column. 

Algebraic Integer Encoding 
Algebraic integers are defined by real numbers that are roots of monic polynomials with integer coefficients 

[Dedekind, 1996]. As an example, let 16
2 j

e
π

ω = denote a primitive 16th root of unity over the ring of complex 
numbers. Then ω is a root of the equation x8 + 1 = 0. If ω is adjoined to the rational numbers, then the 
associated ring of algebraic integers is denoted by Z[ω]. The ring  Z[ω] can be regarded as consisting of 
polynomials in ω of degree 7 with integer coefficients. The elements of  Z[ω] are added and multiplied as 
polynomials, except that the rule ω 8 = -1 is used in the product to reduce the degree of powers of ω to below 8. 

For an integer, M,  Z[ω]M  is used to denote the elements of with coefficients between 
2
M

−  and 
2
M . 

 

Algebraic integer quantization has been used in DSP applications for about two decades and it has been 
demonstrated that it can be used for extremely efficient implementation of real-valued transforms such as the 
Discrete Hartley Transform [Baghaie, 2001], and the Discrete Wavelet Transform [Wahid, 2003]. 
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Fast Cosine Transform Algorithm 
The algorithm proposed by Linzer and Feig [Linzer, 1991] is presented as a signal flow graph in Figure 1, where 
{ }ia  are input elements, { }iS  are scaled DCT coefficients, and fixed multipliers are given by (3): 
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The outlined area in Figure 1 (with a hardware cost of 10 multiplications and 10 additions) is where our new 
algebraic integer mapping will be used, and we will show that our mapping technique reduces the hardware 
complexity and also produces error-free transform outputs. 
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Figure 1: 1-D DCT (finite-precision binary) 

1-D Algebraic Integer Encoding: Let 222 ++=z  and consider the polynomial expansion: 
3

3
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Now considering the expressions: 
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π , we can represent all the multipliers from eqn. (3) exactly with integer 

coefficients as shown in Table 1 (here, 44 2~ cc = ). 

Table 1: 1-D error-free multiplier encoding 

 
0a  1a  2a  3a  

4
~c  2 -4 1 0 

1t  -7 14 -7 1 

2t  1 -4 1 0 

5t  1 -12 7 -1 
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Note that the multiplication between any real number and the coefficients in Table 1 can now be implemented 
with at most 4 shifts and 1 addition (for 14). This reduces the 10 multiplications to only 5 AI additions (actually, 23 
shifts and 5 additions). So, the total number of additions required to perform the first 1-D DCT is 21. In the case of 
an 8x8 2-D DCT, we will need a total of 736 additions including the final substitution. We note that there is no 
longer any precision problem since the AI encoding provides an exact representation. The flow graph of Figure 1 
can now be implemented as shown simply in Figure 2. 
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Figure 2: 1-D DCT (error-free AI encoding) 

 

The real numbers of )(zf  form a ring which may be denoted as ]222[ ++Z . Addition in this ring is 
component-wise and multiplication is equivalent to a polynomial multiplication modulo 

0216208 234 =+−+− zzzz , which is demonstrated in Table 2. 

Table 2: Multiplication in ring ]222[ ++Z  

4
~c  1t  14 .~ tc  

(2,-4,1,0) (-7,14,-7,1) (-8,6,-1,0) 
 

2-D Algebraic Integer Encoding: Applying a 2-D algebraic integer scheme to this algorithm results in a more 
sparse representation and more flexible encoding compared to previous techniques [Dimitrov, 2003]. For this 
encoding, the polynomial is expanded into 2 variables: 
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Here, we choose K=2 and L=2 to guarantee error-free encoding. For the most efficient encoding (i.e., to obtain 

the sparsest matrix), we have found the following: 221 +=z and 222 −=z . The corresponding 

multiplier coefficients (including the cross-multipliers) are encoded in the form of 
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Table 3. We have therefore, mapped the multiplier transcendental functions (cosine and tangent) without any 
error and with very low complexity. The implementation is same as shown in Figure 2. 

Table 3: 2-D error-free multiplier encoding 

4
~c  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
010
000

 2t  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

000
110
001

 

1t  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

000
010
001

 5t  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

010
010
001

 

14
~ tc  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

020
012
002

 54
~ tc  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

000
210
022

 

 

From Table 3, we see that the coefficients are either 0’s, 1’s or 2’s, so no additions and at best 1 shift is required 
to encode these numbers which reduces the total number of AI additions to perform the first 1-D transform to only 
16 (496 in total for an 8x8 2-D DCT). 
 

Final Reconstruction Step: In the final reconstruction stage (FRS), we map the AI numbers to a binary output. 
FRS is performed based on the precision in Table 4 and the flow graphs in Figure 3 and Figure 4. For the final 
reconstruction, we can use Horner’s rule [Knuth, 1981]. In that case, eqn. (4) and eqn. (5) can be re-written as: 

 0123 ))(()( azazazazf +++=      (6) 
)(),( 21212111210021 zazaazzazzf +++=     (7) 

This final substitution stage generates some rounding errors but these errors are only introduced at the very end 
of the transformation process, not distributed throughout the calculation as is the case for a finite-precision binary 
implementation. 

Table 4: FRS for different encoding scheme 
Scheme Parameter FRS 

8 bits 53 224 −− −−  1-D 222 ++=z  12 bits 753 2224 −−− +−−  
8 bits 53 222 −− −−  

221 +=z  12 bits 853 2222 −−− +−−  
8 bits 62 221 −− +−  

2-D 
222 −=z  12 bits 1162 2221 −−− −+−  
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Figure 3: Final reconstruction step (1-D encoding) 
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Figure 4: Final reconstruction step (2-D encoding) 

 
For the scaled IDCT, the Linzer and Feig algorithm uses the same fixed multiplier coefficients given by eqn. (3). 
So, in this case, we can use the same encoding with the same precision described in the above section. 
 

Comparisons 
In Table 5, we compare the computational complexity of previously published AI-based DCT encoding with the 
proposed scheme. In all cases, the new 2-D AI encoding scheme has the least number of computations. 
In Table 6, we present a comparison between some other published 2-D DCT architectures and the proposed 
algebraic integer approach. Taking the additions as the main computational block, the new multidimensional 
algebraic-integer-quantization based architecture clearly has the lowest hardware count, particularly considering 
that all the AI computations are performed without any error. 

Table 5: Hardware complexity for different AIQ schemes 

Algorithm Degree of Polynomial Additions Shifts Total Additions 
1-D AI-based Chen DCT [Dimitrov, 

1998] 
7 6 9 156 

2-D AI-based Chen DCT [Dimitrov, 
2003] 

3 3 4 132 

AI-based Arai [Wahid, 2004] 3 1 5 30 
Proposed 1-D AIQ  3 5 23 32 
Proposed 2-D AIQ 2 0 6 29 

 

Table 6: Comparison between different 8-point 2-D DCT 

Algorithm Multiplications Additions 
Linzer-Feig sDCT [Linzer, 1991] 160 416 

DCT-SQ [Arai, 1988] 80 464 
Distributed DCT [Shams, 2002] 0 672 

Proposed 1-D AIQ  0 736 
Proposed 2-D AIQ 0 496 
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Conclusions 
In this paper, we have introduced a new encoding scheme to compute both 1-D and 2-D Fast Cosine Transform 
IFCT by error-free mapping of transcendental functions. This new quantization technique effectively reduces the 
overall number of arithmetic operations, and allows a multiplication-free, parallel, and very fast hardware 
implementation. Except for the final reconstruction stage, the complete 2-D DCT and IDCT can be implemented 
without error (infinite precision). This idea of using an algebraic integer quantization scheme can be easily 
generalized to other algorithms when it is necessary to use real algebraic numbers of special form. Our future 
work is directed towards the VLSI implementation of this approach for 2-D DCT and IDCT. 
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