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 LEARNING TECHNOLOGY IN SCHEDULING BASED ON THE MIXED GRAPHS 

Yuri Sotskov,  Nadezhda Sotskova,  Leonid Rudoi 

Abstract: We propose the adaptive algorithm for solving a set of similar scheduling problems using learning 
technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and 
heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by 
means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain 
type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in 
performance measure) and efficient (in computational time) heuristics by adapting local decisions for the 
scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of 
sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern 
recognition apparatus. 

Keywords: Scheduling, mixed graph, learning, pattern recognition. 
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Introduction 
Scheduling is defined as an optimal assignment of the limited resources (machines) to competitive jobs over time. 
Having arisen from practical needs, scheduling theory attracts much attention of management workers and 
operations research practitioners. One of the most general scheduling problem may be described in a framework 
of the multistage system with machine set M including both different machines and identical machines that should 
process the given set of jobs J = {J1, J2,..., Jn}. Each job Jr consists of the ordered set of operations. Processing 
time pi and type of machine from set M that has to process operation i are assumed to be known before 

scheduling. Let M = 
w
k 1=U Mk where Mk denotes a set of identical machines of type k. If μi ∈ Mk and μj ∈ Ml with 

k ≠ l, then machines μi and μj are of different types. If k = l, machines μi and μj are identical. We assume that 
operation preemptions are not allowed. As usual, each machine cannot process two (or more) operations 
simultaneously. The objective is to assign all the operations to suitable machines from set M, and to define for 
each machine μj ∈ M the sequence of operations assigned to μj in such a way that the value of the given 
objective function is minimal. 
The complexity research has shown that even very special cases of the above scheduling problem (e.g., 
problems with either two different or two identical machines, or problem with three jobs and three different 
machines) are NP-hard [16]. Therefore, the use of exact scheduling algorithms is very limited in practice. The 
general methodology for developing exact scheduling algorithms is based on the branch-and-bound (B&B) 
method [4,14,16]. The exhausting enumeration while branching set of feasible schedules ensures the optimality 
of the best schedule constructed. The lower and upper bounds of the given objective function allow eliminate 
schedules, which are dominated, and reduce considerable enumeration process. However, we are forced to 
recognize that current improvements of the B&B algorithms cannot change radically the limit on the size of the 
scheduling problems solvable within reasonable running time. Moreover, it is unlikely to construct fast exact 
algorithms and even approximate ones with good performance measure for scheduling problems with real-world 
size. To be more application-oriented, different heuristics have been developed to find near-optimal feasible 
schedules.  
It should be noted that the reasons for applying certain heuristics in dispatching algorithms are usually weakly 
grounded and are based mainly on the experiments. The choice of heuristics in the knowledge-based system is 
more adequate and it is usually computer-aided. In article [1], it is shown that a better solution can be often 
obtained due to appropriate changing the set of dispatching rules. As a result, the obtained processing system 
became better than that obtained using only a fixed set of dispatching rules. In article [12], it is demonstrated that 
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machine learning produces an improvement in the performance of the processing system when compared to the 
traditional method of using a fixed set of dispatching rules.  
Local decision rules are the “backbone” for heuristic algorithms. The outcome of scheduling algorithm depends on 
the underlying strategy. As it was mentioned in [19], artificial intelligence provides often a better basis for 
modeling and solving a scheduling problem. Many real-world scheduling problems seem to be solved by semi-
logical methods, such as recognizing one of a thousand familiar patterns applying to current situation and 
recalling the appropriate thing to do when that pattern occurs. In article [6], it was shown that by combining a 
learning system with simulation, a manufacturing control system can be developed that learns from its historical 
performance and makes its own scheduling and control decisions by simulating alternating combinations of 
different dispatching rules. The objective of the research described in [8] was to study the feasibility of 
automatically scheduling multi-machine complexes and adjusting the schedule on a real-time basis by a unified 
computer system. In article [2], a probabilistic learning strategy has been developed based on the principles of 
evolutions. In [10,17,18], it was shown how an algorithm could be extended to consider local decision rules of any 
number and complexity. The resulting programs do better than that based on the deterministic approach. In 
article [3], it is emphasized that meta-heuristics are general combinatorial optimization techniques, which are 
designed with the aim of being flexible enough to handle as many combinatorial problems as possible. In the 
recent years, these techniques have rapidly demonstrated their usefulness and efficiency in solving different 
combinatorial problems including scheduling problems. 
Reviews of the learning-based scheduling approaches are presented in [8,11,19]. A common approach to 
scheduling set of the given jobs in practice is based on different dispatching rules. The performance of these 
rules depends on the state of the system at each moment, since there is no single rule that is better than others in 
all the possible system states. So, it is useful to look for the most appropriate dispatching rule at each state of the 
system. To achieve this goal, a scheduling approach based on machine learning seems to be rather promising. 
Due to analysis of the previous performance of the system, it is often possible to get knowledge that can be used 
to decide which dispatching rule is the most appropriate at this or that state of the system under consideration.  
In this paper, exact algorithm, heuristics and pattern recognition apparatus are used in common. Our approach 
may be considered as a generalization of the algorithm proposed in [13] for the very special case of the above 
scheduling problem when all machines in set M are different (job shop). We use mixed graph model [15] along 
with so-called conflict resolution strategy [14–16]. The main issue of this paper is a classification scheme for local 
conflicts due to computational results of the exact and approximate versions of the B&B algorithm. In the next 
section, we formulate the scheduling problem in terms of the mixed graph model and give an overview of the 
conflict resolution strategy being a basis for different exact, approximate and heuristic scheduling algorithms. 
Modules 1, 2 and 3 of the knowledge-based system are briefly discussed in the next three sections. Some 
remarks are given in Conclusion. 
 

Mixed Graph Model 
A multistage system with both different and identical machines may be described via mixed graph G = (V, A, E) 
[15], which is an appropriate model for constructing various scheduling algorithms [14,16]. In such a model, 
operation set V is represented as a set of vertices V = {1,2,..., n}, a weight prescribed to each vertex i ∈ V being 
equal to the processing time pi of operation i. As usual, precedence constraints between operations in set V are 

represented via arc set A. Let equality V =
w

ik =U Vk hold, where Vk denotes the set of all operations processed by 
machines of type k ∈ {1, 2,..., w}, and let wk = |Mk| be the number of identical machines of type k provided that 

equality |M| =
w
k 1=∑ wk holds. Competitions among operations that have to be processed by machines of the same 

type are represented via edge set E, namely: edge [i, j] belongs to set E if and only if operations i and j belong to 
the same set Vk. 
If r ∈ Vk and s ∈ Vl with k ≠ l, then operations r and s have to be processed by different machines (namely, by 
machines of different types: one machine from set Mk, and another machine from set Ml). For each pair of 
operations i and j with edge [i, j] ∈ E there exist three possibilities represented in Fig. 1.  
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Figure 1. Case (a): (i, j) ∈ A[αh] ( 
Case (b): (i, j) ∈ A[αh], respectively) if operations i and j are assigned to the same machine, and 
operation i (operation j) is processed before operation j (operation i); 
 Case (c): edge [i, j] is removed from the mixed graph G if operations i and j are assigned to two 
different machines of the same type 

 
Therefore, assigning operations V to machines M and sequencing operations assigned to the same machine 
correspond to orienting or removing edges from set E in one of these three possibilities. If all such edge 
transformations do not cause conflicts in the resulting digraph, then they define assigning operations Vk to 
machines Mk, k = 1, 2,..., w, and define the sequence of operations assigned to each machine μu ∈ M. Acyclic 
digraph constructed in such a way corresponds to a feasible schedule, if the number wk of the available machines 
of each type k is sufficient for such a transformation of edges in set E. More precisely, selecting edges [i, j] one by 
one from set E of the mixed graph G, and applying to each edge [i, j] one of the three possible transformations 
(removing edge [i,j], or substituting it either by arc (i,j) or by arc (j,i)), we obtain transformation sequence 

αh = (α
h
1 , α

h
2 ,..., α

h
E || ) of all the edges in the mixed graph G. Let G[αh] = (V, A[αh], ∅) denote a digraph obtained 

from the mixed graph G as a result of the above transformation αh. In article [15], the following claim has been 
proven. 
 

Theorem. Digraph G[αh] defines a feasible schedule if and only if the following three conditions hold: 
1) digraph G[αh] contains no circuits; 
2) for any k ∈ {1, 2,..., w}, the number of components in subgraph (Vk, Ak[αh], ∅) of digraph G[αh] is not greater 

than wk; 
3) for any k ∈ {1, 2,..., w}, each component of the digraph (Vk, Ak [αh], ∅) is a tournament. 
 

Let P(G) denote the set of all digraphs G[αh] satisfying all conditions 1), 2) and 3) given in Theorem. To find 
optimal schedule we may enumerate (e.g., implicitly via B&B method) digraphs from set P(G), and choose the 
optimal digraph, i.e., that with minimal value of the given objective function. 
 

Edge [i, j] ∈ E is called conflict if both its orientations (i,j) and (j, i) in the mixed graph G cause an increase of the 
starting time of at least one operation from set V. Using conflict resolution strategy, we deal with one conflict edge 
at each iteration of the B&B algorithm and test three possible transformations of this edge. The rule for choosing 
the edge from the set of conflict ones may be different, but the common idea is to choose that with maximal value 
of the conflict measure [4,14,15]. To find a solution of the scheduling problem, an exact B&B algorithm may be 
used to realize implicit enumeration of all feasible schedules. An approximate version of a B&B algorithm may be 
obtained from exact one using some error bound allowed for the desired objective function value. A heuristic 

(a) (b) (c) 

j j i i i

i 
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algorithm may be constructed by considering only one branch of the solution tree via choosing at each iteration 
single transformation of the conflict edge (e.g., due to some priority rules used for choosing operation from the set 
of two operations involved in conflict). Thus, mixed graph model with conflict resolution strategy may be a 
foundation for constructing a variety of scheduling algorithms differing in the running time and in accuracy of the 
best solution obtained. 
In the learning technology, we use the exact (or approximate version of) B&B algorithm in Module 1, while in 
Module 3 we use adaptive algorithm with logical rules produced within Module 2 by inductive inference. In the 
following sections, we show how to realize such an adaptation using mixed graph G. 
 

Stage of Learning (Module 1 and Module 2) 
At the stage of acquiring knowledge, we accumulate the knowledge about scheduling problems under 
consideration. Module 1 solves a set of sample scheduling problems via exact B&B algorithm (or via approximate 
B&B algorithm with allowed upper bound of the objective function) and stores information on the successful local 
decisions that have led to the optimal schedule (or to the best schedule obtained). The main idea for acquiring 
knowledge is to accumulate (in so-called learning table) the information that was obtained during the use of the 
time-consuming exact (or approximate version of) B&B algorithm. Next, we show how this knowledge could be 
used when solving other scheduling problems that are close to previous ones already solved by Module 1 (i.e., 
problems with similar structure of the processing system, close numerical data, the same objective function, etc.). 
The aim for constructing learning table is to accumulate the knowledge on successful local decisions used in the 
historical performance of the B&B algorithm. The stage of learning consists in accumulating information and 
tuning some parameters of the B&B algorithm to the properties of a set of scheduling problems to be solved. The 
learning table is analogous to those used in pattern recognition. It describes which transformation of a conflict 
edge seems to be preferable. While solving the sample problem, information on successful transformations of 
the conflict edges has to be written in the learning table (see Table 1 without last row). Each raw of this table 
corresponds to one conflict edge. After the B&B algorithm from [15] is stopped, the path in the solution tree is 
known that has led to the optimal schedule (or to the best schedule obtained). We can consider the set of conflict 
edges tested in this path. If the B&B algorithm chooses the most conflict edge [i1,j1] as the first one, then Module 
1 considers edge [i1,j1] as the first one too, and so on. Columns in Table 1 corresponding to characteristics are 
filled by calculated characteristic values xi of the object (conflict edge) [im,jm]. The last column in Table 1 contains 
classes Ω1, Ω2,..., Ω7 attributed to objects [im,jm]. Let Tu,v denote the learning table with v objects and u 
characteristics. In our software, number u is the parameter of the program fixed at the initial step of the algorithm, 
while number v of the objects may grow with the growth of the number of sample problems solved by Module 1. 
 

Table 1: The learning (recognition) table Tu,v  used in Module 2 (Module 3) 
 

Objects                 Characteristic values  Classes of objects 
(conflict edges) x1 x2 ….  xu Ω1, Ω2,..., Ω7 

[i1, j1] b
1
1  b

2
1  

…  
b

u
1  Ω k 1  

[i2, j2] b
1
2  b

2
2  

…  
b

u
2  Ω k 2  

… … … …  … … 
[iv, jv] 

b
1
v  b

2
v  

…  
b

u
v  Ω k v  

[i, j] b1 b2 …  bu ? 
 

Notion of characteristic like xi is important for object description in any knowledge-based system. Next, we 
demonstrate how characteristics of the conflict edges may be introduced by generalizing priority rules. While 
creating the learning table for the first time, the characteristics are chosen from the known list, and they are 
ordered with respect to their theoretical informative measure. Each characteristic may correspond to a priority rule 
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for a conflict resolution. After words having adopted on the set of scheduling problems, Modules 1 and 3 may also 
use more complex and more informative logical rule as a new characteristic created by Module 2. In this case, 
useless (non-informative) characteristic xu has to be rejected from table Tu,v (since number u of characteristics 
used in table Tu,v is fixed at the initial step of the algorithm). Index m from set {1, 2,…, u} and a position in the 
ordered set of characteristics have to be prescribed to the new characteristic with respect to its usefulness: the 
more informative characteristic is, the smaller index m it must have. Such a replacement of characteristics is 
realized within Module 2. In the experiments, we used first the characteristics corresponding to the priority rules 
given in [9]. A priority rule allows compare priority values of two operations competing on machines of the same 
type. It is useful to introduce the corresponding characteristic equal to the difference between these priority 
values for two operations i and j for the conflict edge [i,j]. To make such characteristics more universal (and so 
applicable to other scheduling problems), it is reasonable to use the relative difference of these priority values 
obtained after dividing them by a common value (e.g., by the maximal value of this characteristic in the whole 
mixed graph G). Next, we demonstrate typical examples of characteristics used in computational experiments. 
SPT rule recommends to process first the operation with the "Shorter Processing Time", and then the operation 
with the greater processing time. So, we can introduce corresponding characteristic as follows:  

x1 = (pi — pj) / max{pk : k ∈ V}. 
Value x1 characterizes edge [i, j] more adequate than the corresponding priority rule: the sign of this value shows 
which operation i or j has the shorter processing time, and absolute value of x1 makes it possible to compare 
edges of the mixed graph G with those of the mixed graphs constructed for other problems. 
FIFO rule recommends to process first the operation that has the shorter starting time ("First In, First Out"). The 
starting time si of operation i can be easily calculated as the maximal weight of the path ending in vertex i of the 
digraph (V, A, ∅). Value x2 of a characteristic corresponding to priority rule FIFO may be calculated for edge [i, j] 
as follows:  

x2 = (sI — sj) / max{sk : k ∈ V}. 
In the computational studies (realized for the special case of the problem with |Mk| = 1 for each k = 1, 2,…,w) 
especial attention has been paid to priority rule LIOF ("Least Increase in the Objective Function"). Considering 
two operations i and j processed by the same machine, two values Fij and Fji of the objective function F are 
calculated for two possible orders to process these operations. Value Fij is calculated for partial schedule with 
operation i being processed first and operation j being processed second (in this case, conflict edge [i, j] has to be 
substituted by arc (i,j)). Value Fji is calculated for partial schedule with operation j being processed first and 
operation i being processed second (edge [i, j] has to be substituted by arc (j, i)). The LIOF rule recommends to 
choose the order defined by arc (i,j) for operations i and j if Fij < Fji, and to choose the opposite order defined by 
arc (j, i), otherwise. 
The computational studies with three famous job shop problems from [7] showed that LIOF rule is very 
informative. More precisely, it was shown (by experiments on computer) that while constructing an optimal 
schedule for the makespan criterion Cmax = max{Ci : i ∈ V} (where Ci means the completion time of job Ji ∈ J) via 
Module 1, the most part of the conflict edges was successfully oriented just due to the LIOF rule. For test 
problems, number of edges substituted by arcs with respect to LIOF rule formed about 60 percent, and the 
number of exceptions formed often only 1 percent of the whole number of conflict edges tested in Module 1. For 
the rest 39 percent of conflict edges [i,j], operations i and j were often equivalent in the sense of equality Fij = Fji. 
Thus, at the learning stage, we consider the conflict edge of the mixed graph G as an object (using pattern 
recognition term). All columns in table Tu,v (except the first and the last ones) contain characteristic values of the 
objects. They form the description-vector for each conflict edge tested while constructing optimal schedule via 
Module 1. The first column enumerates conflict edges in the order as they have been tested in the B&B algorithm 
on the path to the optimal schedule in the solution tree (or to the best schedule obtained). The last column in 
table Tu,v  is used to classify objects in order to compare them with new objects within Module 3. At the solution 
stage (Module 3), the description-vector of the object is used to decide what edge substitution or removal has 
more probability to be successful. 
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Classes of Objects 
To identify what transformation of conflict edge has been successful in the historical performance of the B&B 
algorithm, we introduce seven classes of objects: Ω1, Ω2,..., Ω7 (see last column in Table 1). In what follows, it is 
assumed that inequality i < j holds for each edge [i, j] ∈ E.  
Object [i, j] belongs to class Ω1 if it is preferable to substitute this edge by arc (i,j) in order to obtain effective 
schedule with respect to the given objective function. (In such a case, we shall say that arc (i,j) dominates both 
arc (j, i) and edge [i, j]).  
Object [i, j] belongs to class Ω2 if it is preferable to substitute it by arc (j, i), and we say that arc (j, i) dominates 
both arc (i,j) and edge [i,j].  
Object [i, j] belongs to class Ω3 if it is preferable to remove conflict edge [i, j] from the mixed graph G, and we say 
that edge [i, j] dominates both arcs (i,j) and (j, i).  
If there is no enough information to decide what sole edge transformation is preferable, we have to include object 
[i, j] to one of the classes Ω4, Ω5, Ω6 or Ω7 depending on available information. Namely, if arcs (i,j) and (j, i) 
simultaneously dominate edge [i, j] but not each other, then [i, j] ∈ Ω4. If arc (i,j) and edge [i, j] simultaneously 
dominate arc (j, i) but not each other, then [i, j] ∈ Ω5. If arc (j, i) and edge [i, j] simultaneously dominate arc (i,j) but 
not each other, then [i, j] ∈ Ω6. Finally, if there is no enough information on arc (or edge) domination, then object 
[i, j] has to belong to class Ω7.  
Next, we render the concrete edge classification rules realized within our Module 2. The learning process is 
based on the solution tree constructed for the sample problem. Let scheduling problem S be solved by an exact 
B&B algorithm within Module 1. Then we obtain optimal digraph G[α*] = (V, A[α*], ∅) that defines optimal 
schedule. Moreover, the path from vertex G to vertex G[α*] in the constructed solution tree is known. Each vertex 
of this path is defined by a conflict edge [i,j]. If (i,j) ∈ A[α*], then [i, j] ∈ Ω1. If (j, i) ∈ A[α*], then [i, j] ∈ Ω2. If (i,j) ∉ 
A[α*] and (j, i) ∉ A[α*], then [i, j] ∈ Ω3. Thus, each object obtained due to the solution of the sample problem via 
exact B&B algorithm belongs to one of the three classes: Ω1, Ω2, or Ω3.  
If the sample problem is solved only approximately, object classification is based on the relation between lower 
and upper bounds of the values of the given objective function. Let scheduling problem S be solved by an 
approximate B&B algorithm, then the best digraph G[α°] = (V, A[α°], ∅) constructed gives upper bound UB that is 
greater than the minimal lower bound calculated for all the pendant vertices of the constructed solution tree. Thus, 
we obtain path π(G — G[α°]) from vertex G to vertex G[α°] in the solution tree. Each intermediate vertex G' in this 
path defines conflict edge [i, j] for further brunching. Object [i, j] has to be included in one of the above seven 
classes. Next, we describe the rule for this classification in detail only for the case when path π(G — G[α°]) 
includes arc (a) (see Fig. 1). We will indicate this case as follows: (a) ∈ π(G — G[α°]). In this case, conflict edge 
[i, j] in the mixed graph G is substituted by arc (i,j).  
Let (a) ∈ π(G — G[α°]). In the solution tree, three possible transformations have been realized for conflict edge [i, 
j] (see Fig. 1). Let LB(j, i) (LB[i, j], respectively) denote the minimal lower bound calculated for all the pendant 
vertices G" to which there exists a path π(G' — G") from vertex G' starting with arc (b): (b) ∈ π(G'  — G")  
(starting  with  arc  (c):  (c) ∈ π(G'  — G"), respectively).   
If LB(j, i) ≥ UB  and LB[i, j] ≥ UB, then [i, j] ∈ Ω1. If LB(j, i) < UB and LB[i, j] ≥ UB, then [i, j] ∈ Ω4. If LB(j, i) ≥ UB 
and LB[i, j] < UB, then [i, j] ∈ Ω5. 
Classification rules for other two cases (b) ∈ π(G — G[α°]) and [c] ∈ π(G — G[α°]) are analogous. In particular, if 
(b) ∈ π(G — G[α°]), then object [i, j] has to belong to one of the three classes Ω2, Ω4 or Ω6. If (c) ∈ π(G  — 
G[α°]), then object [i, j] has to belong to one of the three classes Ω3, Ω5 or Ω6. 
At the end of the stage of learning, the information accumulated in table Tu,v is used in Module 2 to construct the 
recognition table, which is used at the solution stage within Module 3. A recognition table has the similar form as 
table Tu,v has, except the last row added to recognition table (see Table 1). (However, we use the same notation 
Tu,v for recognition table as well.) In order to construct the recognition table a subset of the most informative 
characteristics is selected and sorted with respect to their informativeness. Some characteristics that turned out 
to be not essential for sample problems have to be rejected from table Tu,v.  
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In [13], it is shown how to select the most informative characteristics. Module 2 systematizes the knowledge 
obtained using the pattern recognition apparatus, and constructs the generalized logical rule for conflict 
resolution. Such a rule describes successful local decisions and should be used in Module 3 for more efficient 
solving large-scale scheduling problems via adopting successful local decisions by principle of analogy. 

Solution Stage (Module 3)  
Scheduling algorithm used as Module 3 occupies intermediate position between heuristic and approximate B&B 
algorithms depending on the number of sample problems solved exactly or approximately at the stage of learning 
(Module 1 and Module 2). Conflict resolution strategy is also used in Module 3. If Module 3 chooses conflict edge 
[i, j], it has to recognize to which class from set {Ω1, Ω2,..., Ω7} edge [i, j] has to belong. Thus, a recognition 
problem arises, and it is reasonable to adopt to a new situation the strategy that has led to successes at the 
learning stage in Module 1. 
In order to solve the recognition problem, Module 3 uses the procedure based on the bound calculation. A 
resemblance bound is calculated that characterizes the distance between the description vector of recognizable 
object [i, j], and that of sample objects with respect to combination H of characteristics x1, x2,..., xu  used in the 
recognition table Tu,v. We have to determine edges [ik, jk] given in table Tu,v such that the corresponding vectors 

(b
1
k , b

2
k ,..., b

u
k ) are the closest ones to vector (b1, b2,..., bu) with respect to the characteristics x1, x2,..., xu. Two 

objects [i, j] and [ik, jk] are considered to be similar with respect to the system H of characteristics, if at least δ 

inequalities |bj — b
j
k | ≤ εk are satisfied with j = 1, 2,..., u and xj ∈ H, where ε1, ε2,..., εu and δ being parameters of 

Module 3. Bounds are calculated for the number of objects of the learning table that are similar (close) with 
respect to system H. The analysis of such bounds allows to decide to which class Ω1, Ω2,..., Ω7 object [i, j] has to 
be assigned. Due to this calculation, one can decide what transformations are preferable for the conflict edge [i, j], 
and how many transformations (one, two or three) of this edge have to be treated in Module 3. If [i, j] ∈ Ω1, then 
solution tree has to contain arc (a) (see Fig. 1). If [i, j] ∈ Ω2, then solution tree has to contain arc (b). If [i, j] ∈ Ω3, 
then solution tree has to contain arc (c). If [i, j] ∈ Ω4, then solution tree contains two arcs (a) and (b). If [i, j] ∈ Ω5, 
then solution tree contains two arcs (a) and (c). If [i, j] ∈ Ω6, then solution tree contains two arcs (b) and (c). If [i, j] 
∈ Ω7, then solution tree contains all three arcs (a), (b) and (c) that are represented in Fig. 1. 
Due to this approach, we obtain close interaction between implicit enumeration algorithm (Module 1), 
approximate algorithm and heuristics (in Module 3). Effective priority rules obtained via Module 2 contribute to the 
implementation of the effective upper and lower bounds in the branch-and-bound algorithm (Module 1). Suitable 
heuristics have to be incorporated in the branch-and-bound procedures (Module 1 and Module 3) to compute the 
solutions corresponding to the most promising part of the solution tree.  

Conclusion 
The use of an exact scheduling algorithm is computationally expensive and so impracticable. At present, rather 
common methodology carried out by practitioners is the use of simple heuristics based often on weakly grounded 
dispatching rules which do not ensure desirable accuracy of the obtained solution. To overcome these difficulties, 
we propose a knowledge-based system that may be used for the adaptation of the approximate version of the 
B&B algorithm for the specific practical scheduling problems. The solution process is partitioned into two stages: 
the learning stage realized by Module 1 and Module 2 for small (sample) scheduling problems, and the solution 
stage realized by Module 3 for moderate and large (real-world) scheduling problems.  
Module 1 creates the database of learning information for the certain class of the scheduling problems and 
enlarges it while solutions of new problems become available. At the stage of learning, one can also use 
practically effective schedules obtained via commercial packages such as that described in [5]. The volume of 
information, its correctness and absence of noises depends on the quality of the scheduling algorithms applied in 
the framework of Module 1 and on the computing time given for learning process (Module 1 and Module 2). More 
exact algorithms requiring larger computing time may ensure more informative knowledge. Therefore, it is 
important to use effective algorithms within Module 1. The algorithm used in Module 3 should consider at each 
step the same question as the algorithm used in Module 1. The bridge linking Module 1 and Module 3 is 
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Module 2, which automates the learning of peculiarities of the similar scheduling problems and may give 
foundation for creating generalized logical rule for proper conflict resolution. As a result, Module 2 generates 
suitable priority rules, which may be considered in Module 3 as new comprehensive heuristics developed just for 
the practical scheduling problems under consideration.  
This research was partially supported by INTAS (project 03-51-5501), and by the Belarusian Republican 
Foundation for Fundamental Research.  
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