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DATA FLOW ANALYSIS AND THE LINEAR PROGRAMMING MODEL1 

Levon Aslanyan 

Abstract: The general discussion of the data flow algorithmic models, and the linear programming problem with 
the variating by data flow criterion function coefficients are presented. The general problem is widely known in 
different names - data streams, incremental and online algorithms, etc. The more studied algorithmic models 
include mathematical statistics and clustering, histograms and wavelets, sorting, set cover, and others. Linear 
programming model is an addition to this list. Large theoretical knowledge exists in this as the simplex algorithm 
and as interior point methods but the flow analysis requires another interpretation of optimal plans and plan 
transition with variate coefficients. An approximate model is devised which predicts the boundary stability point for 
the current optimal plan. This is valuable preparatory information of applications, moreover when a parallel 
computational facility is supposed. 

Keywords: data flow algorithm, linear programming, approximation 

ACM Classification Keywords: G.1.6 Numerical analysis: Optimization 

1. Introduction 

Data flow is a concept, traditionally appearing in the sensor based monitoring systems. Advanced global networks 
brought a number of novel applied disciplines intensively dealing with data flows. The network monitoring itself 
and optimal management of telecommunication systems, search engines with consequent data analysis, the 
network measuring instruments and network monitoring for security, etc. are the novel examples of data flow 
models. These deal with continuous data flows and unusual, non-finite and non-stored data set. In this case, the 
queries (the data analysis requests) are long-term and continuous processes in contrast to usual one-time 
queries. The traditional databases and data processing algorithms are poorly adjusted for the hard and 
continuous queries in data flows. This generates the necessity of new studies for serving continuous, 
multilayered, depending on time and subjected to indefinite behaviour of data flows [MM 2003]. Concerning the 
mentioned problem area, systems and algorithms are devised for different needs: real time systems, automation 
control systems, modelling processes, etc., but they are episodes in point of view of the formulated general 
problem. Traditional trade offs of such systems include one-pass and multi-pass algorithms, deterministic and 
randomized algorithms, and exact and approximate algorithms. Off-line algorithms solve a problem with full 
knowledge of the complete problem data. Online algorithms construct partial solutions with partial knowledge of 
the problem data, and update their solutions every time some new information is provided. In other words, they 
must handle a sequence of closely related and interleaved sub-problems, satisfying each sub-problem without 
knowledge of the future sub-problems. Standard examples of online problems include scheduling the motion of 
elevators, finding routes in networks and allocating cache memory. The usual way of measuring the quality of an 
online algorithm is to compare it to the optimal solution of the corresponding off-line problem where all information 
is available at the beginning. An online algorithm that always delivers results that are only a constant factor away 
from the corresponding optimum off-line solution, is called a competitive algorithm.  
The “incremental update” algorithmic model of data analysis [AJ 2001] modifies the solution of a problem that has 
been changed, rather than re-solving the entire problem. For example, partial change of conditions of a time-table 
problem must be force to only partial reconstruction of the table. It is obvious that it is possible to construct a 
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theoretical problem, where any particular change brings to the full reconstruction of the problem. It is also clear 
that there are numerous problems, which are not so critical to the local transformations. It is an option to try to 
solve the given data flow problem by the mentioned incremental algorithms, moreover, in the specific conditions it 
is the only possible way for solving the problem including the data flows analysis. 
Measuring the “variability”, “sortedness” and similar properties of data streams could be useful in some 
applications; for example, in determining the choice of a compression or sort algorithm for the underlying data 
streams. [MM 2003] have studied the bit level changes in video sequences and [AJ 2001] - the problem of 
estimating the number of inversions (the key element of the Shell type sorting algorithms) in a permutation of 
length n  to within a factor ε1± , where the permutation is presented in a data stream model. [MM 2003] proves 
the decreasing bit level changes of image pixels in video sequences and in [AJ 2001] - an algorithm obtained 
requiring the space )nloglogn(logO . 
Sketching tools are usual for many data oriented applications. These include approximations of statistical 
parameters, histograms, wavelets, and other similar general descriptors. The simplest calculations for data 
streams serve the base statistical means like the averages and variations [AC 2003]. Other data flow descriptors 
also appear in publications: frequency moments [AM 1996], histograms [GG 2002], etc.  
The paper below discusses an important applied model for the flow environments. We consider the linear 
programming mathematical problem, parameters of which are formed by data flows. In a moment it is assumed 
that the optimal plan is found and the coordinates of the target function are variable by the flow. In this case, there 
is an emerging question: which mechanisms are well suited to follow the coefficients variations in creating the 
configuration of the next resulting optimal plan. It is clear that the small changes of coefficients lead to simple 
changes of the current optimal plan, probably not requiring the total analysis of the problem by the complete flow 
information.  

2. Linear Programming in Data Flows  
Let's consider the linear programming problem in its canonical form:  
min xc'  

,0≥= x,bAx  

where A,Rb,Rc mn ∈∈  is an nm×  full rank real matrix, and nm < . Without a loss of generality we may 

also suppose that 0≥ib , m,i 1= . Particular examples of linear programming problem are given through the 

definition of coefficient values: ijij b,c,a , for n,j;m,i 11 == . Let's imagine a specific situation arising from 
application that the mentioned coefficients are changing in time. Such problems appear, for example, in data flow 
analysis. 
Le us consider a data flow )n,t(B , which is finite but a very large-sized sequence of values nb,,b,b L21 , 

where n,t,bt 1=  are certain structures. The data flows processing algorithms may use comparatively small 
storages than the input size. A limitation window is given in certain cases for processing separate data fragments. 
The time-dependent values of parameters, forming the applied problem model are formed as а result of 
algorithmic analysis. Unlike other natural and similar definitions, the variation of parameters is unpredictable here, 
as it has not probabilistic distribution and is not described by one or another property. Instead, it is considered 
that the variation takes place very slowly, because of the accumulation concept. In its turn, the applied problem 
demands to have ready answers to the certain questions in each time stamp. 
There are two strategies: (1) solving a problem for each stage by all actual information which is practically 
impossible because of the large data sizes; and (2) structuring hereditary systems when the new data analysis is 
relatively easily integrated with the results of the previous data analysis. 
We are going to consider the linear programming model in the mentioned conditions. The arbitrary variation of the 
coefficients is not allowed, instead, slow variations are considered so that the variation is fully monitored and it 
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changes the solutions very slowly. Of course, it is possible to formalize this fully. At the same time, it is possible to 
consider partial behaviour of parameters variations, providing simple scenes of the algorithmic developments. 

Let's suppose that the coefficients jc  of linear criterion function ∑
=

=
n

j
jj xcZ

1
 of the linear programming problem 

are varying by flow ),( ntB . Assume that 0t  is the moment where the complete analysis exists, i.e. we know 
about the existence of optimization at that moment and the optimal vertex and plan, if the latter exists. This vertex 
obeys the property of stability of optimality for certain variations of coefficients jc  [GL 1980]. The stability area is 
described by a set of simple inequalities and it is clear that it is an issue to consider the border of this area. The 
theoretical analysis of optimality of vertex set elements of the area of base restrictions is well known as the 
simplex method [V 1998]. The simplex method looks for sequence chains of vertex transitions, which converge to 
an optimal plan. Complementary, in our case, we study all the possible ways of optimality transitions driven by the 
changes of coefficients jc .  

The novelty is that we device the concept of equivalency of vertices groups of the feasible polyhedron vertices set 
and prove that the transition from one optimal vertex to another takes place through these groups. So the 
continuous change of target function coefficients generates the continuous change of optimality vertices. 
From practical point of view – a path prediction process is possible to apply to the situation with varying 
coefficients. Prediction of intersection of the trajectory extrapolation of coefficient changes to the boundary of 
stability area of the current optimal plan helps to determine the vertex equivalency cluster and so - the further 
possible transitions and by these – the most likely arriving optimums when coefficients keep the track of their 
current modifications. 
Going through the transitions some vertices might neighbour with comparatively large equivalency groups of 
vertices and then the total number of those vertices can become large. Theoretically, in terms of flows, having the 
current optimization vertex, it is necessary to prepare neighbouring equivalent vertices by calculating them by the 
current and predicted coefficients jc . The weakness of the direct application of the given approach is in drastic 
increase in the number of calculations for the vertex sets involving the predictions and equivalencies. The 
considered below natural approach gives primary significance to the vertices which correspond to the linear 
approximations of the given variations. 

Let's denote the optimal vertex at the moment 0t  by 0tx~  and let 0tc~  is the corresponding vector of coefficients. 

Let's follow the transition of 0tc~  to the tc~ . It is clear that this transition is more or less arbitrary and it is 
controlled by the flow. It is important if during the transition the vector tc~  of coefficients approaches to the 
boarder of stability of current optimal plan 0tx~ , - or not. To see this we have to monitor the changes of tc~ . 
Alternatively, it is possible to approximate the transition, activating the possible future “optimal plans”. For 
example, spline approximations or a more simple approximation by the main values and standard deviations 
might be applied. The most simple is the linear approximation model, which we consider below. As an 
extrapolation, it leads to the intersection with the stability boundary (shell) of the vertex 0tx~  at the most 
probability point. In case of sufficient computational resources, it is also possible to consider some neighbourhood 
of that point, and it is important that in contrast to the above mentioned theoretical model, this applied approach 
gives an opportunity to work with the limited quantity of the possible candidate vertices. Depending on the 
considered problem, an algorithmic system is able to choose a corresponding extrapolation scheme, which deals 
with different numbers of neighbouring vertices. The approximation of tc~  by the flow averages and dispersions 
requires their calculation, which is a simple flow problem (it is shown in [MM 2003]). Supposing that this question 
is clarified, let's consider the problem behaviour in the case of linear approximations. 
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3. Linear Approximation 
In the case mentioned, variation of the optimization criteria function coefficients is supposed to be changed by an 
expression )cc(c)(c t

j
t
j

t
jj

00 λλ −+= , where λ  varies in certain limits. The interval ],[ 10  for λ  is internal 

and characterizes the variation from 0tc~  to tc~ , and the values 1λ >  are extrapolating the further behaviour of 
coefficients in a linear model. Let's denote 0Δ t

j
t
jj ccc −= . 

So we are given the linear function  

(1)    ∑
=

+=
n

j
jj

t
j x)cc(Z

1

Δλ0  

and the system of linear requirements, given by 

(2)    
.n,,,j,x

,m,,,i,bxa

j
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ijij
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==∑
=  

It is necessary to accompany the changes of λ , finding out in the interval λ1<  the minimal value at which the 
change of the optimal plan takes place for the first time. Assume that the vector ( )t

n
ttt x,,x,xx~ L21=  which 

satisfies the system (2) introduces the corresponding new optimization basis.  
According to the assumptions, we have optimal solution when 0λ = . Assume that the solution basis consists of 
the first m  vectors of na,a L,1 . In accord to the simplex algorithm and its optimization condition, all the 

“estimations” in this case must obey to the following condition: n,,,j,cz t
jj L2100 =≤− .  

As Δλλ 0
j

t
jj cc)(c +=  then that general optimization condition becomes: 

n,,,j,)cc(x)cc()(cz j
t
jjj

t
jjj L210λλλ Δ0Δ 00 =≤+−+=− .  

Let's group the expression in the following way: 
n,,,j,)x(c)x(c jjj

t
j L2101λ1 0Δ00 =≤−+− ,  

and let introduce the notations: )x(c j
t
jj 1α 00 −=  and )x(c jjj 1β 0Δ −= . The constants jα  and jβ  are 

defined by the initial configuration: optimization criterion function coefficients and the corresponding solution 
basis, criterion current coefficients with the supposition that optimization did not change during that period.  
For 0λ =  we have the optimization vertex 0x~ , and therefore, we get the following limitations: 

01α 00 ≤−= )x(c j
t
jj . The optimization vertex change does not take place when 1λ0 ≤≤ , so we get also: 

01λ1λβα 0Δ00 ≤−+−=+ )x(c)x(c jjj
t
jjj . 

In particular, when 1λ =  we get 0βα ≤+ jj . The extreme condition will be written in the following general form: 
n,,,j,jj L210λβα =≤+ . Let's find the minimal value of λ  at which at least one of this inequalities violates 

for the first time. 
Let's separate negative and positive cases of jβ . The restrictions on λ  will accept the following forms: 

jj βαλ −≥ for all 0β <j , and 

jj βαλ −≤ for all 0β >j . 
Let's introduce one more notation: 

( ){ 0β 0ββαmλ ≤∞+>−= jjjj allwhen,and,aifin . 

The optimal solution for 0λ =  coincides with optimal solutions for all λ  which obeys the condition λλ0 ≤≤ . It 
is ensued that λ  is the possible transition configuration. If +∞=λ  then there is no change of optimal plan. If λ  
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is limited then it is necessary to consider two cases: the first one (a/) is the point λ  with the possible equivalent 
optimal plans and possible continuations in this case, and the second one (b/): if there is a new optimal plan and 
if the problem has no solution at λλ > .  
a/ Assume that λ  is finite, i.e. kk βαλ −=  for the corresponding value of parameter k . It means that 

0λ =− )(cz kk  from which follows that the optimization plan is not single. Actually, let's insert the k -th vector 
into the basis and according to the simplex method let's exclude one of the vectors from the previous basis. We 
will get a new optimal plan the criterion value of which will stay unchanged. It follows even more – that, by all null 
estimations and by all basis modifications we can get many optimization equivalent vertexes and all elements of 
their linear closure also have the same discussing optimization value. 
b/ In this case, we consider the values λλ >  and the λ  is finite. If the coefficients of above mentioned k -th 
vector all not positive, i.e. 0τ ≤ik , by optimization basis, then according to the simplex method, the criterion 
function becomes unlimited. This takes place any time when according to the increasing character of the criterion 
function we get the vector which is going to be involved into the basis 0λ >− )(cz kk , but it becomes clear that 
the vector has no positive 0τ >ik  coordinate because of we could exclude it from the basis. In this case, it is 
impossible to choose such a coefficient 0θ >  that any 0θτ =− ikix  when }m,,{i L1= . Therefore, we get 
the optimization plan with 1+m  positive components; the set of km a,a,,a,a L21  vectors are linearly 
depending and this corresponds to the non-angle vertex. Therefore, linear criterion function could not get to its 
minimal value. This means that hyper-plane which is defined by linear function could not become supporting 
hyper-plane of permissible polyhedron at any shift in the direction of gradient. 
If a 0τ >ik  then the vector ka  is included into the basis and another vector la  is excluded from it. As the new 
basis is constructed by the simplex method then it corresponds to a new optimal solution, and at those 
inequalities 
(3)    n,,,j,jj L210βλα =≤′+′   
are compatible. 
Let's show that any λλ <  does not satisfy the system (3) of inequalities. Really, for the vector la , excluded from 
the basis we will get the following: 
(4)    lkkllkkl ; τββταα −=′−=′ , 

where 0τ >lk . Suppose that (3) takes place for any λλ <  then 0βλα ≤′+′ jj , or according to (4) 

0λβα ≤−− kk . As 0β >k  then, from the latter inequality follows that λβαλ =−≥ kk . 

4. Conclusion  

The paper is devoted to the discussion of applied algorithms for data flows. The linear programming problems 
and the simplex algorithm of their solution were considered. This research is not about the simplex algorithm 
developments, but is about the approaches processed in this sphere that also help when according to the 
problem assumption the coefficients of criterion function variate in the result of the data flows analysis. We got 
that it is possible to introduce and develop the concepts and tools related to the simplex algorithm by approaches, 
which solve flow linear optimization problems. The core result is the construction of the extrapolation mechanism 
that applies linear extrapolation by predicting the stationary data. The concept of equivalency of optimal vertices 
is introduced, which helps to accompany the variation process preparing the possible optimization vertexes in 
advance.   
This is important from the viewpoint of linear programming systems and optimization in applied data flow 
systems. 
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MATRICIAL MODEL FOR THE STUDY OF LOWER BOUNDS 

Jose Joaquin Erviti,  Adriana Toni 

Abstract: Let V be an array. The range query problem concerns the design of data structures for implementing 
the following operations. The operation update(j,x) has the effect  xvv jj +← ,  and the query operation 

retrieve(i,j) returns the partial sum  ji vv ++K . These tasks are to  be performed on-line. We define an 

algebraic model – based on the use of matrices – for the study of the problem. In this paper we establish as well 
a lower bound for the sum of the average complexity of both kinds of operations, and demonstrate that this lower 
bound is near optimal – in terms of asymptotic complexity. 

Keywords: zero-one matrices, lower bounds, matrix equations  

ACM Classification Keywords: F.2.1 Numerical Algorithms and Problems 

1 Introduction 

Let V=(v1 .. vn)  be an array of length n storing values from an arbitrary commutative semigroup S. We define the 
operations: 

• retrieve(j,k): returns vj+..+vk        j≤∀1 nk ≤≤   

• update(j,x)  : vj := vj +x                    j≤∀1 n≤ ,    Sx∈                       (1) 

We refer to n as the size of the range query problem. We see that the complexity of executing an update(j,x) 
operation is constant  meanwhile the worst complexity of a retrieve(i,j) operation is linear on n. 


